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a b s t r a c t

A family of eddy closures is studied that flux potential vorticity down-gradient and solve an explicit bud-
get for the eddy energy, following the approach developed by Eden and Greatbatch (2008, Ocean Model-
ling). The aim of this manuscript is to demonstrate that when energy conservation is satisfied in this
manner, the growth or decay of the parameterized eddy energy relates naturally to the instability or sta-
bility of the flow as described by Arnold’s first stability theorem. The resultant family of eddy closures
therefore possesses some of the ingredients necessary to parameterize the gross effects of eddies in both
forced-dissipative and freely-decaying turbulence. These ideas are illustrated through their application to
idealized, barotropic wind-driven gyres in which the maximum eddy energy occurs within the viscous
boundary layers and separated western boundary currents, and to freely-decaying turbulence in a closed
barotropic basin in which inertial Fofonoff gyres emerge as the long-time solution. The result that these
eddy closures preserve the relation between the growth or decay of eddy energy and the instability or
stability of the flow provides further support for their use in ocean general circulation models.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The parameterization of geostrophic eddies in ocean models has
been an active area of research throughout the last four decades.
Many early ocean general circulation models (OGCMs) represented
eddies through simple diffusion of heat, salt and momentum (e.g.,
Bryan, 1969). However, it was recognized early on that eddy clo-
sures should be constructed around properties that are materially
conserved by fluid parcels, such as potential vorticity, while also
respecting larger-scale constraints such as conservation of energy
and angular momentum (Green, 1970).

A major advance resulted from the family of eddy parameter-
izations initiated by Gent and McWilliams (1990). These can be
viewed as representing baroclinic instability through the introduc-
tion of an ‘‘eddy-induced” or ‘‘bolus” velocity (Gent et al., 1995)
which acts to flatten density surfaces. Crucially, because the eddies
are represented purely through additional advection of tracers, the
Gent and McWilliams eddy parameterization conserves the net
volume of fluid contained between any two isopycnal surfaces.
The removal of the spurious diapycnal water mass transformations
associated has resulted in a long list of improvements in OGCMs
(Danabasoglu et al., 1994).
ll rights reserved.

arshall), aadcroft@princeton.
The success of Gent and McWilliams naturally leads one to
speculate whether incorporating additional conservation proper-
ties into eddy parameterizations may lead to further improve-
ments. One important issue concerns the fate of the energy
released to the eddy field through baroclinic instability, which
might be dissipated through bottom drag (as implicitly assumed
in Gent and McWilliams, 1990; also see Arbic and Scott, 2008), sur-
face drag (Duhant and Straub, 2006; Zhai and Greatbatch, 2007),
exchange of energy with internal waves (Polzin, 2008) and subse-
quent interior diapycnal mixing (Tandon and Garrett, 1996), lee
wave generation and subsequent bottom-enhanced diapycnal mix-
ing (Marshall and Naveira Garabato, 2008), exchange of energy
with submesoscales (Capet et al., 2008), or in western boundary
layers (Zhai et al., manuscript in preparation).

Alternatively the eddy energy might be returned to the mean
flow. This scenario is consistent with the results of freely-decaying
turbulence in closed basins, in which finite-amplitude Fofonoff
gyres emerge as the equilibrium solution (Bretherton and Haidvo-
gel, 1976; Salmon et al., 1976; Cummins, 1992; Wang and Vallis,
1994) or bathymetry-following flows in the case with variable
bathymetry (Bretherton and Haidvogel, 1976; Salmon et al.,
1976; Holloway, 1987). Moreover, banded zonal jets naturally
emerge in many instances of forced and freely-decaying turbulence
in zonally-reentrant domains (e.g., Rhines, 1975; Williams, 1978).
These results can be understood as a consequence of the direct cas-
cade of potential enstrophy and the indirect cascade of energy.
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1 Note that the gradient of the eddy kinetic energy is purely divergent (i.e., is curl-
free) and unable to project onto the Eulerian acceleration, @u=@t, which is purely
rotational (i.e., is divergence-free). Thus the only eddy forcing that affects the
evolution of the mean flow is associated with the eddy vorticity flux – this is
consistent with the concept that the evolution of the mean flow can be determined by
solving a vorticity equation, in which only the eddy vorticity flux appears. In contrast
the acceleration associated gradient of the eddy kinetic energy leads to a modified
pressure field, but it has no impact on the evolution of the mean flow (see, fo
example, Hughes and Ash, 2001.)
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Thus in the limit of weak dissipation, potential enstrophy is always
dissipated, whereas energy is quasi-conserved – see Salmon (1998)
for an excellent discussion.

The idea that the geostrophic turbulence preferentially dissi-
pates potential enstrophy while conserving energy has been incor-
porated into two turbulence closure models: the anticipated
potential vorticity method (Sadorny and Basdevant, 1985) and
the alpha model (e.g., Holm and Wingate, 2005). However, these
are best viewed as methods to arrest the potential enstrophy cas-
cade in a partially resolved geostrophic eddy field, rather than as a
complete eddy parameterization (e.g., Vallis and Hua, 1988). Ad-
cock and Marshall (2000) develop a simple eddy parameterization
that fluxes potential vorticity down-gradient while conserving en-
ergy, which they apply to freely-decaying turbulence in an abyssal
layer overlying a seamount. A key result of this study is that the
amount of potential vorticity mixing depends critically on the en-
ergy available in the initial state. Put another way, complete poten-
tial vorticity homogenization by eddies (e.g., Rhines and Young,
1982) sometimes raises the energy of the mean state, and thus re-
quires a finite transfer of energy from the eddy field as a
prerequisite.

Most recently, Eden and Greatbatch (2008) have proposed an
alternative approach to energy conservation in which an explicit
budget is solved for the turbulent eddy energy (also see Canuto
and Dubovikov, 2006). This results in a two-level eddy closure in
which the strength of the eddy fluxes of potential vorticity depend
not only on the mean gradients, but also on an eddy transfer coef-
ficient which, in turn, is related to the eddy energy. Cessi (2008)
proposes an analogous eddy closure for potential temperature
fluxes in which local equilibrium is assumed between eddy energy
sources and sinks.

In this contribution, we investigate the stability properties of
eddy closures which both flux potential vorticity down-gradient
and also solve an explicit budget for the eddy energy (as developed
by Eden and Greatbatch). Our specific aims are:

� To demonstrate, when energy conservation is satisfied through
an explicit eddy energy budget following the approach of Eden
and Greatbatch, that the growth or decay of the parameterized
eddy energy in a barotropic ocean is related naturally to the
instability or stability of the flow as described by Arnold’s first
stability theorem; this is the major new result of our
manuscript.

� To demonstrate that such closures can successfully develop
localized regions of parameterized eddy energy within the sep-
arated western boundary currents of barotropic wind-driven
gyres, as well as generate finite-amplitude Fofonoff gyres in
freely-decaying barotropic turbulence.

� To extend the relation between the growth or decay of the
parameterized eddy energy and the instability or stability of
the flow to a stratified, quasigeostrophic ocean.

The connections between instability theory, eddy fluxes of po-
tential vorticity, and conservation principles have been devel-
oped most completely in the series of papers by Killworth
(1997, 1998, 2001, 2005), in which linear stability theory is ap-
plied to develop eddy closures. While eddies are far from linear
(e.g., Canuto and Dubovikov, 2005), Killworth argues that linear
theory provides analytical solutions to the equations of motion,
which thus satisfy the relevant conservation principles, and for
this reason its solutions provide useful guidance in the develop-
ment of eddy closures. While we do not invoke linear theory in
the present manuscript, our motivations are very much in tune
with those of Peter Killworth. We are therefore delighted to be
able to contribute to this commemorative issue dedicated to Pe-
ter’s life and work.
The paper is structured as follows. In Section 2, the eddy closure
is formulated for a barotropic ocean basin. In Section 3, the relation
between the growth of the eddy energy and the instability of the
flow is derived. In Section 4, the eddy closure is applied to wind-
driven gyres and freely-decaying turbulence in a closed barotropic
basin. In Section 5, it is shown that the relation between the
growth of the eddy energy and the instability properties of the flow
carries over to a stratified, quasigeostrophic ocean. Finally, in Sec-
tion 6, our key findings and outstanding challenges are
summarized.
2. Barotropic ocean

2.1. Equations of motion

First we restrict our attention to a barotropic ocean of uniform
depth, this being the simplest framework within which eddy
momentum fluxes and Coriolis effects are represented.

The time-filtered equations of motion consist of a momentum
equation,

@u
@t
þ k� quþrB ¼ F� k� q0u0 � ru0 � u0

2
; ð1Þ

and the continuity equation,

r � u ¼ 0: ð2Þ

Here u is the velocity, k is a unit vertical vector,

q ¼ f ðyÞ þ @v
@x
� @u
@y

is the absolute vorticity, f ðyÞ is the planetary vorticity,

B ¼ p
q
þ u2 þ v2

2

is the Bernoulli potential, F represents all body forces (including any
friction), ðx; yÞ are the coordinates in the east- and northward direc-
tions and t is time. The remaining terms on the right-hand side rep-
resent the eddy momentum fluxes where primes indicate the eddy
components of the flow and all other variables are assumed to have
been time-filtered.

In this formulation, there are three eddy fields requiring param-
eterization: the two components of the eddy vorticity flux, q0u0,
and the eddy kinetic energy, u0:u0.1

2.2. Energetics

The mean energy equation can be written:

@

@t
u � u

2

� �
þr � ðBuÞ þ r � u0 � u0

2
u

� �
¼ u � F� u � k� q0u0: ð3Þ

We can also form an eddy kinetic energy equation as follows. The
transient momentum equation is

@u0

@t
þ k� ðqu0Þ þ k� ðq0uÞ þ k� ðq0u0Þ þ rB0 ¼ F0:
,

r
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Now taking the dot product with u0 and rearranging, we obtain:

@

@t
u0 � u0

2

� �
þr � B0u0 ¼ u0 � F0 þ u � k� q0u0: ð4Þ

The term u � k� q0u0, appearing with opposite signs in (3) and (4),
represents the conversion of energy between the mean and eddy
components. The term u0 � F0 represents the forcing and dissipation
of eddy energy through transient wind forcing and frictional drag.
The remaining eddy term, r � B0u0, is the divergence of a flux and
acts only to redistribute eddy energy.

Finally, we can define a streamfunction, w, for the flow such that
u ¼ k�rw. The conversion of energy between the mean and eddy
components can then be rewritten as:

u � k� q0u0 ¼ rw � q0u0: ð5Þ

This result is central to the relations between closures for the eddy
vorticity flux and the flow stability which we will derive in
Section 3.

2.3. Eddy flux of vorticity

In two-dimensional turbulence, enstrophy cascades to small
scales where it is ultimately dissipated (e.g., Green, 1970). This
can be captured in an eddy parameterization by assuming a
down-gradient closure for the vorticity flux to within an arbitrary
rotational gauge:

q0u0 ¼ �jrqþ k�rk: ð6Þ

Here we allow the eddy transfer coefficient, j, to vary spatially,
although we assume it is always positive, j > 0. Note that this latter
assumption does not require the eddy vorticity flux to be locally
down-gradient due to the presence of the rotational gauge.

We also impose a boundary condition on the normal compo-
nent of the eddy flux,

n � q0u0 ¼ 0; ð7Þ
which is achieved most conveniently by setting j ¼ k ¼ 0 on the
boundaries in (6).

2.4. Closure for the eddy diffusivity

Having derived a relation for the conversion of energy between
the mean and eddy components, (5), we now need to develop a clo-
sure for the eddy transfer coefficient, j. There are two obvious
choices.

The first choice, following Green (1970), Stone (1972), and, in
the present context, Eden and Greatbatch (2008), is to set

j ¼ aLeddyUeddy ¼ aLeddyð2EÞ1=2
; ð8Þ

where

E ¼ u0 � u0
2
¼

U2
eddy

2
is the eddy kinetic energy and Ueddy is a root-mean squared eddy
velocity. Leddy is a prescribed eddy mixing length scale which one
might identify with the Rhines scale (Rhines, 1975) or, more gener-
ally in a baroclinic ocean, with the Rossby deformation radius or the
width of the baroclinic zone – see Visbeck et al. (1997) and Eden
and Greatbatch (2008) for related discussions. Following Green
(1970), we set a to be a dimensionless constant of order 10�2. In
contrast, Eden and Greatbatch choose a ¼ 1; however, we find a
smaller value necessary to obtain realistic eddy transfer coefficients
and eddy kinetic energies in numerical calculations reported in
Section 4.

The second choice is to set

j ¼ cTeddyU2
eddy ¼ 2cTeddyE; ð9Þ
where Teddy is an eddy turnover time-scale and c is again a dimen-
sionless constant.

2.5. Remaining terms in the eddy energy equation

The eddy energy Eq. (4) can now be rewritten

@E
@t
¼ �jrw � rq�r � ðB0u0 þ kuÞ þ u0 � F0: ð10Þ

The first term on the right-hand side of (10) represents the net
mean-eddy energy conversion and will be discussed further in Sec-
tion 3. The final term represents the source of eddy energy associ-
ated with transient forcing (which is likely significant in the real
world but not considered further here) and the sink of eddy energy
associated with friction which we parameterize through a simple
Newtonian damping. The term r � B0u0 represents dispersion of
eddy energy and may involve a myriad of processes such as Rossby
wave propagation — an excellent discussion is given in Eden and
Greatbatch (2008). Here we follow Eden and Greatbatch and param-
eterize the eddy dispersion term as a simple diffusion of eddy en-
ergy, albeit at a higher rate, jE. We find that taking jE ¼ j
generally leads to insufficient dispersion of eddy energy, which in-
stead remains excessively confined to the region of eddy energy
generation when compared with eddy-resolving calculations.

Thus:

@E
@t
¼ �jrw � rqþr � ðjErE� kuÞ � rE ð11Þ

where r is an inverse time scale for eddy energy decay.
Comparing the eddy closure (6) with the mean energy Eq. (3), it

is tempting to identify at least part of the rotational component of
the eddy potential vorticity flux with the eddy kinetic energy. Thus
we set:

k ¼ u0 � u0
2
) q0u0 ¼ �jrqþ k�r u0 � u0

2

� �
:

This implies anticyclonic circulation of the total vorticity flux
around regions of eddy activity, broadly consistent with analysis
of Marshall and Shutts (1981). Substituting for k in the eddy energy
equation suggests that this term is (at least in part) associated with
the advection of eddy energy by the mean flow:

@E
@t
þ u � rE ¼ �jrw � rqþr � ðjErEÞ � rE: ð12Þ
3. Relation to Arnold’s first stability condition

3.1. Parameterized stability condition

Substituting for the eddy flux of potential vorticity flux (6) in
(5), the conversion of energy between the mean and eddy compo-
nents is:

u � k� q0u0 ¼ �jrw � rq�r � ðkuÞ: ð13Þ

The second term on the right-hand side of (13) is the divergence of a
flux and hence represents a further redistribution of energy. Thus,
only the first term on the right-hand side of (13) represents a net en-
ergy conversion. This first term can, in turn, be written in the form

energy conversion ¼ �jrw � rq ¼ �j
@q
@w?

u � u; ð14Þ

where

@q
@w?

¼ rq � rw
rw � rw
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represents the rate of change of the vorticity with respect to the
streamfunction in the direction perpendicular to the streamlines.
This result indicates that the present family of eddy closures satisfy
an analogue of the first nonlinear stability theorem due to Arnold
(1965).

Specifically, for a barotropic ocean, Arnold’s condition states
that if dq=dw > 0 everywhere, then the flow is unconditionally sta-
ble to finite-amplitude perturbations. With the family of eddy clo-
sures considered here, if @q=@w? > 0, then eddy energy is locally
converted to mean energy; conversely, if @q=@w? < 0 then mean
energy is locally converted to eddy energy. While these results
do not ensure local eddy energy decay or growth due to the pres-
ence of additional terms in the energy budget that can be written
as the divergence of fluxes, these latter terms are easily removed
by integrating over the domain.

Thus: @q=@w? > 0 everywhere is a sufficient condition for stability
in the parameterized model, in the sense that the integrated eddy
energy is guaranteed decay at the expense of mean energy. Con-
versely, @q=@w? < 0 somewhere is a necessary condition for instabil-
ity in the parameterized model, in the sense that the integrated eddy
energy may be able to grow at the expense of mean energy. This is
our parameterized analogue of Arnold’s first stability theorem.

3.2. Physical interpretation: conservation of pseudoenergy

The physical origin of Arnold’s first stability theorem, and its
role in the present eddy closure, can be elucidated by considering
the conservation of pseudoenergy (see, e.g., Salmon, 1998).

In the inviscid fluid equations, conservations laws are related to
symmetries in the associated Hamiltonian. In particular, if the
Hamiltonian is symmetric under time transformations, this gives
rise to energy conservation. One can also write down an ‘‘averaged
Hamiltonian” when the flow is separated into a mean flow (which,
for the purpose of the present discussion is assumed steady and
hence q ¼ qðwÞ), and transient eddies. If the averaged Hamiltonian
is symmetric under time transformations, then this gives rise to
conservation of the basin-integrated pseudoenergy,

P ¼
ZZ

u0 � u0
2
þ dq

dw

� ��1 q02

2

 !
dxdy: ð15Þ

Note that eddy energy is not conserved since energy is exchanged
between the eddies and the mean flow.

Arnold’s first stability theorem follows because when dq=dw > 0
everywhere, conservation of pseudoenergy means that the eddy
energy can grow only at the expense of eddy enstrophy, and is
bounded in magnitude by the initial pseudoenergy (Vallis, 2006).

While eddy enstrophy is not carried as a prognostic variable in
the present closure, the growth of eddy enstrophy is implicit in the
down-gradient eddy vorticity flux:

@

@t

ZZ
q02

2
dxdy ¼ �

ZZ
q0u0 � rqdxdy ¼

ZZ
jrq � rqdxdy

¼ �
ZZ

dq
dw
ðenergy conversionÞdxdy: ð16Þ

Thus as vorticity is fluxed down-gradient and eddy enstrophy
grows, the eddy energy is guaranteed to decay if dq=dw > 0 every-
where, and may grow if dq=dw < 0 somewhere. Moreover the
mean-to-eddy conversion terms for enstrophy and energy are pro-
portional to each other with proportionality constant dq=dw, consis-
tent with conservation of pseudoenergy.2
2 Note that while conservation of pseudoenergy requires the mean flow to be
stationary, the result that the ratio of the mean-to-eddy conversion terms for
enstrophy and energy is �@q=@w? ¼ �rq � rw=rw � rw holds more generally.
3.3. Local eddy energy growth rates

It is instructive to write down local approximations for the
growth of the eddy energy for each of the closures for the eddy dif-
fusivity in the artificial limit that: (i) the background flow evolves
slowly; and (ii) diffusion, advection and other dispersion of eddy
energy can be neglected. In the following, we do include the effect
of eddy damping, allowing for local equilibration between eddy
growth and damping, as assumed in the baroclinic eddy closure
of Cessi (2008). The undamped eddy growth rates are obtained
by taking the limit r ! 0 is the following expressions.

In the case of (8), we have

@E
@t
� �21=2aLeddyu � u@q

@w?
E1=2 � rE

giving

E1=2þ21=2aLeddyu �u
r

@q
@w?

 !
¼ E1=2

0 þ21=2aLeddyu �u
r

@q
@w?

 !
exp � rt

2

� �
;

ð17Þ

where E0 is the energy at time t ¼ 0. This gives growth of the eddy
energy when @q=@w? < 0, equilibrating on the eddy damping time
scale, 1=r, and to decay of the eddy energy when @q=@w? > 0, over
a finite time,

t ¼ 2
r

log 1þ E1=2
0 r

21=2aLeddyu � u
@q
@w?

� ��1
( )

:

In the case of (9), we instead have

@E
@t
� � r þ 2cTeddyu � u @q

@w?

� �
E) E

¼ E0 exp � r þ 2cTeddyu � u@q
@w?

� �
t

� �
; ð18Þ

i.e., the eddy energy grows or decays exponentially depending on
the sign of @q=@w? and the magnitude of the eddy energy damping.
In this case, equilibration can only occur through changes to the
mean flow (removing the source of the eddy growth), through
advection/diffusion of the eddy energy (or other eddy energy dis-
persion processes), or through a higher-order energy dissipation
term.

We are unaware of any direct correspondence between the
functional forms of (17) and (18) and growth rates inferred from
detailed stability analyses. Nevertheless, that eddies grow/decay
most rapidly in regions that the background flow is strong and
@q=@w? is negative/positive is broadly consistent with general
experience. Marshall and Marshall (1992) identify the no-slip
boundaries layers in the western boundary currents and the core
of the separated inertial jet between the subtropical and subpolar
gyres as regions of strongly negative @q=@w?; both are known to be
regions of eddy energy growth (e.g., Berloff and McWilliams, 1999
and Holland and Rhines, 1980, respectively). Conversely, in freely-
decaying turbulence in a rectangular basin, the equilibrium solu-
tion is known to be a pair of Fofonoff gyres in which all of the initial
eddy energy is converted to mean energy and dq=dw > 0 (Brether-
ton and Haidvogel, 1976; Wang and Vallis, 1994).

We wish to reiterate that the equilibrium eddy energies and
growth rates will almost certainly be modified by the advection,
diffusion and other dispersion of eddy energy. These processes
are completely neglected in the preceding discussion and hence
the actual growth/decay of eddy energy will almost certainly differ
from the idealized limits considered above.
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4. Numerical examples

In this section, we aim to illustrate the ideas developed in Sec-
tions 2 and 3 with numerical solutions. We apply the eddy closure
to both the wind-driven circulation in a rectangular basin and the
emergence of Fofonoff gyres in freely-decaying turbulence. We do
not attempt to provide a comprehensive validation of the closure
since it contains many degrees of freedom associated with the dis-
persion and dissipation of eddy energy that require extensive fur-
ther study. Rather we focus on the relation between the growth of
the eddy energy and the instability of the background flow, making
qualitative comparisons between results with parameterized and
explicitly-resolved eddies.
4.1. Model details

We solve for the circulation in a rectangular barotropic basin
with boundaries at x; y ¼ �L, dimension 2L ¼ 4000 km. The basin
depth is set at 500 m, representing a typical vertical scale of
wind-driven circulation in the ocean. The Coriolis parameter is
assumed to vary linearly with latitude with b ¼ df=dy ¼ 2�
10�11 m�1 s�1 (in the barotropic model, solutions are independent
of the mean value of the Coriolis parameter).

Dissipation is through Newtonian damping of eddy kinetic en-
ergy as detailed in (11) with a coefficient r ¼ 10�7 s�1 in the
wind-driven calculations; we leave the eddy energy undamped
and set r ¼ 0 in the freely-decaying turbulence simulations. Diffu-
sion of vorticity is through the parameterized eddy diffusivity, j,
which is solved for explicitly using (14) and (8), and through bihar-
monic diffusion with a dissipation coefficient A ¼ Dx4=ð3� 106sÞ
where Dx is the grid spacing. Eddy energy is diffused at a rate
jE ¼ 104 m2 s�2, the relatively large value of which we find neces-
sary to ensure sufficient dispersion of the eddy energy, which
otherwise remains far too tightly confined to the region of eddy en-
ergy growth compared with eddy-resolving calculations. For the
remaining physical parameters we set a ¼ 0:01; Leddy ¼ 2� 105 m.
These choices have been made through trial and error to give a
plausible distribution of eddy energy and realistic values for the
eddy diffusivity of vorticity compared with eddy-resolving
calculations.

On the boundaries we specify no-normal flow, w ¼ 0, and either
r2w ¼ 0 for free-slip or r?w ¼ 0 for no-slip conditions. In Sec-
tion 4.4, we consider an alternative slippery boundary condition
in which the diffusive flux of vorticity through the boundary van-
ishes. The biharmonic diffusion operator additional requires a
higher-order boundary condition for which we set r4w ¼ 0.

A slip boundary condition is not applied to the parameterized
eddy energy; rather we simply set jE ¼ 0 on the boundaries such
that the eddy dispersion term does not modify the total eddy energy.
In this sense, the parameterized eddy energy equation is inconsis-
tent with the mean momentum equation. However, in some preli-
minary experiments in which we applied a no-slip condition to the
parameterized eddy energy, the results were not qualitatively differ-
ent (except that the overall eddy energy was slightly reduced).

The integrations with parameterized eddies are on a 128� 128
grid, giving a grid spacing of Dx ¼ 31:25 km; the eddy-resolving
integrations are on a 256� 256 with a grid spacing of
Dx ¼ 15:625 km. The integrations with parameterized eddies are
able to resolve some of the effects of interia and some weakly-ener-
getic transient motions, but do not generate a turbulent eddy field.

The equations of motion are solved in vorticity–streamfunction
form. The eddy kinetic energy grid points are staggered from the
streamfunction and vorticity, the former being held at the center
of the grid cells and the latter at the corners (which coincide with
the coastlines). Vorticity advection is discretized using an Arakawa
Jacobian. The remaining terms are discretized using standard cen-
tered finite differences. Time-stepping is with a leap-frog scheme
and a Robert- -Aselin filter (strength 10�2) to prevent divergence
of adjacent time steps. The dissipation and eddy diffusion terms
are backward-differenced for numerical stability. For further de-
tails of the numerics, the reader is referred to Tansley and Marshall
(2001).

4.2. Wind-driven gyres: free-slip boundaries

We present solutions for wind-driven gyres with free-slip and
no-slip boundary conditions respectively. Forcing is through a zo-
nal wind stress which varies sinusoidally with latitude:

s ¼ s0 cos
py
L

� �
i

where s0 ¼ 0:1 N m�2. The solutions are integrated from a state of
rest for 10 model years.

Firstly we consider a free-slip solution. In Fig. 1 we show snap-
shots of the streamfunction, vorticity, parameterized eddy energy
and mean-to-eddy energy conversion after 10 years. The solution
contains subtropical and subpolar gyres, with fairly intense inertial
recirculation sub-gyres (the peak gyre transports are around 60 Sv)
and a separated jet at the inter-gyre boundary that fluctuates alter-
nately north and south. The solution contains transient motion
throughout the basin, but with no irreversible mixing of vorticity
through the formation and subsequent erosion of vorticity fila-
ments. Irreversible mixing of vorticity is thus through the param-
eterized eddy diffusion.

The parameterized eddy kinetic energy has a maximum at the
inter-gyre boundary, displaced slightly downstream of the inertial
recirculation sub-gyres. The eddy energy decays to small values in
the far field, with the spatial extent of the region of large eddy ki-
netic energy being a function primarily of the rate at which the
eddy energy is diffused and, to a lesser extent, advection of eddy
energy by the mean flow.

In contrast, energy conversion from the mean component to the
parameterized eddy component (14) is mostly confined to an ex-
tremely narrow strip at the inter-gyre boundary, with some eddy
energy generation also present adjacent to the western boundary.
These are the regions in which one finds both large negative values
of @q=@w? (e.g., Marshall and Marshall, 1992) and large mean flows
and, therefore, large energy growth by (14). There is some weak
parameterized eddy-to-mean energy conversion (negative values
in panel (d)) within the mean core of the western boundary cur-
rents, and to the north and south of the region of maximum eddy
energy growth within the separated jet. These are regions in which
@q=@w? > 0, as one would expect for an inertial boundary current
solution (Fofonoff, 1954; Marshall and Marshall, 1992); in these re-
gions, energy is back-scattered to the mean flow, a point that is
pursued further in Section 4.4.

In Figs. 2 and 3, we show equivalent fields from the eddy-
resolving integration. In order to allow the eddies to dissipate in
an analogous manner to the case with parameterized eddies, we
include a linear friction in this integration with a coefficient
0:5� 10�7 s�1 (it is easily shown that this leads to Newtonian
damping of eddy energy at the same rate r ¼ 10�7 s�1 employed
in the integration with parameterized eddies). The figure panels
show the mean streamfunction, vorticity and eddy energy, and
the mean-to-eddy energy conversion, averaged over two year
intervals: years 5–6 and years 9–10, respectively. The mean-to-
eddy energy conservation is defined as

u � k� q0u0div ð19Þ

where the eddy vorticity flux has been decomposed into divergent
and rotational components (both satisfying a no-normal flux



Fig. 1. Wind-driven gyres with free-slip boundary conditions and parameterized eddies. The panels show snapshots over the entire domain, after 10 years of integration from
a rest state, of: (a) transport streamfunction, Hw (Sv); (b) absolute vorticity ð10�4 s�1Þ; (c) parameterized eddy kinetic energy ðm2 s�2Þ; (d) mean-to-eddy energy conversion,
�jrw � rq ð10�7 m2 s�3Þ. The eddy diffusivity is proportional to the square root of the eddy kinetic energy, with a peak value of roughly 2000 m2 s�1.
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boundary condition – see Roberts and Marshall, 2000 for further
discussion). This decomposition is made is remove the largest com-
ponent of the eddy flux, directed around contours of eddy energy
(cf. Marshall and Shutts, 1981), consistent with the parameterized
mean-to-eddy conversion being defined in terms of the component
of the eddy vorticity flux directed down the mean vorticity gradient
in (14).3
3 Note, also, that an explicit time-averaging operator is included in the definition o
the mean velocity in (19) since, in contrast to the case with parameterized eddies
where the ‘‘mean” velocity is defined at every time step, in the case with explici
eddies it is obtained as the time-average over a two-year window.
f

t

Over the first time-interval, years 5–6 (Fig. 2), the mean flow
has many qualitative similarities with the solution after 10 years
in the case with parameterized eddies (Fig. 1). The eddy energy
field is roughly a factor of two stronger in the integration with ex-
plicit eddies, but the distribution of eddy energy is broadly similar
with somewhat enhanced eddy energy adjacent to the western
boundary in the eddy-resolving case. The mean-to-eddy energy
conversion in the eddy-resolving integration (Fig. 2d) has a quali-
tatively similar structure to that with parameterized eddies
(Fig. 1d). The largest energy conversion is found in the separated
jet at the inter-gyre boundary. The main difference in the eddy-
resolving integration is a more extended region of eddy energy de-



Fig. 2. Wind-driven gyres with free-slip boundary conditions and explicit eddies. The panels show a 2 year average over years 5–6 of integration from a rest state, of: (a)
transport streamfunction, Hw (Sv); (b) absolute vorticity ð10�4 s�1Þ; (c) eddy kinetic energy ðm2 s�2Þ; (d) mean-to-eddy energy conversion, u � k� q0u0div ð10�7 m2 s�3Þ.
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cay within the inertial western boundary currents where
@q=@w? > 0; there is also a hint of inertial Fofonoff gyres forming
at the northern and southern flanks of the basin.

Over the second time-interval, years 9–10 (Fig. 3), the inertial
Fofonoff gyres have grown to similar amplitude as the main gyres,
such that there is now a four-gyre circulation (cf. Greatbatch and
Nadiga, 2000). The pattern of eddy energy conversion in the center
of the basin is qualitatively similar to that obtained over the earlier
time interval, but with some additional structure over the northern
and southern parts of the basin. Our parameterized eddy calcula-
tions appear to be unable to support the growth of substantial
Fofonoff gyres with free-slip boundary conditions; however, these
Fofonoff gyres are obtained if the free-slip condition is replaced by
a hyper-slip boundary condition – this scenario is explored in
freely-decaying turbulence simulations in Section 4.4.

The mean-to-eddy energy conversion term (19) in Figs. 2d and
3d has been calculated using the divergent component of the eddy
vorticity flux. This is in keeping with the definition of the parame-
terized conversion term being in terms of the component of the
eddy vorticity flux directed down the mean vorticity gradient
(14). For completeness. in Fig. 4, we show the equivalent conver-
sion terms calculated using the full eddy vorticity flux,

u � k� q0u0:

There are significant differences between the two forms of the
eddy conversion term, emphasising that the eddy conversion is



Fig. 3. As in Fig. 2 but averaged over years 9–10 of the integration.
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uniquely defined only in the integral sense: any rotational eddy
vorticity fluxes modify the mean-to-eddy energy conversion by
a term which can be written as the divergence of a flux: this
has no impact on the global energy conversion, although it can
significantly modify local values. Nevertheless, the energy conver-
sion defined in terms of the full eddy vorticity flux still has a
maximum in the separated jet between the subtropical and sub-
polar gyres, albeit with alternate positive and negative values in
the zonal direction. The fact that both forms of the energy con-
version term produce maximum values in roughly the same loca-
tion is because both the mean flow and eddy fluxes are largest in
this inter-gyre region.
4.3. Wind-driven gyres: no-slip boundaries

We now present a no-slip solution. In Fig. 5 the equivalent fields
to those in Fig. 1 are plotted after 10 years of integration in the case
with no-slip boundaries and parameterized eddies. The main dif-
ference is that the inter-gyre jet and intense recirculation sub-
gyres are replaced by more dissipative western boundary currents.
The gyre transports are broadly consistent with Sverdrup balance,
with damped standing Rossby waves decaying away from the wes-
tern boundary near the inter-gyre boundary. The eddy kinetic en-
ergy is broadly similar to the free-slip solution, with the
maximum slightly increased but the eddy energy confined more



Fig. 4. The equivalent mean-to-eddy energy conversions terms as in (a) Fig. 2d and (b) Fig 3d, except calculated using the full eddy vorticity flux, i.e.,
u � k� q0u0 ð10�7 m2 s�3Þ.
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tightly to the western boundary. The main reason for these differ-
ences is the different location of the mean-to-eddy energy conver-
sion in the no-slip solution (panel (d)). With no-slip boundary
conditions, the region of largest negative @q=@w? is in the no-slip
boundary layer, and hence this is where the greatest eddy energy
growth is found. In contrast to the free-slip solution, there is rela-
tively little back-scatter of eddy energy to the mean flow.

The mean fields are plotted in Fig. 6, averaged over years 9 and
10 of the equivalent eddy-resolving integration. The mean-to-eddy
energy conversion is again defined using the divergent component
of the eddy vorticity flux as in (19). There is a remarkably strong
qualitative similarity between the energy conversion terms in the
integrations with parameterized and explicit eddies, with the larg-
est values being obtained in the no-slip boundaries layers, albeit
with the magnitude of the energy conversion being roughly a fac-
tor of two larger in the case with explicit eddies. The eddy energy is
also significantly enhanced adjacent to the western boundary both
with parameterized and explicit eddies, consistent with the spatial
patterns of mean-to-eddy energy conversion.

As in the free-slip eddy-resolving integration, there is some evi-
dence of inertial Fofonoff gyres forming at the northern and south-
ern limits of the domain, though these Fofonoff gyres are
substantially weaker in the present case. Also curious is the emer-
gence of a narrow strip of enhanced eddy energy adjacent to the
northern and southern boundaries in the eddy-resolving integra-
tion. This initially forms near the western boundary, and extends
increasingly eastward as the integration progresses through eddy
energy dispersion. We have not been able to find similar behaviour
in any integrations with parameterized eddy energy.

For both free-slip and no-slip boundary conditions, we have cal-
culated solutions for a wide range of model parameters. The de-
tailed patterns of the eddy energy change with the rates of eddy
energy diffusion, dissipation, the choice of relation between the
eddy energy and eddy diffusivity, including the proportionality
constants, and with associated changes to the mean flow. However,
the result that the mean-to-eddy energy conversion term is largest
in relatively localized regions either at the inter-gyre boundary (for
free-slip and some no-slip solutions) and adjacent to the western
boundary (for no-slip and to a lesser extent free-slip solutions) ap-
pears to be robust across a wide range of parameters.
4.4. Freely-decaying turbulence

A particularly attractive property of the eddy parameterization
considered in this paper is that it allows potential vorticity to be
mixed without creating a spurious energy source. It is therefore
one of the first eddy closures of which we are aware that is capable
of parameterizing freely-decaying geostrophic turbulence. In this
section, we present a solution to illustrate this concept, initialized
with a uniform eddy kinetic energy of 0.1 m2 s�2 that is subse-
quently allowed to ‘‘decay”. Following Bretherton and Haidvogel
(1976), Salmon et al. (1976), Cummins (1992) and Wang and Vallis
(1994), we should expect mean flow to become established, con-
sisting of two Fofonoff (1954) gyres, anticyclonic to the north
and cyclonic to the south. This behaviour is associated with the
direct cascade of enstrophy which is dissipated (equivalent to
vorticity being mixed) and the inverse cascade of energy which is
back-scattered to the mean flow.

The model parameters are identical to the wind-driven solu-
tions, except that we exclude wind forcing and explicit dissipation
of eddy energy (i.e., r ¼ 0). We implement an alternative lateral
boundary condition in which the net flux of vorticity through the
boundary vanishes, somewhat analagous to the superslip and
hyperslip boundary conditions included in some wind-driven gyre
models (e.g., see Pedlosky, 1996). As found by Wang and Vallis
(1994), the emergence of Fofonoff gyres is particularly sensitive
to the nature of the lateral boundary condition, with no-slip condi-
tions being most efficient at dissipating these boundary dominated
flows. The emergence of substantial Fofonoff gyres in our parame-
terized model appears to rely on the implementation of slippery
boundary conditions.



Fig. 5. Wind-driven gyres with no-slip boundary conditions and parameterized eddies. The panels show snapshots, after 10 years of integration from a rest state, of: (a)
transport streamfunction, Hw (Sv); (b) absolute vorticity ð10�4 s�1Þ; (c) parameterized eddy kinetic energy ðm2 s�2Þ; (d) mean-to-eddy energy conversion,
�jrw � rq ð10�7 m2 s�3Þ.
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In Figs. 7 and 8 we show the solutions after 5 and 10 years of
model integration. After 5 years, intense recirculation gyres in ex-
cess of 65 Sv have formed at the northern and southern bound-
aries. These are associated with a reduction of the vorticity
gradients in these regions – in fact @q=@w? becomes weakly posi-
tive. The eddy kinetic energy is greatly reduced over the region
occupied by the gyres, to less than 40% of its initial value, com-
pared with the central latitude where roughly 70% of the initial en-
ergy remains. While there are some regions of weak mean-to-eddy
energy transfer, the dominant energy transfer is from the parame-
terized eddies to the mean flow, in a relatively wide band (com-
pared with Figs. 1(d) and 5(d)), wrapping around the gyres
(where the flow speed is large and @q=@w? > 0). After 10 years,
the gyres have strengthened to roughly 100 Sv and broadened to
occupy a slightly wider latitude range. The eddy kinetic energy
has reduced to around 25% of its initial value over the central lat-
itude (being largest near the eastern boundary) and to less than
10% of its initial value within the Fofonoff gyres. The mean-to-eddy
energy conversion is also reduced, concomitant with the reduction
in eddy energy.

The character of the solution shown in Figs. 7 and 8 is broadly
consistent with the eddy-resolving calculations reported in Wang
and Vallis (1994). One such eddy-resolving calculation is presented
here, again with r ¼ 0 consistent with the absence of eddy energy



Fig. 6. Wind-driven gyres with no-slip boundary conditions and explicit eddies. The panels show a 2 year average over years 9–10 of integration from a rest state, of: (a)
transport streamfunction, Hw (Sv); (b) absolute vorticity ð10�4 s�1Þ; (c) eddy kinetic energy ðm2 s�2Þ; (d) mean-to-eddy energy conversion, u � k� q0u0div ð10�7 m2 s�3Þ.
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dissipation in the integration with parameterized eddies. The mod-
el is initialized with a random eddy field with a basin-averaged
eddy kinetic energy equal to 0.1 m2 s�2 (consistent with the pre-
ceding integration with parameterized eddy energy). The Fofonoff
gyres emerge somewhat more rapidly in the eddy-resolving solu-
tion; accordingly, in Figs. 9 and 10 we show the equivalent fields
averaged over years 1–2 and years 5–6.

Over the initial time-interval, years 1–2 (Fig. 9), the mean
streamfunction already reveals gyres of strength 40–50 Sv. In con-
trast to the parameterized case, the eddy energy is enhanced on
the western side of the basin at middle latitudes and depleted at
the east, due to westward propagation of eddy energy (e.g., Chelton
et al., 2007) which is not included in the parameterized model.
However, over the regions occupied by the gyres, the eddy energy
is greatly reduced, consistent with the parameterized model; the
only exception is a narrow strip of eddy energy in the eddy-resolv-
ing case, immediately adjacent to the northern and southern
boundaries. The mean-to-eddy energy conversion exhibits a com-
plex spatial structure, but is negative on average, with largest neg-
ative values being found over the regions occupied by the Fofonoff
gyres, as in the parameterized case. The net eddy-to-mean energy
conversion is somewhat larger than in the parameterized case,
consistent with faster growth of the Fofonoff gyres.

Over the latter time interval, years 5–6 (Fig. 10), the Fofonoff
gyres have strengthened to roughly 65 Sv and the eddy energy
has decayed to less than 10% of its initial value over these regions



Fig. 7. Freely-decaying turbulence with parameterized eddies, after 5 years of integration from an initially uniform parameterized eddy kinetic energy. The panels show
snapshots of: (a) transport streamfunction, Hw (Sv); (b) absolute vorticity ð10�4 s�1Þ; (c) parameterized eddy kinetic energy ð10�2 m2 s�2Þ; (d) mean-to-eddy energy
conversion, �jrw � rq ð10�9 m2 s�3Þ.
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(including on the northern and southern boundaries). The main
difference with the parameterized case is a narrow strip of en-
hanced eddy energy, immediately flanking the inertial Fofonoff
gyres; these strips of enhanced eddy energy appear to be associ-
ated with a localized region of mean-to-eddy energy conversion
at the eastern margin of the Fofonoff gyres, indeed westward prop-
agating eddies can be observed radiating from these regions in the
transient solution (not shown).

Finally, in Fig. 11 we show the domain-averaged energy budget
for the freely-decaying turbulence integrations with both parame-
terized and explicit eddies. Additionally plotted is the energy bud-
get for an integration with parameterized eddies in which the eddy
diffusivity for vorticity is maintained at a uniform, constant value,
equal to the initial value in the standard case with parameterized
eddy energy. With both parameterized and explicit eddies, the
eddy energy initially grows at the expense of the eddy energy
while the total energy decays slightly due to friction (somewhat
more in the case with explicit eddies). The growth of the mean en-
ergy tapers off after about 10 years in the parameterized case, and
after about 5 years in the eddy-resolving case; a notable difference
is that significant eddy energy remains in the eddy-resolving calcu-
lation even after the Fofonoff gyres have achieved their maximum
strength, mostly associated with the band of eddies flanking the
Fofonoff gyres in the eddy-resolving calculation as discussed



Fig. 8. As in Fig. 7 but after 10 years of integration.
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above. In contrast, in the scenario in which the parameterized eddy
diffusivity for vorticity is maintained at its initial value, the mean
energy grows to a value far exceeding the energy available in the
initial eddy field. Energy conservation thus places an unambiguous
upper bound in these integrations of the amount of vorticity mix-
ing that is permissible, set by the magnitude of the initial (param-
eterized or explicit) eddy energy.
5. Parameterized analogue of Arnold’s first stability condition
for a stratified, quasigeostrophic ocean

Finally we show that the parameterized analogue of Arnold’s
stability condition for the growth or decay of the parameterized
eddy energy generalizes in a straightforward manner to a down-
gradient potential vorticity closure in a stratified, quasigeostrophic
ocean.

5.1. Equations of motion and eddy fluxes

The time-filtered momentum and buoyancy equations for a
stratified, quasigeostrophic ocean can be written:

@ug

@t
þ k� ðf þ fÞug þrBþ f0k� uag ¼ �k� f0u0 � ru0 � u0

2
; ð20Þ

@b
@t
þ ug � rbþwN2 ¼ �r � b0u0; ð21Þ



Fig. 9. Freely-decaying turbulence with explicit eddies. The panels show a 2 year average over years 1–2 of integration of: (a) transport streamfunction, Hw (Sv); (b) absolute
vorticity ð10�4 s�1Þ; (c) eddy kinetic energy ð10�2 m2 s�2Þ; (d) mean-to-eddy energy conversion, u � k� q0u0div ð10�9 m2 s�3Þ.
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here:

ug ¼ k�rw; b ¼ f0
@w
@z

;

are the geostrophic velocity and buoyancy, where w is the
streamfunction;

B ¼ ug � ug

2
þ p

q0
; f ¼ k � r � ug ; f ¼ f0 þ by;

are the Bernoulli potential, relative vorticity and Coriolis parameter,
where p is pressure, q0 is the reference density, and f0 and b are con-
stants; and the ageostrophic velocity satisfies the continuity
equation,

r � uag þ
@w
@z
¼ 0:

A formal derivation of the quasigeostrophic equations can be
found in standard texts such as Pedlosky (1987) or Vallis (2006).

It follows that the evolution of the fluid motion is completely
determined by the potential vorticity equation:

@

@t
þ ug � r

� �
Q ¼ �r � Q 0u0; ð22Þ



Fig. 10. As in Fig. 9 but averaged over years 5–6 of the integration.
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where the quasigeostrophic potential vorticity is defined:

Q ¼ byþ fþ @

@z
f0

N2 b
� �

:

Surface and bottom boundaries are most conveniently considered
as constant buoyancy, with actual boundary buoyancy variations
instead being represented as delta-sheets of potential vorticity, fol-
lowing the procedure described by Bretherton (1966).

By analogy with the barotropic case, we assume a down-gradi-
ent closure for the eddy flux of potential vorticity, to within an
arbitrary rotational gauge:

Q 0u0 ¼ �jrQ þ k�rk: ð23Þ
5.2. Energetics and Arnold’s first stability condition

The quasigesotrophic energy equation can be written:

@

@t
u0 � u0

2
þ b02

2N2

 !
¼ k� Q 0u0 � uþr � ð. . .Þ

¼ �jrQ � rwþr � ð. . .Þ ð24Þ

¼ �j
@Q
@w?

u � uþr � ð. . .Þ ð25Þ

where

@Q
@w?

¼ rQ � rw
rw � rw

:
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Thus, as in the barotropic limit, there is a precise connection be-
tween the net decay or growth of the parameterized eddy energy
and the stability or instability of the flow, analogous to Arnold’s first
stability theorem. Specifically, if @Q=@w? is everywhere positive,
which is a sufficient condition for stability, then the parameterized
eddy energy decays on average and is converted to mean energy;
conversely, if @Q=@w? is somewhere negative, which is a necessary
condition for instability, then the parameterized eddy energy might
be able to grow on average at the expense of mean energy.
6. Discussion

Stability properties of fluid flows are often associated with con-
servation principles. In this manuscript, we have studied the stabil-
ity properties of a class of eddy closures that (i) flux (potential)
vorticity down-gradient, and (ii) solve an explicit conservation
equation for the parameterized eddy energy, as proposed by Eden
and Greatbatch (2008). We have shown that such closures preserve
a parameterized analogue of Arnold’s first stability theorem: the
growth or decay of the eddy energy is related to the sign of
@Q=@w? where Q is the potential vorticity, w is the streamfunction,
and the derivative is evaluated perpendicular to the streamlines.
Specifically @Q=@w? > 0 everywhere is a sufficient condition for
stability and for the parameterized eddy energy to decay on aver-
age; conversely @Q=@w? < 0 somewhere is a necessary condition
for instability and for the parameterized eddy energy to grow on
average. These results have been derived for barotropic and quas-
igeostrophic stratified oceans, but we have no reason to assume
they are specific to these settings.
A practical benefit of solving a prognostic eddy energy equation
is that it allows potential vorticity to be fluxed down-gradient
without generating spurious sources of energy. This has been a
particularly problematic issue over variable bottom topography
where complete potential vorticity homogenization (including
the contribution from the bottom density variations) requires the
isopycnals to rise completely over the topography. Attempts to flux
potential vorticity down-gradient in such regions (e.g., Greatbatch
and Li, 2000) can therefore result in unphysically large topographic
recirculations and imply spurious energy sources. Adcock and Mar-
shall (2000) proposed a potential vorticity closure which conserves
the energy of the resolved flow in order to avoid these spurious en-
ergy sources. However, the present approach offers a more practi-
cal and physically consistent solution in which the eddy energy,
and hence the potential vorticity fluxes, decay as energy is trans-
ferred from the eddies to the mean flow.

One issue that we have not addressed here, but is discussed
briefly in Eden and Greatbatch (2008), is the role of angular
momentum conservation in multiply-connected domains. Angular
momentum conservation imposes additional constraints on the
eddy fluxes of potential vorticity (e.g., Green, 1970; Marshall,
1981; Wood and McIntyre, in press), which are generally incom-
patible with fluxing potential vorticity down-gradient while relat-
ing the eddy transfer coefficient solely to the eddy energy. Eden
and Greatbatch discuss the pragmatic solution of adding an addi-
tional term to the eddy potential vorticity flux to restore angular
momentum conservation, but this approach destroys some of the
relations we have derived here between the stability properties
of the flow and the growth or decay of eddy energy. Instead, we
suspect that it is necessary to parameterize the eddy potential vor-
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ticity flux in a manner that preserves the symmetry properties of
the original equations leading to angular momentum conservation.
Preliminary results suggest that the relation between Arnold’s sta-
bility condition and the growth or decay of the parameterized eddy
energy is preserved when angular momentum in conserved in this
manner; these results will be reported in detail in a future
manuscript.

Finally, we note that the detailed nature of the model solutions
can be sensitive to parameterizations of the dispersion of eddy en-
ergy. In the present manuscript, the eddy energy has been simply
diffused and advected by the mean flow, following Eden and Great-
batch (2008). However, it is clear from satellite observations that
there is a westward propagation of eddy energy in the ocean, at
roughly the long Rossby wave speed for the first baroclinic mode
(Chelton et al., 2007). There is also the important issue of how en-
ergy is transferred in the vertical (for example, to the barotropic
mode). Nevertheless, we should stress that the parameterized ana-
logue of Arnold’s first stability theorem applies only in an integral
sense (as does the original form of Arnold’s first stability theorem),
and hence it is independent of how the eddy energy disperses.
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