1. Kenigson, J., A. Adcroft, S. Bachman, F. Castruccio, I. Grooms, P. Pegion, and Z. Stanley, 2022: Parameterizing the Impact of Unresolved Temperature Variability on the Large-Scale Density Field: Part 2. Modeling. Journal of Advances in Modeling Earth Systems, https://doi.org/10.1029/2021MS002844.
  2. Huth, A., A. Adcroft, and O. Sergienko, 2022: Parameterizing Tabular-Iceberg Decay in an Ocean Model. Journal of Advances in Modeling Earth Systems, 14, e2021MS002869, https://doi.org/10.1029/2021MS002869.
  3. Reichl, B. G., A. Adcroft, S. M. Griffies, and R. Hallberg, 2022: A potential energy analysis of ocean surface mixed layers. Journal of Geophysical Research: Oceans, 127, e2021JC018140, https://doi.org/10.1029/2021JC018140.
  4. Harrison, M., A. Adcroft, R. Hallberg, and O. Sergienko, 2022: Improved Surface Mass Balance Closure in Ocean Hindcast Simulations. Journal of Advances in Modeling Earth Systems, 14, https://doi.org/10.1029/2021MS002888.
  5. Marques, G. M., and others, 2022: NeverWorld2: an idealized model hierarchy to investigate ocean mesoscale eddies across resolutions. Geoscientific Model Development, 15, 6567–6579, https://doi.org/10.5194/gmd-15-6567-2022.
  6. Range, M. M., and others, 2022: The Chicxulub Impact Produced a Powerful Global Tsunami. AGU Advances, 3, e2021AV000627, https://doi.org/10.1029/2021AV000627.
  7. Aluie, H., S. Rai, H. Yin, A. Lees, D. Zhao, S. M. Griffies, A. Adcroft, and J. K. Shang, 2022: Effective drift velocity from turbulent transport by vorticity. Physical Review Fluids, 7, 104601, https://doi.org/10.1103/PhysRevFluids.7.104601.
  8. Huth, A., A. Adcroft, O. Sergienko, and N. Khan, 2022: Ocean currents break up a tabular iceberg. Science Advances, 8, eabq6974, https://doi.org/10.1126/sciadv.abq6974.


  1. Damsgaard, A., O. Sergienko, and A. Adcroft, 2021: The effects of ice floe-floe interactions on pressure ridging in sea ice. Journal of Advances in Modeling Earth Systems, 13, https://doi.org/10.1029/2020MS002336.
  2. Drenkard, E. J., and others, 2021: Next-generation regional ocean projections for living marine resource management in a changing climate. ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab100.


  1. Delworth, T. L., and others, 2020: SPEAR – the next generation GFDL modeling system for seasonal to multidecadal prediction and projection. Journal of Advances in Modeling Earth Systems, 12, e2019MS001895, https://doi.org/10.1029/2019MS001895.
  2. Winton, M., and others, 2020: Climate Sensitivity of GFDL’s CM4.0. Journal of Advances in Modeling Earth Systems, 12, e2019MS001838, https://doi.org/10.1029/2019MS001838.
  3. Dunne, J. P., and others, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems, n/a, https://doi.org/10.1029/2019MS002015.
  4. Tsujino, H., and others, 2020: Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 13, 3643–3708, https://doi.org/https://doi.org/10.5194/gmd-13-3643-2020.
  5. Griffies, S. M., A. Adcroft, and R. W. Hallberg, 2020: A Primer on the Vertical Lagrangian-Remap Method in Ocean Models Based on Finite Volume Generalized Vertical Coordinates. Journal of Advances in Modeling Earth Systems, 12, https://doi.org/10.1029/2019MS001954.
  6. Lu, F., and others, 2020: GFDL’s SPEAR Seasonal Prediction System: Initialization and Ocean Tendency Adjustment (OTA) for Coupled Model Predictions. Journal of Advances in Modeling Earth Systems, 12, e2020MS002149, https://doi.org/10.1029/2020MS002149.
  7. Stanley, Z., I. Grooms, W. Kleiber, S. D. Bachman, F. Castruccio, and A. Adcroft, 2020: Parameterizing the Impact of Unresolved Temperature Variability on the Large-Scale Density Field: Part 1. Theory. Journal of Advances in Modeling Earth Systems, 12, e2020MS002185, https://doi.org/10.1029/2020MS002185.


  1. Stern, A. A., A. Adcroft, and O. Sergienko, 2019: Modeling Ice Shelf Cavities and Tabular Icebergs Using Lagrangian Elements. Journal Geophysical Research: Oceans, 124, 3378–3392, https://doi.org/10.1029/2018JC014876.
  2. Fox-Kemper, B., and others, 2019: Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 6, https://doi.org/10.3389/fmars.2019.00065.
  3. Jansen, M. F., A. Adcroft, S. Khani, and H. Kong, 2019: Toward an Energetically Consistent, Resolution Aware Parameterization of Ocean Mesoscale Eddies. Journal of Advances in Modeling Earth Systems, 11, 2844–2860, https://doi.org/10.1029/2019MS001750.
  4. Adcroft, A., and others, 2019: The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 11, https://doi.org/10.1029/2019MS001726.
  5. Held, I. M., and others, 2019: Structure and Performance of GFDL’s CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 11, https://doi.org/10.1029/2019MS001829.
  6. Li, Q., and others, 2019: Comparing Ocean Surface Boundary Vertical Mixing Schemes Including Langmuir Turbulence. Journal of Advances in Modeling Earth Systems, 11, https://doi.org/10.1029/2019MS001810.
  7. Khani, S., M. F. Jansen, and A. Adcroft, 2019: Diagnosing subgrid mesoscale eddy fluxes with and without topography. Journal of Advances in Modeling Earth Systems, 11, https://doi.org/10.1029/2019MS001721.
  8. Liu, X., J. P. Dunne, C. A. Stock, M. J. Harrison, A. Adcroft, and L. Resplandy, 2019: Simulating Water Residence Time in the Coastal Ocean: A Global Perspective. Geophysical Research Letters, 46, 13910–13919, https://doi.org/10.1029/2019GL085097.


  1. Damsgaard, A., A. Adcroft, and O. Sergienko, 2018: Application of discrete-element methods to approximate sea-ice dynamics. 10, https://doi.org/10.1029/2018MS001299.
  2. Van Roekel, L., and others, 2018: The KPP boundary layer scheme for the ocean: revisiting its formulation and benchmarking one-dimensional simulations relative to LES. Journal of Advances in Modeling Earth Systems, 0, https://doi.org/10.1029/2018MS001336.


  1. Stern, A. A., A. Adcroft, O. Sergienko, and G. Marques, 2017: Modeling tabular icebergs submerged in the ocean. Journal for Advances in Modeling Earth Systems, 9, 1948–1972, https://doi.org/10.1002/2017MS001002.
  2. Gibson, A. H., A. M. C. Hogg, A. Kiss, C. J. Shakespeare, and A. Adcroft, 2017: Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian pcean model. Ocean Modelling, 119, 45–56, https://doi.org/10.1016/j.ocemod.2017.09.008.


  1. Stern, A. A., A. Adcroft, and O. Sergienko, 2016: The effects of Antarctic iceberg calving-size distribution in a global climate model. Journal of Geophysical Research: Oceans, 121, 5773–5788, https://doi.org/10.1002/2016JC011835.
  2. Griffies, S. M., and others, 2016: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 9, 3231, https://doi.org/10.5194/gmd-9-3231-2016.


  1. Jansen, M. F., A. J. Adcroft, R. Hallberg, and I. M. Held, 2015: Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Modelling, 92, 28–41, https://doi.org/10.1016/j.ocemod.2015.05.007.
  2. Jansen, M. F., I. M. Held, A. Adcroft, and R. Hallberg, 2015: Energy budget-based backscatter in an eddy permitting primitive equation model. Ocean Modelling, 94, 15–26, https://doi.org/10.1016/j.ocemod.2015.07.015.
  3. Melet, A., R. Hallberg, A. Adcroft, M. Nikurashin, and S. Legg, 2015: Energy flux into internal lee waves: Sensitivity to future climate changes using linear theory and a climate model. Journal of Climate, 28, 2365–2384, https://doi.org/10.1175/JCLI-D-14-00432.1.


  1. Ilıcak, M., A. J. Adcroft, and S. Legg, 2014: A framework for parameterization of heterogeneous ocean convection. Ocean Modelling, 82, 1–14, https://doi.org/10.1016/j.ocemod.2014.07.002.
  2. Hallberg, R., and A. Adcroft, 2014: An order-invariant real-to-integer conversion sum. Parallel Computing, 40, 140–143, https://doi.org/10.1016/j.parco.2014.04.007.
  3. Harrison, M., A. Adcroft, and R. Hallberg, 2014: Atlantic watermass and circulation response to persistent freshwater forcing in two coupled general circulation models. Climate dynamics, 42, 59–68, https://doi.org/10.1007/s00382-013-1798-5.


  1. Winton, M., A. Adcroft, S. M. Griffies, R. W. Hallberg, L. W. Horowitz, and R. J. Stouffer, 2013: Influence of ocean and atmosphere components on simulated climate sensitivities. Journal of Climate, 26, 231–245, https://doi.org/10.1175/JCLI-D-12-00121.1.
  2. Dunne, J. P., and others, 2013: GFDL ESM2 global coupled climate–Carbon Earth System Models. Part II: Carbon system formulation and baseline simulation characteristics*. Journal of Climate, 26, 2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1.
  3. Hallberg, R., A. Adcroft, J. P. Dunne, J. P. Krasting, and R. J. Stouffer, 2013: Sensitivity of twenty-first-century global-mean steric sea level rise to ocean model formulation. Journal of Climate, 26, 2947–2956, https://doi.org/10.1175/JCLI-D-12-00506.1.
  4. Nikurashin, M., G. K. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nature Geoscience, 6, 48–51, https://doi.org/10.1038/ngeo1657.
  5. Adcroft, A., 2013: Representation of topography by porous barriers and objective interpolation of topographic data. Ocean Modelling, 67, 13–27, https://doi.org/10.1016/j.ocemod.2013.03.002.


  1. Delworth, T. L., and others, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. Journal of Climate, 25, 2755–2781, https://doi.org/10.1175/JCLI-D-11-00316.1.
  2. Ilıcak, M., A. J. Adcroft, S. M. Griffies, and R. W. Hallberg, 2012: Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 45, 37–58, https://doi.org/10.1016/j.ocemod.2011.10.003.
  3. Dunne, J. P., and others, 2012: GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. Journal of Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1.
  4. Baughman, E., A. Gnanadesikan, A. Degaetano, and A. Adcroft, 2012: Investigation of the surface and circulation impacts of cloud-brightening geoengineering. Journal of Climate, 25, 7527–7543, https://doi.org/10.1175/JCLI-D-11-00282.1.


  1. Ilıcak, M., S. Legg, A. Adcroft, and R. Hallberg, 2011: Dynamics of a dense gravity current flowing over a corrugation. Ocean Modelling, 38, 71–84, https://doi.org/10.1016/j.ocemod.2011.02.004.


  1. Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold first stability theorem. Ocean Modelling, 32, 188–204, https://doi.org/10.1016/j.ocemod.2010.02.001.
  2. Martin, T., and A. Adcroft, 2010: Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Modelling, 34, 111–124, https://doi.org/10.1016/j.ocemod.2010.05.001.
  3. Adcroft, A., R. Hallberg, J. P. Dunne, B. L. Samuels, J. A. Galt, C. H. Barker, and D. Payton, 2010: Simulations of underwater plumes of dissolved oil in the Gulf of Mexico. Geophysical Research Letters, 37, https://doi.org/10.1029/2010GL044689.


  1. Hallberg, R., and A. Adcroft, 2009: Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split time stepping. Ocean Modelling, 29, 15–26, https://doi.org/10.1016/j.ocemod.2009.02.008.
  2. White, L., A. Adcroft, and R. Hallberg, 2009: High-order regridding–remapping schemes for continuous isopycnal and generalized coordinates in ocean models. Journal of Computational Physics, 228, 8665–8692, https://doi.org/10.1016/j.jcp.2009.08.016.
  3. Griffies, S., and others, 2009: Sampling Physical Ocean Fields in WCRP CMIP5 Simulations. ICPO Publication Series, 137.


  1. Adcroft, A., R. Hallberg, and M. Harrison, 2008: A finite volume discretization of the pressure gradient force using analytic integration. Ocean Modelling, 22, 106–113, https://doi.org/10.1016/j.ocemod.2008.02.001.
  2. White, L., and A. Adcroft, 2008: A high-order finite volume remapping scheme for nonuniform grids: The piecewise quartic method (PQM). Journal of Computational Physics, 227, 7394–7422, https://doi.org/10.1016/j.jcp.2008.04.026.
  3. Griffies, S. M., and A. J. Adcroft, 2008: Formulating the equations of ocean models. Ocean Modeling in an Eddying Regime, 281–317, https://doi.org/10.1029/177GM18.


  1. Adcroft, A., and R. Hallberg, 2006: On methods for solving the oceanic equations of motion in generalized vertical coordinates. Ocean Modelling, 11, 224–233, https://doi.org/10.1016/j.ocemod.2004.12.007.


  1. Menemenlis, D., and others, 2005: Towards eddy permitting estimates of the global ocean and sea-ice circulations. EOS Transactions AGU, 86, 89.
  2. Boccaletti, G., R. Ferrari, A. Adcroft, D. Ferreira, and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophysical Research Letters, 32, https://doi.org/10.1029/2005GL022474.


  1. Marshall, J., A. Adcroft, J.-M. Campin, C. Hill, and A. White, 2004: Atmosphere-ocean modeling exploiting fluid isomorphisms. Monthly Weather Review, 132, 2882–2894, https://doi.org/10.1175/MWR2835.1.
  2. Campin, J.-M., A. Adcroft, C. Hill, and J. Marshall, 2004: Conservation of properties in a free-surface model. Ocean Modelling, 6, 221–244, https://doi.org/10.1016/S1463-5003(03)00009-X.
  3. Losch, M., A. Adcroft, and J.-M. Campin, 2004: How sensitive are coarse general circulation models to fundamental approximations in the equations of motion? Journal of Physical Oceanography, 34, 306–319, https://doi.org/10.1175/1520-0485(2004)034<0306:HSACGC>2.0.CO;2.
  4. Adcroft, A., J.-M. Campin, C. Hill, and J. Marshall, 2004: Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Monthly Weather Review, 132, 2845–2863, https://doi.org/10.1175/MWR2823.1.
  5. Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7, 269–284, https://doi.org/10.1016/j.ocemod.2003.09.003.


  1. Legg, S., and A. Adcroft, 2003: Internal Wave Breaking at Concave and Convex Continental Slopes. Journal of Physical Oceanography, 33, 2224–2246, https://doi.org/10.1175/1520-0485(2003)033<2224:IWBACA>2.0.CO;2.
  2. Stammer, D., and others, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. Journal of Geophysical Research: Oceans, 108, https://doi.org/10.1029/2001JC001115.


  1. Stammer, D., and others, 2002: Global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model. Journal of Geophysical Research: Oceans, 107, https://doi.org/10.1029/2001JC000888.


  1. Adcroft, A., J. R. Scott, and J. Marotzke, 2001: Impact of geothermal heating on the global ocean circulation. Geophysical Research Letters, 28, 1735–1738, https://doi.org/10.1029/2000GL012182.
  2. Scott, J. R., J. Marotzke, and A. Adcroft, 2001: Geothermal heating and its influence on the meridional overturning circulation. Journal of Geophysical Research: Oceans, 106, 31141–31154, https://doi.org/10.1029/2000JC000532.


  1. Hoe, J. C., C. Hill, and A. Adcroft, 1999: A personal supercomputer for climate research. Proceedings of the 1999 ACM/IEEE conference on Supercomputing, ACM, 59.
  2. Adcroft, A. J., C. N. Hill, and J. C. Marshall, 1999: A new treatment of the Coriolis terms in C-grid models at both high and low resolutions. Monthly Weather Review, 127, 1928–1936, https://doi.org/10.1175/1520-0493(1999)127<1928:ANTOTC>2.0.CO;2.
  3. Hill, C. H. R. I. S., A. Adcroft, D. A. N. I. E. L. Jamous, and J. O. H. N. Marshall, 1999: A strategy for tera-scale climate modeling. Proceedings of Eigth ECMWF Workshop on the Use of Parallel Processors in Meteorology. World Scientific.


  1. Adcroft, A., and D. Marshall, 1998: How slippery are piecewise-constant coastlines in numerical ocean models? Tellus A, 50, 95–108, https://doi.org/10.1034/j.1600-0870.1998.00007.x.


  1. Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102, 5733–5752, https://doi.org/10.1029/96JC02776.
  2. Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102, 5753–5766, https://doi.org/10.1029/96JC02775.
  3. Adcroft, A., C. Hill, and J. Marshall, 1997: Representation of topography by shaved cells in a height coordinate ocean model. Monthly Weather Review, 125, 2293–2315, https://doi.org/10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2.
  4. Marotzke, J., and A. Adcroft, 1997: Comment on" Climate control requires a dam at the Strait of Gibraltar" by RG Johnson (Eos, July 8, 1997). Eos, Transactions of the American Geophysical Union, 78, 507, https://doi.org/10.1029/97EO00309.


  1. Adcroft, A., 1995: Numerical algorithms for use in a dynamical model of the ocean. Ph. D. thesis, Imperial College, .