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Abstract. Ocean models based on consistent hydrostatic, quasi-hydrostatic, and 
nonhydrostatic equation sets are formulated and discussed. The quasi-hydrostatic and 
nonhydrostatic sets are more accurate than the widely used hydrostatic primitive 
equations. Quasi-hydrostatic models relax the precise balance between gravity and 
pressure gradient forces by including in a consistent manner cosine-of-latitude Coriolis 
terms which are neglected in primitive equation models. Nonhydrostatic models employ 
the full incompressible Navier Stokes equations; they are required in the study of small- 
scale phenomena in the ocean which are not in hydrostatic balance. We outline a solution 
strategy for the Navier Stokes model on the sphere that performs efficiently across the 
whole range of scales in the ocean, from the convective scale to the global scale, and so 
leads to a model of great versatility. In the hydrostatic limit the Navier Stokes model 
involves no more computational effort than those models which assume strict hydrostatic 
balance on all scales. The strategy is illustrated in simulations of laboratory experiments in 
rotating convection on scales of a few centimeters, simulations of convective and 
baroclinic instability of the mixed layer on the 1- to 10-km scale, and simulations of the 
global circulation of the ocean. 

1. Introduction 

The ocean is a stratified fluid on a rotating Earth driven 
from its upper surface by patterns of momentum and buoyancy 
fluxes. The detailed dynamics are very accurately described by 
the Navicr Stokes equations. These equations admit, and the 
ocean contains, a wide variety of phenomena on a plethora of 
space scales and timescales. Modeling of the ocean is a formi- 
dable challenge; it is a turbulent fluid containing energetically 
active scales ranging from the global down to order 1-10 km 
horizontally and some tens of meters vertically; see Figure 1. 
Important scale interactions occur over the entire spectrum. 

Numerical models of the ocean circulation, and the ocean 
models used in climate research, are rooted in the Navier 

Stokes equations but employ approximate forms. Most are 
based on the "hydrostatic primitive equations" (HPEs) in 
which the vertical momentum equation is reduced to a state- 
ment of hydrostatic balance and the •'traditional approxima- 
tion" is made in which the Coriolis force is treated approxi- 
mately and the shallow atmosphere approximation is made; 
see section 2. On the •'large scale" the terms omitted in the 
HPEs are generally thought to be small, but on "small scales" 
the scaling assumptions implicit in them become increasingly 
problematical. 

The global circulation of the ocean and its great wind-driven 
gyres (on scales L •--1000 km) are very accurately described by 
the HPEs, as are the geostrophic eddies and rings associated 
with its hydrodynamical instability (L --• 10-100 km). The 
HPEs presumably begin to break down somewhere between 10 
and I km, as the horizontal scale of the motion becomes 

comparable with its vertical scale, the "grey area" in Figure 1. 
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Indeed, there are many important phenomena in the ocean, 
for example, wind- and buoyancy-driven turbulence in the sur- 
face mixed layers of the ocean (on scales L < 1 km), which are 
fundamentally nonhydrostatic and so cannot be studied using 
hydrostatic models. 

In the present study wc outline, discuss, and illustrate the 
use of models based on equation sets that are more accurate 
than the HPEs: quasi-hydrostatic models (QH), in which the 
precise balance between gravity and pressure gradient forces is 
relaxed, and fully nonhydrostatic models (NH), in which thc 
incompressible Navier Stokes equations are employed. Quasi- 
hydrostatic models treat the Coriolis force exactly, by including 
in a consistent manner cos (latitude) Coriolis terms that are 
conventionally neglected in the HPEs. These cos (latitude) 
terms can becomc significant, particularly as the equator is 
approached, and their inclusion endows the model with a com- 
plete angular momentum principle. Nonhydrostatic models arc 
required in the study of the smallest scales in the ocean. In 
principle, of course, NH is also applicable on the largest scales; 
we will demonstrate that models based on algorithms rooted in 
the Navier Stokes equations can be made etficient and used 
with economy even in the hydrostatic regime, leading to a 
single algorithm that can be employed across the whole range 
of scales depicted in Figure 1. 

Our considerations in this paper are independent of a par- 
ticular numerical rendition or discretization. The strategy set 
out here could be employed in any model. From a single 
algorithmic base rooted in the Navier Stokes equations, NH, 
QH, and HPE models are outlined. In a companion paper 
[Marshall et al., this issue] we describe the details of a finite- 
volume, incompressible Navier Stokes model which imple- 
ments the ideas set out here. 

In section 2 we critique the HPEs and review the assump- 
tions made in their derivation, assessing their validity across 
the range of scales in the ocean. In section 3 we write down the 
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Figure 1. A schematic diagram showing the range of scales 
in the ocean. Global/basin-scale phenomenon are fundamen- 
tally hydrostatic; convective processes on the kilometer scale 
are fundamentally nonhydrostatic. Somewhere between the 
ge0strophic and convective scales (10 km to 1 km) the hydro- 
static approximation breaks down: the "grey area" in the fig- 
ure. Models which make the hydrostatic approximation are 
designed for study of large-scale processes but are commonly 
used at resolutions that encroach on this grey area (the left- 
pointing arrow). Nonhydrostatic models based on the incom- 
pressible Navier Stokes equations are valid across the whole 
range of scales but in oceanography have been hitherto used 
for process studies on the convective scale. We show in this 
paper that the computational overhead incurred by employing 
the unapproximated equations is slight in the hydrostatic limit. 
Thus models rooted in the Navier Stokes equations can also be 
used with economy for study of the large scale (the right- 
pointing arrow in the figure). 

Navier Stokes equations on the sphere and discuss hydrostatic, 
quasi-hydrostatic, and nonhydrostatic regimes. Section 4 is 
concerned with the diagnosis of the pressure field required to 
ensure that the evolving velocity field remains nondivergent. In 
HPE and QH a two-dimensional (2-D) elliptic equation must 
be inverted for the surface pressure; in NH a three- 
dimensional (3-D) elliptic equation must be inverted subject to 
Neumann boundary conditions. A strategy is developed for the 
NH 3-D inversion which exploits the fact that in many (and 
pe•rhaps most) cases of interest the pressure field is "close" to 
one of hydrostatic balance and can be used as the starting point 
of an iterative procedure. Thus the pressure field is separated 
into surface, hydrostatic, and nonhydrostatic components, and 
each part is treated separately, greatly speeding the inversion 
process. In section 5, NH, HPE, and QH models are illustrated 
in the context of three oceanographic examples, chosen for 
their interest: simulations of laboratory experiments in rotating 
convection using NH, simulations of convective and baroclinic 
instability of the mixed layer using NH, and simulations of the 
global circulation of the ocean using HPE, NH, and QH. This 
latter experiment was driven by analyzed winds and fluxes 
during the period 1985-1995 and the sea surface elevation of 
the model compared with the TOPEX/POSEIDON altimeter. 

We conclude that models can be constructed based on al- 

gorithms rooted in the incompressible Navier Stokes equations 

which perform efficiently across the whole range of scales in 
the ocean, from the convective to the global scale. Navier 
Stokes models are specifically designed for the study of small- 
scale phenomenon such as convection. But when deployed to 
study hydrostatic scales, they need be no more demanding 
computationally than hydrostatic models. Equation sets based 
on more approximate forms, QH and HPE, are readily imple- 
mented as special cases of NH. A comparison of integrations of 
HPE, QH, and NH at large scale (1 ø horizontal resolution) 
gives essentially the same numerical solutions. The neglect of 
cos qb Coriolis terms is the most questionable assumption made 
by the HPEs, but we find that their inclusion (in QH and NH) 
yields differences in horizontal currents in ocean gyres of only 
a few millimeters per second. Thus it is clear that solutions 
based on the HPEs are not grossly in error. Nevertheless, 
models based on QH (or NH) should be preferred in studies of 
large-scale phenomenon. 

Finally, we have attempted here, as far as is possible, to 
present an account which does not make strong assumptions 
about particular numerical choices. Details of the data- 
parallel, finite-volume, incompressible Navier Stokes model 
used here to illustrate our ideas are given by Marshall et al. [this 
issue]. The mapping of the algorithm onto parallel machines, 
in data-parallel FORTRAN on the Correction Machine 
(CM5) and in the implicitly parallel language Id on the data- 
flow machine MONSOON, is described by Arvind et al. (A 
comparison of implicitly parallel multi-threaded and data- 
parallel implementations of an ocean model based on the 
Navier Stokes equations, submitted to Journal of Parallel and 
Distributed Computing, 1996) (hereinafter referred to as 
Arvind et al., submitted manuscript, 1996). 

2. Critique of the Hydrostatic Primitive 
Equations 

The HPEs, which assume a precise balance between the 
pressure and density fields, are almost axiomatic to many me- 
teorologists and oceanographers. They are widely used in nu- 
merical weather forecasting and climate simulations of both 
the atmosphere and ocean. The terms omitted from the full 
Navier Stokes equations are customarily thought to be small on 
large scales (see Lorenz [1967] and Phillips [1973] for good 
discussions). However, the HPEs preclude the study of non- 
hydrostatic small-scale phenomena, such as deep convection, 
the understanding of which is of great importance to climate. 
The HPEs can also be criticized because of their approximate 
treatment of the Coriolis force which denies them a full angu- 
lar momentum principle. Indeed, of the assumptions made in 
their derivation, the neglect of horizontal Coriolis terms seems 
the least comfortable. Only very recently have global atmo- 
spheric models been developed which relax the hydrostatic 
approximation (so-called quasi-hydrostatic (OH) models) and 
include a full treatment of the Coriolis force [see White and 
Bromley, 1995]). We now critically review, for the purpose of 
designing a model for the accurate prediction and study of 
ocean currents from kilometer scales up to the global scale, the 
treatment of inertial and Coriolis terms in the HPEs. 

2.1. Hydrostatic Approximation 

Let us inquire into the condition for the neglect of inertial 
accelerations in the vertical momentum equation. We thus 
write the inviscid vertical momentum equation in Boussinesq 
form: 
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Dw 1 asp 
+ 6=0 

Dt iOref 0 Z 

where 8p denotes a deviation from a hydrostatically balanced 
reference state at rest, Pref is a standard (constant) value of 
density, b = -9(t•iO/iOref) is the buoyancy (see Appendix), and 
D/Dt is the total derivative. The condition for the neglect of 
Dw/Dt in (1) is that it should be much smaller than b. For 
simplicity we assume in the following scaling that the local time 
derivative is of the same order as, or smaller than, the advec- 
tive terms. 

Consider a phenomenon which has a characteristic horizon- 
tal scale L and vertical scale h with horizontal and vertical 

velocity scales U and W, respectively. The timescale of a par- 
ticle of fluid moving through the system is of order L/U and a 
consideration of the buoyancy equation 

Db 
+ N2w = 0 

Dth 

where N 2 = - (#/Pref) (0 p/O Z) is the Brunt-Vaisala frequency 
of the ambient fluid and D/Dt h is the horizontal component of 
the total derivative, suggests that a typical vertical velocity will 
be w • bU/LN 2. Hence Dw/Dt << b if 

U 2 

L 2N2 %% 1 

and should be compared with the familiar condition for the 
validity of the hydrostatic approximation that compares the 
frequency of a wave motion, to, with N [see Gill, 1982, section 
11.9]. In the above, U/L appears in the place of to. If the 
advective timescale is short relative to the buoyancy period, 
then nonhydrostatic effects cannot be neglected. The criterion 
can also be usefully expressed in terms of the aspect ratio of 
the motion system 3' = h/L and the Richardson number R, = 
N2h2/U 2. The motion will be hydrostatic if 

3'2 
n: (2) 

where we can call n the nonhydrostatic parameter. 
In hydrostatic systems such as the HPEs, (2) is assumed to 

be true at the outset and strict balance between gravity and 
vertical pressure gradient is imposed. Then, because Dw/Dt -= 
0, w cannot now be obtained prognostically from (1) but must 
be diagnosed from the continuity equation. If the stratification 
is strong and the flow weak (large Ri), then the hydrostatic 
condition may still be a good one even if 3' is not small. For 
example, in laboratory experiments 3', dictated by the geometry 
of the apparatus, is often of order unity; see the simulation of 
the laboratory experiment in section 5. Nevertheless, the flow 
can still be hydrostatic if the fluid is sufficiently stratified. In the 
main thermocline of the ocean the Richardson number is large 
("•102-103) and the aspect ratio of the motion is small (0.1- 
0.01) and so (2) is well satisfied. But it clearly breaks down in 
weakly stratified conditions on small horizontal scales; see, for 
example, the study of the oceanic convective scale (-1 km) in 
neutral conditions by Jones and Marshall [1993]. There nonhy- 
drostatic models were employed in which, quite naturally, w is 
obtained by stepping forward (1). 

With the increasing power of modern computers, ocean 
models based on the HPEs are now commonly employed with 
horizontal resolutions comparable to the depth of the ocean 
(indeed the need to adequately resolve the geostrophic eddy 

Figure 2. Computation of the axial angular momentum of a 
particle of mass m at a radius r from the center of the Earth. 
The latitude is 4> and the longitude X. The spherical polar 
velocities (u, v, w), equation (4), are also indicated. 

scale -10 km demands such high resolutions). In those places 
where the water column is weakly stratified, the condition (2) 
may not be adequately satisfied and the appropriateness of the 
HPEs may be brought into question. 

Finally, it should be mentioned that the tiPEs have been 
criticized because their neglect of the time derivative leads to 
them being ill-posed when used with open boundaries: see 
Browning et al. [1990] and Mahadevan et al. [1996a, b]. Instead, 
these authors recommend the use of a Nit set, but one which 
is "scaled" to alleviate demands on accuracy in numerically 
evaluating terms in the vertical momentum equation when the 
flow is close to geostrophic and hydrostatic balance. The ill- 
posedness of the HPEs does not go unchallenged, however; see 
Norbury and Cullen [1985]. 

2.2. Traditional Approximation 

The HPEs make assumptions other than hydrostatic bal- 
ance. The derivation of the HPEs from the component equa- 
tions of motion involves a series of approximations and the 
neglect of various other small terms leading to what has be- 
come known as the "traditional approximation." The most 
problematical assumption is the neglect of the "horizontal Co- 
riolis terms" (those involving 2D cos &). Their importance and 
the difficulty of consistently including them in the HPEs have 
been discussed by Phillips [1966, 1973], Vetohis [1968], and Gill 
[1982]. White and Bromley [1995] argue that the horizontal 
Coriolis terms may not always be negligible for synoptic-scale 
motions in the atmosphere, especially in low latitudes, and they 
are now included in the "Unified Model" of the United King- 
dom Meteorological Otfice. 

The important issues can readily be understood by consid- 
ering the axial angular momentum of a particle of fluid of mass 
m about the rotation axis of the Earth; see Figure 2: 
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DA • 
Dt = r cos 4> {net zonal force on parcel} 

or 

with 

DA x { l m Op } Dt = r cøs 4> rnFx- (3a) r COS qb Pref 03• 

Ax = m{(Dr cos 0 + u)r cos 0} (3b) 

the angular momentum and D/Dt the total derivative. 
Here 4> is the latitude, ,k is the longitude, r is the radius, D 

is the angular speed of rotation of the Earth, u is the zonal 
speed of the particle, and F;, is the zonal component of the 
frictional force per unit mass. By using the definitions 

D2t 

u =rcos4> Dt 

DO 
v = r Dt (4) 

Dr 

(3a) and (3b) directly yield the full zonal momentum equation 

Du uw u v tan 4> 
+ - 2Dr sin 4> + 2•w cos 4> 

Dt r r 

• Op 
+ - (5) 9rcfr cos 0 0h - F x 

It is clear from this derivation that to ensure that a model has 

a full angular momentum principle, all the terms in (5) must be 
retained. As is well known and argued, however, the HPEs 
employ a carefully chosen approximation to (5) in which the 
underlined terms are neglected. The term 2•w cos 4>, how- 
ever, is probably not always negligible. 

In the tropical oceans, typical vertical velocities approach 
the continuity limit Uh/L. The 2Dw cos 4> term in (5) is then 
negligible compared to Du/Dt if 

2Dh cos 4> 
<< 1 (6) U 

Supposingh -- 100 mandU = 10 cms J, typical of equa- 
torial jets, for example, the left-hand side is about 0.1 x cos 0 
which would suggest that its neglect in quantitative (as op- 
posed to theoretical) study is unacceptable. It is clear, for 
example, that the neglect of cos 0 Coriolis terms in the HPEs 
is much more problematical than the neglect of Dw/Dt in the 
vertical momentum equation. 

The cos 0 Coriolis terms are intimately related to the full 
spherical geometry of the oceans and atmosphere and tran- 
scend the approximate quasi-2-D spherical geometry of hydro- 
static models (where the shallow atmosphere approximation is 
made). An implication of this close relationship is that it is very 
difficult to investigate the effect of the cos 0 terms on familiar 
problems which, in Cartesian geometry, may be treated ana- 
lytically in their absence. Attempts to do so lead to nonsepa- 
rable differential equations even in simple cases such as wave 
motion in an isothermal atmosphere at rest [Eckart, 1960]. 

The physical meaning of the 2Dw cos 0 term in (5) is readily 
understandable as representing the conservation of axial an- 

gular momentum as a particle moves vertically in the absence 
of external couples; see Figure 2. Consider the balance 

Du 

D-T + 2Dw cos 0 = 0 

Since w = Dr/Dr, the above implies that for a particle moving 
zonally 

u + 2Dr cos 0 = const 
or 

8u = -2DSr cos O 

for small changes 8. Consider now the consequence of a zonal 
jet at the equator rising vertically. It acquires a retrograde 
velocity of 1.2 cm s- 1 for every 100 m it moves vertically, simply 
by virtue of changing its distance from the axis of rotation of 
the Earth, an effect which is absent from the HPEs. 

The most compelling reason for the neglect of 2Dw cos 4> in 
the zonal momentum component of the HPEs is that because 
they assume strict hydrostatic balance and hence neglect the 
2Du cos 4> term in the vertical momentum equation, for en- 
ergetic consistency 2•w cos 4> must also be neglected in the 
horizontal momentum equation (5), even though the term 
becomes uncomfortably large as the equator is approached. 
For these reasons, White and Bromley [1995] advocate the use 
of a quasi-hydrostatic equation set for global atmospheric 
modeling that fully represents the Coriolis force but still ne- 
glects the Dw/Dt term in (1); this is the QH approximation; 
see section 3. 

Perhaps the key factor determining whether 2• cos 4> terms 
are important is the stratification, which can suppress vertical 
motion if it is strong enough. But N is rather small in large 
volumes of the ocean (mixed layers, for example, and partic- 
ularly the very deep mixed layers created by wintertime con- 
vection). It would seem desirable, then, that any model should 
have the facility to represent the 2D cos 4> terms. 

Finally, one further point must be made. It is clear that the 
full representation of the Coriolis force, including its horizon- 
tal as well as vertical components, is only dynamically consis- 
tent if one takes account of the changing position of a particle 
of fluid from the axis of rotation (in (3b), for example, r should 
not be replaced by a constant reference value). Thus, to be 
strictly correct, the "shallow atmosphere" approximation must 
also be relaxed if horizontal Coriolis terms are to be included: 

division by r in (5) retained rather than (as assumed in the 
HPEs) replaced by a mean radius of the Earth. Nevertheless, 
several authors have been content to write QH forms in which 

r is replaced by a; see the correspondence in Journal of Atmo- 
spheric Sciences between Phillips [1968], Veronis [1968], and 
Wangsness [1970], for example. However, it can be shown these 
shallow atmosphere forms lack a potential vorticity conserva- 
tion law as well as an angular momentum principle [see White 
and Bromley, 1995]. 

In summary, then, the quasi-hydrostatic model retains cos 0 
Coriolis terms in the zonal and vertical momentum equations, 
neglects Dw/Dt in the vertical, and does not make the shallow 
atmosphere approximation. 

3. Incompressible Navier Stokes Equations 
on the Sphere 

In view of the considerations outlined in section 2 we de- 

velop now an ocean model in which the traditional assump- 
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tions implicit in the HPEs can be relaxed, if one should so 
desire. The model is rooted in the incompressible Navier 
Stokes equations and employs one kernel algorithm; fully non- 
hydrostatic (NH), quasi-hydrostatic (QH), and hydrostatic 
(HPE) sets are outlined. The quasi-hydrostatic model includes 
a full representation of the Coriolis force and has a complete 
angular momentum principle. The nonhydrostatic model is 
prognostic in all three components of velocity and is designed 
for the study of smaller-scale phenomenon. The computational 
overhead incurred in solving the incompressible Navier Stokes 
equations on the sphere is slight provided that the nonhydro- 
static parameter, (2), is small, and so NH can also be used with 
economy in study of large-scale flow. 

3.1. Equations 

The state of the ocean at any time is characterized by the 
distribution of currents v, potential temperature T, salinity S, 
pressure p, and density 9. The equations that govern the evo- 
lution of these fields, obtained by applying the laws of classical 
mechanics and thermodynamics to the Boussinesq fluid, are, 
using height as the vertical coordinate, 

Motion 

Continuity 

Heat 

Salt 

Equation of state 

where 

OV h 

Ot = G•h - Vhp 
Ow Op 

: Gw 
Ot Or 

(7) 

V.v=0 (s) 

OT 
-Gr (9) Ot 

OS 
: ot 

p - p(T, S, p) (11) 

v: w): w) 

is the velocity in the zonal, meridional, and vertical directions, 
respectively, given by (4), 

p= 
iOref 

where 6p is the deviation of the pressure from that of a resting, 
hydrostatically balanced ocean and 

are inertial, Coriolis, metric, gravitational, and forcing/ 
dissipation terms in the zonal, meridional, and vertical direc- 
tions defined by 

Gu = -v' Vu 

_ [uw uvtan&} F F 

- {-2•v sin & + 2•w cos &} 

+Fu (14) 

G• = -v ß Vv 

vw u 2 tan 0} 
- {2f•u sin O} 

+F• 

Gw = -v' Vw 

(15) 

(u + v2)} + - 

+ 2f•u cos qb 

8p 

Pref 

+Fw (16) 

On the right-hand side of (14) the first, second, third, and 
fourth terms are the advection, metric, Coriolis, and forcing/ 
dissipation terms, respectively. Note that the zonal momentum 
equation was derived in section 2 by consideration of the axial 
angular momentum. The G, defined here is identical to the 
one implied by (5). On the right-hand side of (16) the third and 
fourth terms are the Coriolis and buoyancy terms, respectively. 

In equations (9) and (10), 

Gr = -V' (vT) 

+Fr (17) 

Gs= -V'(vS) 

In the above, "grad" (V) and "div" (V ß ) operators are defined 
by, in spherical coordinates, 

(1 0100) V -= - (19) 
rcosOOX' r OO' Or 

l{OuO } 1O(r2w) V.v -- (20) .osO +. 
Unlike the prognostic variables u, v, w, T, and S, the pressure 
field must be obtained diagnostically. Taking the divergence of 
(7) and using the continuity equation (8), lead to a three- 
dimensional elliptic equation for the pressure: 

Vp: 

For a given field of 9, (21) must be inverted for p subject to 
appropriate choice of boundary conditions. This method is 
usually called the pressure method [Harlow and Welch, 1965; 
!4511iams, 1969; Potter, 1976]. 

3.2. Boundary Conditions 

3.2.1. Velocity and pressure. The configuration of the 
ocean basin is defined by its depth H(X, 0) and allows arbi- 
trary specification of the coastline, bottom topography, and 
connectedness. We apply the condition of no normal flow 
through all solid boundaries: the coasts and the bottom. Fur- 
thermore, the surface of the ocean is assumed to be a rigid lid 
to filter out high-frequency surface gravity waves. (We discuss 
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V h ' (HVhP ,) = SHy(k,, ) 

rigid lid 

V2PN/-/= Vh2P• + Oz 2 -•'•vH .... * "• -'"•' '"• all rigid boundaries 
Figure 3. A schematic diagram of an ocean basin showing 
the irregular geometry: coastlines and islands. The main com- 
putational challenge in the integration of the Navier Stokes 
model forward is the inversion of a 3-D elliptic equation for the 
nonhydrostatic pressure P NH with Neumann boundary condi- 
tions. In the hydrostatic model, only a 2-D elliptic problem for 
the surface pressure P s has to be inverted. At the ocean's 
surface a rigid lid is employed to filter out surface gravity 
waves. 

the rigid-lid problem here but refer the reader to Appendix 2 
of Marshall et al. [this issue], where we describe how to treat 
(implicitly) the model ocean's surface as a free surface.) Thus 
we set 

v. n = 0 (22) 

on all bounding surfaces where n is a vector of unit length 
normal to the boundary; see Figure 3. 

Equation (22) implies, making use of (7), that 

n. Vp = n-G•, (23) 

presenting inhomogeneous Neumann boundary conditions to 
the elliptic problem (21). 

As shown, for example, by Williams [1969], one can exploit 
classical 3-D potential theory and, by introducing an appropri- 
ately chosen 3 function sheet of "source charge," replace the 
inhomogenous boundary condition on pressure by a homoge- 
neous one. (This mathematical trick crops up in a number of 
interesting geophysical contexts. For example, in potential vor- 
ticity invertibility theory it is the origin of Bretherton's [1966] 
replacement of the (inhomogeneous) temperature boundary 
conditions by isothermal (homogeneous) ones with the con- 
comitant use of interior 3 function potential vorticity sheets 
adjacent to the boundary.) The source term • in (21) is the 
divergence of the vector G•,. It can be modified just interior to 
the boundary so that the resulting homogeneous-boundary 
problem, with the so-modified source function, is identical to 
the original problem; with n.G v = 0 and n- Vp = 0 on the 
boundary, the following self-consistent but simpler homoge- 
nized elliptic problem is obtained: 

V2p = V. •Jv = • (24) 

where Gv is a modified G•: such that G•:. n = 0; the appropriate 
modification to the source function adjacent to the boundary is 
readily obtained from the divergence of G•: by setting G•: nor- 
mal to the boundary to zero. As is implied by (24) the modified 
boundary condition becomes 

n. Vp = 0 (25) 

The boundary conditions on velocity are as follows. At lat- 
eral boundaries, v. n = 0, where n is a unit vector normal to 
the boundary; see Figure 3. For the tangential component, 
no-slip (vr = 0) or slip (Ovr/On = 0) conditions can be 
employed. 

Finally, it should be noted that, as discussed by Gresho and 
Sani [1987] and Dukowicz and Dvinsky [1992], the homoge- 
neous Neumann condition on pressure (25) is compatible with 
both slip and no-slip boundary conditions in the continuous 
equations, but it may not be so when they are discretized [see 
Marshall et al., this issue]. 

3.2.2. Fluxes of heat and salt. At the ocean bottom and 

side the diffusive flux of heat and salt is set to zero: 

0 

Kn •nn (T, S) = 0 (26) 

where K,• is a "diffusion" coefficient normal to the boundary. 
At the ocean surface, wind stress and fluxes of heat and salt 

are prescribed' 

0 1 

"v (u, v)=- Pref 

0 1 

K• • (r, s) = -- (•, •) Pref 

z=0 

z=0 

(27) 

where v• and K• are vertical diffusivities of momentum and 
heat, respectively, r is the stress applied at the surface, and •r 
and •s are fluxes of heat and salt, respectively. 

3.3. Hydrostatic, Nonhydrostatic and Quasi- 
Hydrostatic Forms 

3.3.1. Nonhydrostatic. In the nonhydrostatic model, all 
terms in the incompressible Navier Stokes equations (7)-(18) 
are retained. A three-dimensional elliptic equation (24) must 
be solved with boundary conditions (25). It is important to note 
that use of the full NH does not admit any new "fast" waves in 
to the system; the incompressible condition (8) has already 
filtered out acoustic modes. It does, however, ensure that the 
gravity waves are treated accurately with an exact dispersion 
relation. 

It is interesting to note that Miller [1974] and Miller and 
White [1984] also "soundproof" their compressible atmo- 
spheric convection model in this way; they adopt pressure as a 
vertical coordinate and neglect various terms (which, using 
scaling arguments, they argue are small) until their equation 
set is isomorphic with the incompressible Navier Stokes equa- 
tions written in height coordinates: this isomorphism is dis- 
cussed in some detail by Brugge et al. [1991]. In general, atmo- 
spheric models employ the hydrostatic approximation because 
it has the beneficial property of eliminating vertically propa- 
gating acoustic waves. 

NH has the following energy equation: 

D 1 •d 2 Dt {5(u2 + + w2) + !7z} + V. (pv) = Q + v. Fv (28) 
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where v = (u, v, w) is the three-dimensional velocity vector, 
Q is the buoyancy forcing, F is the forcing/dissipation term in 
the momentum equations, and p = (•P/Pref' Note that the 
pressure work term V ß (pv) vanishes when integrated over the 
ocean basin if, as assumed here, all bounding surfaces, includ- 
ing the upper one, are assumed rigid. 

NH has a complete angular momentum principle as ex- 
pressed in (3). 

3.3.2. Hydrostatic. In HPE, all the underlined terms in 
(7)-(18) are neglected and r is replaced by a, the mean radius 
of the Earth. The 3-D elliptic problem reduces to a 2-D one 
since once the pressure is known at one level (we choose this 
level to be the rigid lid at the surface), then it can be computed 
at all other levels from the hydrostatic relation. An energy 
equation analogous to (28) is obtained except that the contri- 
bution of w 2 to the kinetic energy is absent and, on the right- 
hand side, only forces on the horizontal component of the 
velocity do work. 

The hydrostatic model has an angular momentum principle 
analogous to (3) but with r replaced by a and the axial angular 
momentum defined by 

A•- m{(fia cos 4> + u)a cos 4>} (29) 

Of course, (29) means that the hydrostatic model cannot rep- 
resent the mechanics contained in (3). 

3.3.3. Quasi-hydrostatic. In OH, only the terms under- 
lined twice in (7)-(18) are neglected, and, simultaneously, the 
shallow atmosphere approximation is relaxed. Thus all the 
metric terms must be retained and the full variation of the 

radial position of a particle monitored. OH has good energetic 
credentials; they are the same as for HPE. Importantly, how- 
ever, it has the same angular momentum principle as NH, (3). 
Again, the 3-D elliptic problem is reduced to a 2-D one. Strict 
balance between gravity and vertical pressure gradients is not 
imposed, however, since the 2Du cos O Coriolis term plays a 
role in balancing g in (16). 

4. Hydrostatic, Quasi-Hydrostatic 
and Nonhydrostatic Algorithms 

In HPE and OH the vertical component of the momentum 
equation becomes a diagnostic relation for the hydrostatic 
pressure; the vertical velocity is obtained from knowledge of 
(u, v) using the continuity equation. Instead, in NH, w, just 
like u and v, is obtained prognostically. In each model the 
main computational challenge lies in finding the pressure field. 
In HPE and OH a 2-D elliptic problem must be solved for the 
pressure at some level surface; in NH the elliptic problem is 
three dimensional. 

4.1. Finding the Pressure Field 

If the ocean had a flat bottom, then (24) could readily be 
solved by projecting p on to the eigenfunctions of the 02/01 '2 
operator with boundary condition (25) applied at the (flat) 
upper and lower boundaries. Then (24) can be written as a set 
of horizontal Helmholtz equations: 

(v, - 4,): 4,) (3o) 

where the Greek index labels the vertical eigcnfunction and •, 
is the corresponding eigenvalue. We can thus separate the 3-D 
problem (24) into a set of•N, independent 2-D problems, if one 
truncates at N, vertical modes. The advantage of this proce- 
dure is that only one cigenvalue (corresponding to the mode 

with no vertical structure) is equal to zero and after appropri- 
ate nondimensionalization, all other eigenvalues greatly ex- 
ceed unity if Az/Ax is small. The Nz - 1 Helmholtz problems 
are readily solved because the ), term dominates in (30). The 
2-D Poisson equation (), = 0 in (30)) presents the main com- 
putational challenge. This method of "projection onto modes" 
is employed, for example, by the nonhydrostatic process model 
of Brugge et al. [1991], used for studies of convection in flat- 
bottomed boxes. One cannot directly employ such a modal 
approach here, where we are concerned with a geometry which 
is as complex as that of an ocean basin, because with a nonflat 
bottom the 3-D problem cannot be separated into independent 
2-D problems; the modes "interact" through topography. How- 
ever, it strongly points to the advantage of separating out, as 
far as is possible, the depth-averaged pressure field. 

4.1.1. Depth-averaged pressure. For an arbitrary func- 
tion ½ we can define its vertical average •t" as 

= ½(x, z) dz 
) 

where H = H(A, O) is the local depth. 
The vertically averaged gradient operator is then 

. 1 V/,H (32) 
The vertical integral of (7) is then, using the rule (32), 

O (HV"•) •, 
0t = HG•.,. - [V/.,(Hfi") -p(H)V•H] (33) 

Since there can be no net convergence of mass over the water 
column, 

V;,. (HV"/,) = 0 (34) 

At this point, and followingB•an [1969], ocean modelers often 
introduce a stream function for the depth-averaged flow. In- 
stead, and as argued by Dukowicz et al. [1993], it is advanta- 
geous to couch the inversion problem in terms of pressure 
rather than a stream function. The resulting elliptic equation is 
better behaved because H, the local depth of the ocean, ap- 
pears in the numerator rather than the denominator of the 
coefficients that make up the elliptic operator. Furthermore, 
the pressure equation demands Neumann conditions (equa- 
tion (25)), whereas the bounda• conditions on the stream 
function are Dirichlet and can only be determined by car•ing 
out line integrals around the boundary. This is a cumbersome 
and (on a parallel computer) costly task. In contrast, the Neu- 
mann elliptic equation for the pressure, (24)-(25), occurs nat- 
urally in the incompressible Navier Stokes problem. 

Combining (33) and (34), we obtain our desired equation for 
the depth-averaged pressure: 

...... H 

V-(Hg,,,, )+ (35) 

where 

(I)(H): V. [p(H)V,,H] (36) 

It is now clear that if the ocean has a fiat bottom (H = 
constant), then q)(H) = 0 and equation (35) does not have 
any pressure-dependent terms on the right-hand side and can 
be solved unambiguously for •" But if the depth of the basin 
varies from point to point, one cannot solve for the depth- 
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averaged pressure without knowledge of •(H). We can, how- 
ever, make progress by separating the pressure field into hy- 
drostatic, nonhydrostatic, and surface pressure parts. 

4.1.2. Surface, hydrostatic and nonhydrostatic pressure. 
Let us write the pressure p as a sum of three terms: 

p(X, &, z) = ps(X, &) + pro-(X, ok, z) + PNH(X, d), z) (37) 

The first term, P s, only varies in the horizontal and is inde- 
pendent of depth. The second term is the hydrostatic pressure 
defined in terms of the weight of water in a vertical column 
above the depth z, 

pro-(X, &, z) = - • dz' (38a) 

where 

•--•-P-{(u2+v2)}-211ucosck (38b) • = •/ Pref r 

Note that (38a) and (38b) are a generalized statement of hy- 
drostatic balance, balancing vertical pressure gradients with a 
"reduced gravity" and, in QH, modified by Coriolis and metric 
terms also. 

It should be noted that the pressure at the rigid lid, p(z - 0), 
has a contribution from both Ps and PNH (by definition, p• = 0, 
at z = 0). In the hydrostatic limit, PNH = 0 and Ps is the 
pressure at the rigid lid. 

By substituting (37) into (35), an equation for P s results: 

Vh' (nVhps) = •f Hy(•., (•)) 

ß - Vh(Hp/, ) (39) + Vh [pNn(H)VhH] 2 --. 

where '•])HY is given by 

b•HV(X, &)= Vh' (HG .H)_ Vh2(Hfi_•H ) 

+ Vh' [pHv(H)VhH] (40) 

In HPE and QH the (doubly) underlined terms on the right- 
hand side of (39), which depend on the nonhydrostatic pres- 
sure, are set to zero, and P s is found by solving 

Vh' (HVhps) = b•m-(X, &) (41) 

The vertical velocity is obtained through integration of the 
continuity equation vertically: 

f0 w = - Vh'vh dz' (42) 

In NH, instead, w is found by prognostic integration of the 
vertical velocity equation: 

OW _ Ow OpN H (43a) 
Ot Oz 

where 

Ow = Gw + • (43b) 

Note that in (43a) and (43b), the vertical gradient of the hy- 
drostatic pressure has been canceled out with •, (38b), render- 
ing it suitable for prognostic integration; see section 4.2. 

We solve (41) to give a provisional solution for Ps and then 

find PNH from the elliptic equation obtained by substituting 
(37) in to (7) and noting, as before, that V ß v = 0 at each point 
in the fluid: 

where 

O2pNH 
V2pNH = V•pN, + OZ 2 = b•N, (44a) 

b•s, = !7. P,v- 17•(Ps + Pro,) (44b) 

where Q-v = (Gvh, •,•). 
Equations (44a) and (44b) are solved with the boundary 

conditions 

17PNH n = 0 (45) 

If the flow is close to hydrostatic balance (see section 4.2 
below), then the 3-D inversion converges rapidly because PNH 
is then only a small correction to the hydrostatic pressure field. 

The solution PNH to (43) and (44) does not vanish at the 
upper surface and so refines the pressure at the lid; it is in this 
sense that the Ps obtained from (41) is provisional. In the 
interior of the fluid, nonhydrostatic pressure gradients, VpNH, 
drive motion. 

The method of solution employed in the HPE, QH, and NH 
models is summarized in Figure 4 below. There is no penalty in 
implementing QH over HPE except, of course, some compli- 
cation that goes with the inclusion of cos & Coriolis terms and 
the relaxation of the shallow atmosphere approximation. But 
this leads to negligible increase in computation. In NH, in 
contrast, one additional elliptic equation, a three-dimensional 
one, must be inverted. However, we show that this "overhead" 
of the NH model is essentially negligible in the hydrostatic 
limit (as the nonhydrostatic parameter, (2), n --• 0), resulting in 
a nonhydrostatic algorithm that, in the hydrostatic limit, is as 
computationally economic as the HPEs. 

4.2. Navier Stokes Model in the Hydrostatic Limit 

It is important to understand how the NH model performs in 
the hydrostatic, geostrophic limit. Accordingly, in the Appen- 
dix we nondimensionalize our model equations and consider 
the balance of terms if the flow is close to one of hydrostatic 
and geostrophic balance. For clarity and simplicity we neglect 
horizontal Coriolis terms in our scale analysis. There are three 
important nondimensional numbers: the Rossby number R o = 
U/fL, the Richardson number Ri = N2h 2/U 2, and the aspect 
ratio of the motion 3/ = h/L. Quasi-geostrophic dynamics 
occurs on the deformation scale, Nh/f, at large R i and small 
Ro such that R•Ro 2 • 1. 

The nondimensional form of the momentum and continuity 
equations may be written in terms of Ro, Ri, and •, thus (see 
Appendix)' 

' 1 O'Vh t t t 

Ot = G' + {G' - 17h(Ps +P,r+qnpk,)} (46) -• hOTHER •OO hCORI 
t 

NH (47) ow' = O' - op_ 
Ot' • Oz 

OW • 

17h' V• + Ro Oz • = 0 (48) 

where the prime symbols indicate nondimensional quantities, 
G•coR I are the sin & Coriolis terms, and G;,OTnE • contain all 
other contributions, from advection, sources, sinks, etc. Here 



MARSHALL ET AL.: HYDROSTATIC AND NONHYDROSTATIC OCEAN MODELING 5741 

V h . (HV hPs ) - ,.5'Hy (•, (p) 

z 

Put (2,, 0, z) - I -g&' 
0 

HPE NH 

V2p•vu - V. Gv -Vh (Ps + Put) 

ODVh : G v h - Vh (Ps + Put) O•Vh = G • • v• -- Vh (Ps + Put + P.u ) 

W---- Vh.¾hdZ' O,qt =Gw-• o 
Figure 4. Outline of hydrostatic (HPE), quasi-hydrostatic (OH), and nonhydrostatic (NH) algorithms. 

n = P,,vn/P,r, which compares the typical magnitude ofp•v, 
and P,v, is given by 

n--R, (49) 
and is just the hydrostatic parameter of the nonrotating prob- 
lem introduced in section 2; see (2). Note that in (46) we have 
introduced a tracer parameter q; in HPE and OH, q = (), and 
in NH, q = 1. 

The elliptic equation for tiao pressure is, taking V/, of (46) 
and O/•,z of (47) using (48), 

qn , 1 , a•P;"+ -,, v;,•p,•,,: • Iv,,. •' - v;,:(p', + O z 2 R • R • /'('• 

_ 

+R,Vj,.Gj ......... } + az (50) 

We can now more clearly identify the nonhydrostatic and 
hydrostatic regimes in this rotating system where we note that 

4.2.1. Nonhydrostatic regime [nm R,,]. In the nonhydro- 
static regime, horizontal gradients ofp,•z z are important in the 
evolution of v;,. It is still advantageous to separate out the 
hydrostatic pressure as in (37), but the solution of the fully 3-D 
elliptic problem (50) will be computationally demanding. 

4.2.2. Transitional regime [n • Re]. The second regime 
is the transition zone, the grey area in Figure 1, where nonhy- 
drostatic effects no longer dominate and the flow is under 
increasing hydrostatic control. 

4.2.3. Hydrostatic regime [n << Re]. In the hydrostatic 
regime, P•s is found by inversion of a 2-D elliptic equation and 
p,•, trivially, from (50) since the scaled 3-D elliptic operator 
•2/0Z2. Note that if the tracer parameter q = 0, then 
Vz, p•, vanishes from (46) and, accordingly, the elliptic equa- 
tion (50) does indeed collapse to a second-order ordinary dif- 
ferential equation (ODE) in z. It is interesting to note that 
p•,, is not zero in the hydrostatic limit of NH, but only its 

vertical variation is required. (Indeed, even in HPE a p^f, is 
implied and can be deduced from w(t) using (47), but P/v, 
need never be explicitly calculated if (48) is used directly.) If 
q •- 0, the vertical velocity found from (47) yields exactly that 
which would have been deduced from the continuity equation 
had HPE been used if •i• • 0 (compare (46) and (47) when 
q - 0 and •;' • 0 with HPE, (46) and (48) withq : 0). 

We now illustrate the methods outlined above in three in- 

teresting contexts: simulation of rotating convection in a lab- 
oratory experiment (an analogue of open-ocean deep convec- 
tion), simulation of convection and bareclinic instability in a 
channel (of relevance to mixed layers in the upper ocean), and 
a simulation of the global circulation of the ocean in a study of 
the basin-scale patterns of sea surface height variability which 
are compared to observations of surface elevation taken by the 
TOPEX/POSEIDON altimeter. 

5. Oceanographic Illustrations 
The method of solution outlined in section 4 for the HPE, 

QH, and NH models has been implemented in data-parallel 
FORTRAN on a CM5, a massively parallel machine housed at 
the Massachusetts Institute of Technology (MIT). The model 
has also been articulated in an implicitly parallel language 
called Id and run on the MIT data-flow machine MONSOON. 

A comparison of this implicitly parallel, multithreaded ap- 
proach with the single-threaded data-parallel model is de- 
scribed in detail by Arvind et al. (submitted manuscript, 1996). 
The numerical formulation of the model is described in detail 

in the companion paper, Marshall etal. [this issue], to which 
the reader is referred for details. Here it is sufficient to note 

that the model solves the incompressible Navier Stokes equa- 
tions in spherical geometry; has rigid-lid and flee-surface op- 
tions; has an equation of state appropriate to seawater; em- 
ploys height as a vertical coordinate; handles arbitrarily 
complex coastlines, islands, and bathymetry; employs a finite- 
volume, predictor-corrector numerical procedure; inverts for 
the pressure field using preconditioned conjugate-gradient 



5742 MARSHALL ET AL.: HYDROSTATIC AND NONHYDROSTATIC OCEAN MODELING 

Figure 5. Domain decomposition used in the data-parallel 
model. The schematic diagram shows our fluid contained in an 
ocean basin decomposed into columns distributed over 16 pro- 
cessors of a parallel computer. The thick black lines indicate 
regions of the domain assigned to the same processor. The thin 
lines indicate the number of "volumes" within each subdo- 
main. 

methods; has HPE, NH, and OH options; and is designed 
specifically to exploit parallel computers. 

The numerical scheme ensures that the evolving velocities 
be divergence free by solving our Poisson equation for the 
pressure with Neumann boundary conditions and then using 
these pressures to update the velocities. The equations are 
discretized using finite-volume methods. Regular volumes 
based on a uniform discretization of longitude, latitude, and 
depth are employed. When they abut the bottom or coast, the 
volumes may take on irregular shapes and be "sculptured" to 
fit the boundary, improving our representation of coastlines 
and topography; see Adcroft et al. [1996]. 

The model lends itself very naturally to parallel computa- 
tion. Most of the parallelism is fine-grained data parallelism, 
available on the order of the total number of grid cells in the 
computational domain. The only exception is the diagnostic 
inversion for the pressure field which involves global reduc- 
tions across all the cells of the domain. The model has been 

developed in a data-parallel FORTRAN on the 128-node CM5 
available to us at MIT which enables one to exploit the data 
locality and regular structure of the model grid. In our ap- 
proach the physical domain is decomposed by allocating 
equally sized vertical columns of the ocean to each processing 
unit. For example, given a typical 200 x 200 x 30 three- 
dimensional spatial grid representing an ocean basin, say, it is 
straightforward to carve the grid in to 128 domains, each one 
with roughly 12,000 points in a 20 x 20 • 30 network, each 
handling the computation in that sector of the ocean from the 
surface to the bottom; see Figure 5. The key to the success of 
this relatively simple decomposition is its role in reducing the 
overhead of the potentially costly task of diagnosing the pres- 
sure field. 

Regardless of the specifics of any discrete approximation to 

the gradient and divergence operators, (19) and (20), which are 
required to step forward the fluid equations, solving the pres- 
sure Poisson equation at each time step is computationally 
expensive because this involves communication between pro- 
cessors. But as we shall see, the overhead incurred by NH in 
solving (43a) and (43b) for PN, is not severe provided the 
nonhydrostatic parameter n, (49), is sufficiently small. This is 
true even in the highly irregular geometries of an ocean basin, 
provided that P s is first obtained in a 2-D solve. Thus in the 
hydrostatic limit, NH is not more demanding of computational 
resources than HPE or OH. To invert the 3-D Poisson equa- 
tion for the pressure field, a block preconditioned conjugate- 
gradient algorithm is employed. The preconditioner used is the 
inverse of 02/0252 [see Marshall et al., this issue], to which the 
3-D elliptic operator asymptotes in the hydrostatic limit. The 
preconditioning equations are solved using "lower/upper" 
("LU") decomposition which inverts 02/OZ 2 for each vertical 
column in the ocean. Thus repeated multiplication by the pre- 
conditioner does not involve any communication between pro- 
cessors. Furthermore, in computing the matrix-vector products 
needed in each conjugate-gradient (CG) iteration, only near- 
est-neighbor communication is required because the 128 do- 
mains are arranged so as to take advantage of the direct links 
in the CM5's fat-tree based communication network. The 

model is presently achieving a sustained performance of 3 
Gflops on the 128-node machine. 

The model has been employed to study a number of phe- 
nomena whose scales range from centimeters (in simulations 
of laboratory experiments) up to many thousands of kilometers 
(in simulations of the evolution of the sea surface elevation 
over the globe). We briefly present three studies that have 
been recently carried out to demonstrate the capabilities of the 
model: (1) simulations of laboratory experiments carried out 
by Jack Whitehead at Woods Hole in a 1 m x 1 m x 30 cm 
rotating tank, in which the aspect ratio 3' • 1; (2) convection 
and baroclinic instability in a periodic channel, of dimension 
50 km x 20 km x 2 km, in which 3' • 0.1; and (3) circulation 
of the global ocean on decadal timescales in a basin with 
realistic geography and bathymetry; here 3' • 10-3. Experi- 
ments 1 and 2 use NH; experiment 3 has used HPE, NH, and 
OH. The same kernel algorithm, however, is used in all cases. 
Model resolutions and parameters are summarized in Table 1. 

5.1. Laboratory Experiment 

Figure 6a shows the distribution at the surface of the vertical 
component of vorticity 60 s (five rotation periods) after a 
continuous source of salinification was applied over a circular 
patch of radius 10 cm at the upper surface of a numerical 
simulation of rotating convection into a salt-stratified fluid. 
The laboratory experiments are described by Whitehead et al. 
[1996] and were used to explore the mechanisms at work in the 
convective overturning of a stratified ocean driven by buoyancy 
loss from an extended but confined region at its upper surface. 

Table 1. Typical Values of Stratification N and Coriolis Parameter f for the Three Experiments Discussed in the Text 

N, s -• f, s -• L, m h, m U, m s -• R i -- N2H2/U2 R o = U/fL 3' = H/L 

Laboratory 30 6 1-5 x 10 -3 10 -2 10 -2 10-•-10 1 1 
Mixed layer 5 X 10 -4 10 -4 1-5 x 103 2 X 103 10-2-10 -1 10-•-10 10-•-1 0.2-1 
Global currents 10 -2 10 -4 5-10 x l0 s 5 x 103 10-•-1 103 10 -3 10 -3 

Also shown are our estimates of the length scales (in the horizontal L and vertical h) and typical speeds U associated with the phenomenon 
observed in the numerical experiments. R i is the Richardson number, R o is the Rossby number, and •/is the aspect ratio. 
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Figure 6. (a) Horizontal maps of the vertical component of vorticity obtained by solution of NH in the 
simulation of a laboratory experiment in which a rotating salt-stratified fluid in a tank of dimension 1 m x 
1 m x 30 cm is densifted over a disc at its upper surface by addition of salty water. The period of rotation is 
12 s, the stratification of the ambient fluid is N -- 0.94 s -1, and the buoyancy flux is B = 0.3 cm 2 s -3. Maps, 
shown every five rotation periods, chart the breakup of the column of convected fluid by baroclinic instability. 
(b) A vertical section through the evolving salt chimney. Only the top 10 cm of the 30 cm deep salt-stratified 
fluid is shown. 
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Table 2. Numerical Parameters and Measure of Computational Effort Required to Invert Elliptic Equations in Two 
Dimensions and Three Dimensions 

Speed-up 

Nx, Ny, N z Ax, Ay, A z At 13 V•2p V;2ps V•2p•v. 3-D Net 
Laboratory 127, 127, 19 0.5, 0.5, 1.5 0.05 0.1-1 450 250 60 8 5 

NH cm s 

Mixed layer 200, 119, 19 250, 250, 100 120 0.1 400 250 38 11 6 
NH m s 

Globe 360, 180, 20 105, 105, 100 1200 10 -4 460 450 1 460 20 
H/QH m s 

Nx, Ny, and N z are the number of grid cells in the zonal (x), meridional (y), and vertical (z) directions; Ax, Ay, A z are the grid cell dimensions 
in these three directions. In the mixed layer and global simulations the vertical grid spacing Az was, in fact, not constant, but we indicate here 
the mean vertical spacing. The time step employed is At, and the typical values of the nonhydrostatic parameter n computed from each 
experiment are indicated. The computational effort required to invert the elliptic problems is measured by the number of conjugate iterations 
required to reduce the divergence to acceptably low values. The V •- 2p column shows the number of iterations required when the elliptic problem 
is solved in one stage, utilizing only a single 3-D inversion. The V•-2ps and V•-2pNH columns record the number of iterations required to achieve 
the same divergence when the elliptic problem is solved in a two-stage procedure, following the right arrow in Figure 4. The 3-D speed-up is the 
ratio of the number of 3-D iterations required by the inverter in the one-stage inversion to the number of iterations required by the 3-D inverter 
in the two-stage inversion. The net speed-up takes into account the additional work arising from the 2-D inversion. Evidently, the two-stage 
inversion procedure is very effective at reducing the expense of NH, rendering it competitive with HPE (and QH) in the hydrostatic limit. 

The numerical model integrated forward the Cartesian form of 
NH (in which the rotation vectors II and g are aligned with one 
another; see the Appendix). The domain is a flat-bottomed box 
of dimension 1 m x 1 m x 30 cm; in the numerical model the 
cells are cubes of side 0.5 cm. Key physical parameters of the 
integration are set out in Table 1 and numerical parameters in 
Table 2; isotropic Laplacian diffusion of salt and momentum 
was employed as a parameterization of sub-grid-scale pro- 
cesses. In Figure 6a we see baroclinic eddies forming as the 
convective chimney breaks up into deformation scale frag- 
ments. Figure 6b shows a vertical section through the evolving 
chimney; the convective elements can be seen eroding the 
vertical stratification. The deepening of the "chimney" is ulti- 
mately arrested by a mode number 3 baroclinic instability. 
"Hetonic" structures carry the salty convected fluid away from 
the disc of forcing; see Legg and Marshall [1993]. In this sim- 
ulation the convective process is resolved (albeit coarsely) and 
nonhydrostatic effects are important in the overturning of the 
chimney; the nonhydrostatic parameter, computed as the ratio 
n = PN,/Ps from the evolving fields, is •0.1-1. 

Table 2 presents measures of the computational effort re- 
quired to find the pressure field in the case where the 3-D 
elliptic problem, (24) and (25), is solved directly and when, 
alternatively, it is found by a 2-D inversion for Ps, (41), fol- 
lowed by a 3-D inversion for PN--, (44a). We present the 
number of conjugate-gradient iterations required to reduce the 
divergence field to one part in 10 •ø, a value which was found to 
be sufficiently small for numerical stability. The computation 
per iteration does not change; the cost of a 3-D iteration is 
approximately Nz times that of a 2-D iteration. 

Table 2 clearly illustrates that the separation of the pressure 
into its constituent parts, equation (37), is very effective at 
reducing computation, even in this simulation where nonhy- 
drostatic effects are important. The number of 3-D iterations is 
reduced by almost an order of magnitude if the surface pres- 
sure is "taken out" of the 3-D problem. Moreover, in a hydro- 
static calculation the surface pressure must be found anyway, 
and so the cost in the pressure inversion of NH relative to HPE 
is only a factor of 4. Instead, had we inverted forp directly, NH 
would have been more than 30 times slower than HPE. Here 

we have not exploited any simple geometry (unlike, for exam- 

pie, in the study of Julien et al. [1996], who report on "direct 
numerical simulations" of convection in a box that resolve 

dynamically active scales of motion down to the Kolmogorov 
scale) because our aim is to develop methods that can be 
employed in domains as complex as ocean basins; the method 
outlined here is equally efficient in irregular domains. 

Finally, it should be emphasized that there is no single reli- 
able measure of computational effort, particularly in view of 
the fact that we are running on a parallel machine in which 
"communication" must be balanced with "computation." But 
the one chosen here, the number of conjugate-gradient itera- 
tions required to invert for p, does, we feel, give a reliable 
guide. The number of iterations can, of course, be reduced by 
using a preconditioner which is a closer inverse of V 2, but this 
may be at the expense of enhanced communication and so a 
reduction in speed. There is a substantial literature on parallel 
preconditioners showing that suitably chosen ones can have 
less communication needs than the conjugate-gradient itera- 
tion and hence improve efficiency. Our design of precondition- 
ers is discussed in some detail by Marshall et al. [this issue]. But 
the striking relative speed-up observed in the 3-D inversion 
demonstrated in Table 2 is independent of these consider- 
ations because the same preconditioner is used in all cases. 

5.2. Convective and BarOClinic Instability 
of the Mixed Layer 

The Cartesian form of NH has been used to study convective 
and baroclinic instability of the oceanic mixed layer; see Plate 
1. A periodic channel is employed of dimension 30 x 50 km in 
the horizontal and 2 km in the vertical. The initially resting 
ocean is uniformly stratified; details can be found in Table 1. 
The motion is forced by a steady buoyancy loss through the sea 
surface. This cooling is independent of downchannel coordi- 
nate but increases across the channel following a hyperbolic 
tangent variation. Thus in the southern third of the channel, 
there is weak surface forcing, in the northern third, there is 
fairly constant densification equivalent to a heat loss of 800 W 
m -2, and there is a sharp transition in between. A linear 
equation of state is specified dependent on temperature alone. 
The resolution is sufficient to represent gross aspects of the 
convective process. No convective adjustment is employed. 
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Plate 1. A time sequence of horizontal maps of the (left) vertical component of vorticity and (right) 
temperature at a depth of 65 m in a simulation of an evolving oceanic mixed layer using NH. The initially 
resting fluid (in a 50 km x 20 km x 2 km channel) is cooled vigorously to the north, initiating convection 
which, over time, evolves and coexists with baroclinic eddies: (a) day 1; (b) day 6; (c) day 9. 

50 

The calculation is of particular interest because it occurs in the 
grey area in Figure 1, illustrating the transition between con- 
vective (unbalanced) and geostrophic (balanced) motion. 

For the first few days of integration a mixed layer of depth h 
develops according to a simple, nonrotating, one-dimensional 
law which predicts the depth of mixing due to the convective 
overturning. Namely, 

where B is the buoyancy flux across the surface at time t and N 
is the Brunt-Vfiisfilfi frequency. The vertical mixing is facili- 
tated by upright convection (modified by rotation); See Plate 
la where horizontal maps of vorticity and temperature are 
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plotted at day 1. As a result of the developing density gradient 
across the channel, the flow adjusts to thermal wind balance 
which becomes baroclinically unstable. 

After 6 days a mode six, finite amplitude, baroclinic insta- 
bility has grown in the channel center and is responsible for 
exchanging water laterally, from the region of deep mixing to 
the unconvected fluid and vice versa (Plate lb). In the north 
the fine plume-scale elements can be seen drawing the buoy- 
ancy from the interior. At later times a field of geostrophic 
turbulence evolves to larger scale as the baroclinic waves 
"break" laterally (Plate l c). Ultimately, the evolution of the 
whole layer is profoundly affected by the lateral flux of buoy- 
ancy due to baroclinic eddies. The hydrodynamics at play in 
simulations such as those shown in Plate 1, and its relevance to 
oceanic mixed layers, are discussed in detail by Haine and 
Marshall [1996]. 

Nonhydrostatic effects are somewhat less important in this 
calculation than the laboratory experiment above, and, accord- 
ingly, Table 2 reveals an even greater improvement in perfor- 
mance when the pressure separation is made. Plate 2 repeats 
the mixed layer calculation but with HPE, rather than NH. It 
is interesting to observe that HPE attempts to represent the 
convective overturning of the fluid column even though accel- 
eration terms in the vertical momentum equation are absent. 
Statically unstable columns are overturned by HPE but at the 
grid scale, and the resulting field of vertical velocity is up to 
twice as strong as in NH and much less smooth and coherent. 
This is just as one would expect from linear Rayleigh theory; 
the static instability of a column is more vigorous and occurs at 
smaller spatial scales in hydrostatic compared to nonhydro- 
static convection. 

5.3. Large-Scale Global Circulation 

The model has been used to simulate the variability of the 
surface pressure field and currents over the globe during the 
TOPEX/POSEIDON altimetric mission. The model, extend- 

ing from 80øS to 80øN at 1 ø horizontal resolution, was config- 
ured with 20 levels in the vertical, ranging from 20 m at the 
surface to 500 m at the deepest level. Full spherical geometry 
and realistic topography were employed. The model was ini- 
tialized with the "Levitus" data set and driven by climatological 
winds for a "spin-up" period of 40 years on 128 nodes of a 
CM5. The surface temperature and salinity fields were relaxed 
to seasonal Levitus on a monthly timescale and driven by 
analyzed winds and surface fluxes. A convective adjustment 
scheme (of the kind described by Klinger et al. [1996]) was used 
to parameterize convection, and the wind stress was applied as 
a body force over the uppermost layer of the model. The global 
ocean was then driven by 12-hourly analyzed winds and surface 
fluxes of heat and fresh water (obtained from a National Me- 
teorological Center reanalysis) during the period January 1985 
until January 1995. The winds drive the flow toward Sverdrup 
balance and excite Rossby and Kelvin waves which propagate 
at their respective phase speeds through variable stratification, 
bathymetry, and mean flow. 

Figure 7 shows surface currents from our simulation using 
HPE; thus only a 2-D elliptic problem for the surface pressure 
was inverted. Plate 3 compares the surface elevation observed 
from the TOPEX/POSEIDON altimeter during the period 
January 21-31, 1992 (prepared by Detlef Stammer of MIT), to 

the surface elevation predicted by the model for the same 
period. The broad agreement is very encouraging, demonstrat- 
ing not only that the model has fidelity in reproducing basin- 
scale variability induced by winds but also that the TOPEX/ 
POSEIDON altimeter provides us with a remarkable global 
data set for comparing with models and theory. Integrations of 
the model with NH instead of HPE, in which the vertical 

velocity is obtained by prognostic integration of (43), instead of 
being diagnosed from continuity, give indistinguishable results 
in this limit where n --• 0; our chosen preconditioner is then an 
exact inverse of d2/dz 2 and solves the ODE in one application; 
see Table 2. Thus use of NH involves only marginally more 
computation than HPE. 

Figure 8 plots the difference in P s and surface currents 
obtained from Pacific integrations using HPE and QH at 1 ø 
horizontal resolution. Inclusion in QH of a full treatment of 

the Coriolis force only leads to small differences in current 
speeds (---1-2 mm s -j) and surface elevation (---0.1 cm) at this 
resolution. 

6. Conclusions 

We have critically reviewed some of the key assumptions 
inherent in the hydrostatic primitive equations (HPEs) and 
described and implemented more accurate nonhydrostatic 
(NH) and quasi-hydrostatic (QH) formulations for studies of 
ocean circulation from convective to global scale. 

Rather than assume hydrostatic balance a priori (the left- 
pointing arrow in Figure 1), we have retained the material 
derivative Dw/Dt in the vertical momentum equation and de- 
veloped a model based on the incompressible Navier Stokes 
equations. Such models are designed primarily for the study of 
small-scale phenomena, such as mixed layer physics and con- 
vective processes in the laboratory and the ocean. The pressure 
field, which ensures that evolving currents remain nondiver- 
gent, is found by inversion of a three-dimensional elliptic op- 
erator, the overhead of the nonhydrostatic algorithm. A strat- 
egy has been outlined and illustrated which separates the 
pressure into its constituent parts: Ps, Pz•v, and PNH. As in 
HPE and QH a 2-D elliptic problem must be inverted for P s; 
but in NH, a further 3-D Poisson equation must be inverted for 
PNH. A preconditioner is designed which, in the hydrostatic 
limit, is an exact integral of the elliptic operator and so leads to 
an algorithm that seamlessly moves from nonhydrostatic to 
hydrostatic limits. Moreover, when employed in the hydrostatic 
limit, the nonhydrostatic model is fast, competitive with the 
fastest ocean climate models in use today based on the HPEs. 
It is thus ideal for the study of the whole range of phenomena 
presented in Figure 1 (the right-pointing arrow) and particu- 
larly those in the grey area. Our main conclusions are the 
following: 

1. Ocean models based on consistent equation sets that are 
more accurate than the HPEs can be formulated and efficiently 
implemented: NH and OH. 

2. Ocean models based on algorithms rooted in the incom- 
pressible Navier Stokes equations can be constructed which 
perform efficiently across the whole range of scales, from the 
convective to the global. Such models are endowed with great 
versatility; their nonhydrostatic capability renders them suit- 
able for study of small-scale phenomenon. When deployed to 
study hydrostatic phenomena, they are no more demanding of 
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Plate 2. On the left the vertical velocity is plotted obtained by integration of NH at day 6 of the mixed layer 
channel calculation. On the right the same fields are plotted but obtained by integration of HPE. The bottom 
two panels compare w(x, y - 27 km, z - 400) from (left) NH and (right) HPE also at day 6. 

computation than hydrostatic models. Moreover, algorithms 
rooted in NH may offer a number of advantages over those 
based on HPE. 

3. In large-scale integrations (at 1 ø horizontal resolution), 
HPE, QH, and NH give essentially the same numerical solu- 
tions. The neglect of cos 0 Coriolis terms is the most ques- 
tionable assumption made by the HPEs, but their inclusion (in 
QH and NH) yields differences in horizontal currents of only a 
few millimeters per second (in the rather coarse resolution 

global experiment presented here). Thus it is clear that solu- 
tions based on the HPEs are not grossly in error at least at 
coarse resolution. Nevertheless, models based on QH (or NH) 
ought to be preferred. 

Finally, we conclude by mentioning some future directions. 
In addition to the use of the model described here as a general- 
purpose tool for study of the ocean, one might anticipate that 
its nonhydrostatic capability would render it particularly suit- 
able for hydrodynamical studies of mixed layers and coastal 
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Plate 3. (top) Surface elevation observed from the TOPEX/POSEIDON altimeter during the period Jan- 
uary 21-31, 1992, relative to a 2-year mean December 1992 to December 1994 (and in which steric effects have 
been removed). (bottom) The surface elevation predicted by our global model, driven by 12-hourly observed 
winds over the decade 1985-1995, is also shown for the same 10-day period. The contour interval is 4 cm of 
elevation; yellow regions are raised above the mean, and grey areas are depressed. 
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Figure 7. Currents at a depth of 50 m in a numerical simulation of the global ocean using HPE on a 
128-node CM5. The model, which has a horizontal resolution of 1 ø x 1 ø and 20 levels in the vertical, was driven 
by monthly-mean winds and climatological fluxes of heat and fresh water for a period of 40 years and 
initialized from the Levitus climatology. We show here the flow during the spring of the thirty-eighth year of 
integration. In the global map, every other current vector is plotted; the inset shows current vectors at the 
resolution of the model. 

regions where nonhydrostatic processes play an important role. 
Height is used as a vertical coordinate by Marshall et al. [this 
issue]; terrain-following-coordinate, nonhydrostatic models 
could readily be implemented. Isopycnal nonhydrostatic forms 
would seem to have limited application; isopycnal coordinates 
are not naturally suited to the study of convective processes, 
for example. But nonhydrostatic height-coordinate models 

could be used to represent upper ocean processes in conjunc- 
tion with hydrostatic models (perhaps formulated isopycnally) 
to represent the geostrophic interior of the ocean. 

One of the avenues that the authors are actively pursuing is 
the construction of a sibling atmospheric model based on, as 
outlined by Brugge et al. [1991], the same hydrodynamical for- 
mulation as described here. 
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Figure 8. Difference in surface pressure and surface currents in a 1 ø x 1 ø Pacific integration resulting from 
the use of QH rather than HPE. The arrow shown at the bottom of the figure represents a current of 1.5 mm/s; 
the maximum difference in surface elevation of 0.1 cm is observed in the Kurishio. 

Appendix: Incompressible Navier Stokes 
in the Hydrostatic, Geostrophic Limit 

We derive here the nondimensional equations used in sec- 
tion 4.2 to identify hydrostatic and nonhydrostatic regimes and 
to study the behavior of the Navier Stokes model in the hy- 
drostatic, geostrophic limit. 

We write down the momentum and thermodynamic equa- 
tions for an incompressible Boussinesq fluid in Cartesian co- 
ordinates, nondimensionalize them, and go on to consider the 
balance of terms when the flow is close to hydrostatic and 
geostrophic balance: 

OYh 
Ot + Vh(Ps + Pro. + Ps,) + fk x ¾h -- 0 (A1) 

D w Op N H 
Dt + • = 0 (A2) 

Dhb 
Ot -- + N2w = 0 (A3) 

where 

D 

Dt 

V.v = 0 (A4) 

0 

---Vh.V + W 
OZ 

k is a unit vector directed vertically upward, and f is the Co- 
riolis parameter. 

To simplify our analysis, we have assumed an equation of 
state in which the density is a linear function of T and S (and 
independent of p); b is the buoyancy: 

8p 

Pref 

where the density is, separating out a constant reference value 
and an ambient stratification po(Z) typical of the fluid under 
study: 

/9 -• Pref -'l- po(Z) d- ap(X, y, z, t) 

and 

5 2 -- 
g Opo 

Pref 0 Z 

is the stratification. 

Note that in the above, p = t•p/Pref has been separated into 
its hydrostatic, nonhydrostatic, and surface pressure compo- 
nents. Furthermore, the hydrostatic pressure (which satisfies 
the relation (Opi_iy/Oz) - b = 0) has been canceled out with 
gravity in (A2). 

The dimensionless equations are as follows. We scale the 
variables thus: % by U, w by W, x by L, z by h, Ps and p/_/y 
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by P/_/y, pN/_/ by PN/_/, f by F, b by # (p 1/Pref), and N 2 by 
(#/h)(APo /Pref), where p• is a measure of the magnitude of 
8p(x, y, z) and Apo is the change in Po over a depth h. 

Setting D/Dt -• (U/L) (D'/Dt'), etc., where the prime 
symbols indicate nondimensional parameters, (A1)-(A4) be- 
come 

where 

V;. v; + Ro Oz-•-= 0 (A4") 

D'v• 
Dt' --+ V;(ps +pro,+ npm-/) + k x v• = 0 

(Ai') 

is the nonhydrostatic parameter identified in section 2.1 and 
used in section 4.2. 

' PnY Op•vi• 0 (A2') • t -- Dt + n Oz 

DID l 

Dt' Pl / 
(A3') 

where 

V;. v; + Oz' 0 

P NH 

(A4') 

is the nonhydrostatic parameter. 
Now let us suppose that the flow is close to geostrophic and 

hydrostatic balance: 
geostrophic 

hydrostatic 

PHV FL 1 
: (AS) U 2 - U Ro 

plgh 
PH¾ = (A6) 

JOref 

Continuity (A4') together with geostrophy implies that 

WL 

U h Ro 

and since (D'/Dt)b' • N'2w ' • 1, (A3') implies that 

WL 91 

U h A9o 

(A7) 

(A8) 

Combining (A5), (A6), (A7), and (A8), we deduce that 

R,Ro 2 = 1 (A9) 

where R i is the Richardson number of the flow given by 

N2h 2 gApoh c • 
R l = U2 -- /9refU •= U2 (A10) 

and c is the speed of internal gravity waves. 
The result (A9) is well known and defines the quasi- 

geostrophic regime; if R i of the large-scale flow is large, then 
the R o is small and the flow is quasi-geostrophic. 

We may now write the set (Ai')-(A4') in terms of R i, R o, 
and 3, = h/L; the aspect ratio of the motion thus 

D'v• 1 

D + •oo [V;(pk + p•/r + npk,) + f'k x v;] = 0 (AI") 
D ' w' Op •vs 

+ = 0 (A2") Dr' Oz' 

D•D • 

Dr' -- + N' 2w' = 0 (A3") 
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