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ABSTRACT

The advent of high-precision gravity missions presents the opportunity to accurately measure variations in
the distribution of mass in the ocean. Such a data source will prove valuable in state estimation and constraining
general circulation models (GCMs) in general. However, conventional GCMs make the Boussinesq approxi-
mations, a consequence of which is that mass is not conserved. By use of the height–pressure coordinate
isomorphism implemented in the Massachusetts Institute of Technology general circulation model (MITGCM),
the impact of non-Boussinesq effects can be evaluated. Although implementing a non-Boussinesq model in
pressure coordinates is relatively straightforward, making a direct comparison between height and pressure
coordinate (i.e., Boussinesq and non-Boussinesq) models is not simple. However, a careful comparison of the
height coordinate and the pressure coordinate solutions ensures that only non-Boussinesq effects can be re-
sponsible for the observed differences. As a yardstick, these differences are also compared with those between
the Boussinesq hydrostatic and models in which the hydrostatic approximation has been relaxed, another ap-
proximation commonly made in GCMs. Model errors (differences) caused by the Boussinesq and hydrostatic
approximations are demonstrated to be of comparable magnitude. Differences induced by small changes in
subgrid-scale parameterizations are at least as large. Therefore, non-Boussinesq and nonhydrostatic effects are
most likely negligible with respect to other model uncertainties. However, because there is no additional cost
incurred in using a pressure coordinate model, it is argued that non-Boussinesq modeling is preferable simply
for tidiness. It is also concluded that even coarse-resolution GCMs can be sensitive to small perturbations in
the dynamical equations.

1. Introduction

Recently, the Boussinesq approximations in ocean
models have attracted much attention (e.g., de Szoeke
and Samelson 2002; Greatbatch et al. 2001; Huang and
Jin 2002; Huang et al. 2001; Lu 2001; McDougall et
al. 2002). The approximations, which are commonly
employed for computational efficiency in general cir-
culation models and in analytical studies, consist of re-
placing (i) mass conservation by volume conservation
and (ii) the density in temporal and advection operators
by a constant reference density (McDougall et al.
2002).1

1 Spiegel and Veronis (1960) summarized the Boussinesq approx-
imations as follows: ‘‘(1) The fluctuations in density which appear
with the advent of motion result principally from thermal (as opposed
to pressure) effects. (2) In the equations for the rate of change of
momentum and mass, density variations may be neglected except
when they are coupled to the gravitational acceleration in the buoy-
ancy force.’’
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While these approximations are generally justified for
purposes of simulating the ocean circulation with ocean
general circulation models (OGCMs), there are many
problems in physical oceanography that may require the
use of non-Boussinesq OGCMs. Boussinesq models con-
serve volume; consequently, they cannot recover steric
effects. Hence, unless the steric sea level change is ex-
plicitly calculated (Greatbatch 1994), one cannot use such
models to study global sea level change due to net heating
of the ocean at seasonal and longer time scales. Fur-
thermore, changes in the heat and freshwater content of
the ocean can have spurious effects on the diagnosed
bottom pressure in OGCMs that make the Boussinesq
approximations. For example, heating the water column
(and neglecting the subsequent adjustment) decreases the
density. By volume conservation, decreasing the density
reduces the mass and the bottom pressure, which for a
real fluid should be unchanged in this case. Therefore, a
volume conserving model may be inappropriate to study
oceanic mass distribution and bottom pressure in the con-
text of high precision satellite gravity missions such as
the Gravity Recovery and Climate Experiment mission
(GRACE; Greatbatch et al. 2001). Reducing the mass by
heating from above also has dynamical consequences that
can result in different adjustment processes and different
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sea surface elevations of a Boussinesq and a non-Bous-
sinesq model (Huang and Jin 2002).

According to Huang et al. (2001), the Boussinesq
approximations also may introduce erroneous energy
sources and energy transformation processes, although
this issue is under debate (R. Ferrari and A. Adcroft
2002, personal communication). In the ocean, heating
the water column from above raises the sea surface and
increases the gravitational potential energy. But in a
Boussinesq model, the same heating decreases the mass,
does not raise the sea level, and thus reduces the grav-
itational potential energy. Also, neglecting the com-
pressibility in the continuity equation removes the ex-
plicit conversion between mechanical and internal en-
ergy from the Boussinesq model. This may have an
effect on the energy balance in the Boussinesq equa-
tions, although the magnitude of these errors is unclear
(Huang et al. 2001).

In this paper, we will argue that all of these errors
are at the noise level of a coarse resolution OGCM. In
particular, they are comparable to, say, errors due to the
hydrostatic approximation and uncertainties associated
with model parameterizations because the long integra-
tion of an OGCM is sensitive to any small perturbation,
even at noneddy-permitting resolution.

McDougall et al. (2002) pointed out that—in addition
to replacing mass conservation by volume conservation
and the density by a constant reference density in tem-
poral and advection operators—when making the Bous-
sinesq approximations, an error in the tracer equation
needs to be considered that results from using a diver-
gence-free velocity as the advecting velocity. Greatbatch
et al. (2001) and Lu (2001) each suggested a practical
solution for accounting for that error in a conventional
Boussinesq model. The two solutions differ only slight-
ly: Lu (2001) reinterpreted the model variables as den-
sity-weighted averages of the grid cell and added a cor-
rection to the vertical advection term in the momentum
and tracer balance equations. This correction term is
diagnosed from the original continuity equation, which
includes time derivatives in density. Greatbatch et al.
(2001) reinterpreted the model velocity variables as av-
erage mass flux per area normalized by a constant ref-
erence density. They arrived at a set of equations in
which the density needs to be stepped forward in time.

In a completely different approach, de Szoeke and
Samelson (2002) showed that the non-Boussinesq hy-
drostatic equations in pressure coordinates have a form
that is ‘‘dual’’ to the hydrostatic Boussinesq equations.
In this way, only the structure of the boundary condi-
tions in the existing Boussinesq ocean model code needs
to be modified. The remaining code can be used without
any further modifications, provided one replaces depth,
vertical velocity, pressure, and scaled density anomaly
by pressure, vertical pseudovelocity, Montgomery po-
tential, and the scaled specific volume anomaly, re-
spectively.

In the Massachusetts Institute of Technology General

Circulation Model (MITGCM) [Marshall et al. (1997a);
the model code is available at http://mitgcm.org], the
dynamical core of the model suggested by de Szoeke
and Samelson (2002) is already implemented and used
as an atmospheric model [see Marshall et al. (2003,
manuscript submitted to Mon. Wea. Rev., hereinafter
MACH), where atmosphere–ocean isomorphisms and
their implementation in the MITGCM are described].
In fact, the MITGCM was originally motivated by an
atmospheric model in pressure coordinates (Brugge et
al. 1991). By transferring the atmospheric model to the
ocean and replacing the equation of state, a fully non-
Boussinesq OGCM in pressure coordinates is readily
available. Here, this model is integrated in parallel with
the Boussinesq height coordinate mode of the MITGCM
and the solutions are compared to yield a quantitative
assessment of the differences due to the Boussinesq ap-
proximation. The MITGCM can also be run as a non-
hydrostatic model, which makes it possible to compare
the relative impact of the Boussinesq and the hydrostatic
approximations and check the conclusion of de Szoeke
and Samelson (2002) that the crucial simplification is
the latter one.

2. Non-Boussinesq pressure coordinate model and
Boussinesq height coordinate model: Making
the models comparable

Following de Szoeke and Samelson (2002), the hy-
drostatic, Boussinesq equations of motion in height co-
ordinates have the same form as the hydrostatic, non-
Boussinesq equation in pressure coordinates. To obtain
a set of non-Boussinesq equations in pressure coordi-
nates from Boussinesq equations in height coordinates,
one only has to substitute pressure for height as the
vertical coordinate, a pseudovelocity (which is the rate
of change of pressure) for the vertical velocity, the geo-
potential height for hydrostatic pressure, and specific
volume for density. MACH described how this iso-
morphism of the equations is exploited for modeling of
the atmosphere and the ocean with the same dynamical
kernel code. The description of the isomorphism and its
application to a non-Boussinesq pressure coordinate
model of the ocean are summarized in appendix A.

In the following sections, the solution of the non-
Boussinesq pressure coordinate model is compared with
that of the Boussinesq height coordinate model for a
coarse resolution configuration with mixed boundary
conditions. Although both models use essentially the
same dynamical kernel of the MITGCM, details of the
implementation and the parameters of the two models
render the direct comparison of the two model difficult.
Before the models can be compared, the following is-
sues need to be addressed.

a. Initialization

Because the vertical grids of the pressure coordinate
and height coordinate models are different, the models
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cannot be restarted from a common spunup equilibrium
state. Only a start from rest with flat hydrography pro-
vides the identical initial conditions that are necessary
for the close comparison presented here. Difficulties in
interpolating the hydrography onto pressure levels that
implicitly depend on temperature and salinity are avoid-
ed by starting both models from uniform temperature
and salinity fields, where the constant values of u 5
3.68C and S 5 34.7 are chosen to be approximately the
mean temperature and salinity estimated from the Lev-
itus climatologies (Levitus and Boyer 1994; Levitus et
al. 1994).

Pressure is a nonlinear function of depth. Therefore,
after choosing the depth levels in the height coordinate
model, the pressure levels in the non-Boussinesq model
and the initial pressure field in the Boussinesq model
are determined by integrating the nonlinear hydrostatic
equation dp 5 2gr(p)dz. In the Boussinesq model, the
pressure is evaluated at the end of a time step. Then at
the beginning of the next time step, the pressure from
the previous time step is used in the equation of state
to calculate density. Lagging pressure in this way avoids
the nonlinear integration at every time step (Griffies et
al. 2001). Using an equation of state in which pressure
is computed as p(z) 5 2gr0z can lead to errors of up
to a few Sverdrups (1 Sv [ 106 m3 s21) in the Gulf
Stream region (Dewar et al. 1998) and is therefore ex-
plicitly avoided in our comparison. Huang and Jin
(2002) used an equation of state that does depend on
height and not on pressure in the height coordinate mod-
el, which makes definite comparisons between Bous-
sinesq and non-Boussinesq models problematic. In this
study, density is computed as a function of pressure in
both height coordinate and pressure coordinate model.

b. Computation of the potential

The potential f (f is pressure divided by r0 in height
coordinates and geopotential height in pressure coor-
dinates) is computed by integrating the generalized
buoyancy b starting from the free surface rs (b is grav-
itational acceleration times density in height coordinates
and specific volume in pressure coordinates; see appen-
dix A for a further explanation of the notation):

r

f(r) 5 f(r ) 1 b(r9) dr9, (1)s E
rs

where r is the general vertical coordinate.
At rest and with no atmospheric pressure load, the

sea surface of a homogeneous ocean is flat. Because
both pressure and geopotential are zero at the air–sea
interface, this implies that, in this resting state, the po-
tential f must be zero at the ocean–atmosphere interface
in both formulations. This condition is easily met in the
height coordinate formulation where the air–sea inter-
face is the free surface and f(rs) 5 p(z 5 h)/r0 [ 0.
In the pressure coordinate model, on the other hand, the

‘‘free surface’’ rs is at the ocean floor and appropriate
boundary values f(rs) at the bottom are needed to en-
sure that, at rest, the geopotential is flat at the air–sea
interface. These boundary values are obtained by in-
tegrating the initial b from the free surface at rest 50rs

rs(t 5 0) to the fixed surface r 5 Rfixed(50 Pa) at the
ocean–atmosphere interface:

Rfixed

f(r ) 5 2 b(r9)| dr9. (2)s E t50
0r s

c. Natural boundary conditions for freshwater flux

The response to freshwater forcing is anticipated to
be one of the major dynamical differences between a
Boussinesq and a non-Boussinesq model (Huang and
Jin 2002). Hence, the implementation of the natural
boundary conditions for freshwater flux requires great
care.

In the height coordinate model, adding freshwater
locally reduces the salinity of the top layer, but at the
same time increases the height of the free surface via
an inhomogeneous term in the free surface equation [Eq.
(A9) in appendix A]. Note, that in this work, the fresh-
water flux is balanced globally over the forcing period
(1 yr) so that there is no net flux of freshwater into the
ocean.

In pressure coordinates, the flux of freshwater is a
mass flux at the surface, also balanced to avoid an over-
all mass drift. The surface mass fluctuations grFW(P 2
E) change the pressure tendency v 5 Dp/Dt by a ver-
tically constant value throughout the entire water col-
umn. Consequently, grFW(P 2 E) also appears as a forc-
ing term in the bottom pressure equation (A20) in ap-
pendix A, which is effectively a mass equation. The
salinity, however, is affected in the surface layer. The
derivation of the surface boundary conditions for v in
pressure coordinates can be found in appendix B.

d. Free surface versus bottom pressure gradients in
the momentum equations

In the height coordinate model the contribution to the
momentum equations of the surface pressure gradient
is split into g=h 1 g=[(r 2 r0)/r0]h. Often, the second
term is neglected on the grounds that (r 2 r0)/r0 K 1.
But in pressure coordinates and with topography, the
corresponding geopotential height gradient at the bot-
tom is evaluated at different pressures. Making the
above approximation in pressure coordinates introduces
larger errors because the specific volume varies with
depth. Therefore, terms of order (r 2 r0)/r0 in height
coordinates and (a 2 a0)/a0 in pressure coordinates (a
5 r21) are not neglected in this study, thereby reducing
the differences between a height coordinate and a pres-
sure coordinate model.
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TABLE 1. Summary of model parameters.

Parameter Symbol z coordinates p coordinates

Horizontal viscosity
Vertical viscosity
Horizontal diffusivity
Vertical diffusivity

AH

AV

kH

kV

3.00 3 1015 m2 s21

1.67 3 1023 m2 s21

1.00 3 1013 m2 s21

5.00 3 1025 m2 s21

3 3 105 m2 s21

1.721 611 620 915 750 3 105 Pa2 s21

1 3 103 m2 s21

5.154 525 811 125 000 3 103 Pa2 s21

Convective vertical diffusivity
Bottom friction
Reference density
Freshwater reference density

kimpl

r
r0

rFW

1.00 3 1011 m2 s21

0
1035.0 kg m23

999.8 kg m23

1.030 905 162 225 000 3 109 Pa2 s21

0
1035.0 kg m23

999.8 kg m23

e. Turbulent diffusion and viscosity

The spatially constant eddy diffusion and eddy vis-
cosity coefficients of the height coordinate (Boussinesq)
model have to be converted to pressure coordinates. For
example, the vertical viscosity terms takes the form

] ]u ] ]u
(z) 2 (z)A ° g r A r , (3)V V[ ] [ ]]z ]z ]p ]p

where is the vertical eddy viscosity coefficient, u is(z)AV

the horizontal velocity vector, g is the acceleration due
to gravity, and r is the in situ density. Therefore only
for constant density r 5 r0, does 5 g2 . How-(p) (z) 2A A rV V 0

ever, for any realistic scenario, in which pressure is a
nonlinear function of density, the vertical diffusion and
viscosity coefficients are a function of the vertical co-
ordinate. Here, these variations are neglected and the
coefficients and are assumed constant. This as-(p) (p)A kV V

sumption introduces an error of up to 3% in the vertical
viscosity and diffusion terms, if one assumes a reference
density of r0 5 1035 kg m23. Thus, the vertical eddy
viscosity and diffusivity coefficients should be scaled
by (r/r0)2 to reduce this error but are not scaled so here.
There is a further discrepancy in the lateral diffusion
and viscosity terms; in the height coordinate model lat-
eral eddy fluxes are directed downgradient along the
horizontal. In pressure coordinates the fluxes are cal-
culated along isobaric surfaces which may be inclined.
But the slope of isobaric surfaces is at most of the order
1024 and this effect is neglected as well. Last, imple-
menting the Gent–McWilliams and Redi schemes (Gent
and McWilliams 1990) in pressure coordinates would
have incurred the same difficulties, and so we chose to
not employ these schemes.

3. Comparison of OGCM results

a. Model parameters and configuration

Both models are integrated for 1000 years. The hor-
izontal resolution is 48, ranging from 808S to 808N with
15 vertical levels. The bottom topography is realistic
and derived from ETOPO5 (NOAA 1988). The level
thickness ranges from 50 to 690 m in the height coor-
dinate model. Monthly mean wind stress fields by Tren-
berth et al. (1990) and monthly mean heat flux and
climatological freshwater flux by Jiang et al. (1999)

force the models at the surface. The surface layer of
thickness 50 m is also restored with a time scale of 2
months to monthly mean sea surface temperature (Lev-
itus et al. 1994) to represent an oceanic feedback on the
actual heat flux. Basic parameters of both models are
summarized in Table 1. The comparison between the
pressure coordinate and height coordinate model is car-
ried out by showing the differences of time-averaged
fields. Unless indicated otherwise, the averages are tak-
en over the last 100 years of the integration.

The two models operate on different vertical grids.
Hence, direct comparison of model variables will in
most cases involve the interpolation from one grid to
the other, introducing another possible, albeit small,
source of differences between the results. To estimate
the interpolation error, we took the pressure model state
and interpolated it to the height model grid and then
back again using linear interpolation. We found the re-
sulting differences (not shown) to be of order 0.018C
and, although these are small, they are still an encum-
brance considering the size of the signal (order 0.058C)
that we are expecting to find. The only model variables
that evade this interpolation problem are bottom pres-
sure and sea surface elevation. Bottom pressure is a
prognostic variable in the pressure coordinate model,
but must be diagnosed from the height coordinate mod-
el. In contrast, sea surface elevation has to be diagnosed
in the pressure coordinate model, but is a prognostic
variable in the height coordinate model. Furthermore,
the mean bottom pressure in the height coordinate model
may contain a false mass drift in time, whereas the mean
sea surface elevation in the pressure coordinate model
may drift because of steric expansion.2 Figure 1 shows
the time evolution of the globally averaged bottom pres-
sure of the height coordinate model and the globally
averaged sea surface height of the pressure coordinate
model. The evolution of the global mean of bottom
pressure in the height coordinate model in Fig. 1 is
represented in height units after scaling by gr0 and re-
versing the sign. Note that despite the approximate scal-

2 Diagnosing bottom pressure in the height coordinate model or
surface elevation in the pressure coordinate model is only consistent
with the model discretization if the hydrostatic equation is integrated
using a finite-volume discretization as opposed to finite-difference
discretization. The finite-volume discretization of the hydrostatic
equation is described in appendix C.
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FIG. 1. Temporal evolution of the global means of bottom pressure
of the volume-conserving (height coordinate, Boussinesq) model and
sea surface height of the mass-conserving (pressure coordinate, non-
Boussinesq) model. The bottom pressure is represented in height units
after scaling by gr0 ø 104 kg m22 s22 and reversing the sign. Both
models show both an annual cycle and variability of longer time
scales.

ing (one could use the vertically averaged in situ density
instead of r0), the mass evolution in the height coor-
dinate model and the volume evolution in the pressure
coordinate model are remarkably similar. We thereby
confirm the conclusion of Greatbatch (1994) and Mellor
and Ezer (1995) who showed that one can recover steric
effects by adjusting the sea level by a globally uniform,
time-varying correction.

b. What is the magnitude of the differences?

We now compare sea surface elevations and bottom
pressure anomalies (differences from the long time
mean). For this comparison, both the time-dependent
global averages of the total mass of the height coordinate
model and the volume of the pressure coordinate model
have been removed.

To gauge how important the observed differences be-
tween the Boussinesq and the non-Boussinesq model
are, we compare the height coordinate model with the
same model with small changes to the dynamics, the
parameterizations, and the forcing fields. The most
prominent change is the relaxation of the hydrostatic
approximation to include the vertical Coriolis terms and
nonhydrostatic metric terms that include the vertical ve-
locity w. (See appendix D for details.) With these terms,
which are generally of the order of 1025 m2 s21, the
model is not fully nonhydrostatic, but it has a consistent
energy conservation principle. Marshall et al. (1997b)
called this model ‘‘quasi-hydrostatic.’’

We also compare two hydrostatic Boussinesq models
that differ only in the choice of the vertical diffusivity
parameter for temperature and salinity. This parameter
is often tuned to bring the model close to the obser-

vations. Therefore it can have values that vary dramat-
ically from one application to another. As an additional
test, we compare the results of the height–coordinate
model with different implementations of the equation
of state and perturbations of the forcing fields at the
level of numerical round-off errors.

The mean sea surface of the Boussinesq model is
shown in the top panel of Fig. 2. The difference in mean
sea surface elevation between the Boussinesq and non-
Boussinesq models in the second panel of Fig. 2 reaches
4 cm in the Southern Ocean, otherwise it is small. Such
differences will just be detectable when the new high
precision geoid models become available, which are ex-
pected from the ongoing gravity mission GRACE. The
third panel of Fig. 2 shows the difference in mean sea
surface height due to quasi-hydrostatic terms. This ef-
fect is approximately one-half of the Boussinesq effects.
The bottom panel of Fig. 2 compares the Boussinesq
model with an experiment in which the vertical diffu-
sivity has been increased by 1% of the standard value.
Apparently, this change in diffusivity leads to similar,
if not greater, changes in mean sea surface elevation as
do the Boussinesq effects.

In general, the differences due to Boussinesq, hydro-
static, or other effects are largest in the Southern Ocean.
This region is characterized by large horizontal density
gradients and steep isopycnal slopes. Small changes in
these large gradients may explain the observed sensi-
tivity to small perturbations. Since these calculations do
not have the Gent–McWilliams parameterization (GM),
there is more convective activity in the Southern Ocean
(ACC) than is normally seen in models with GM. The
highly nonlinear nature of the convection parameteri-
zation may also be contributing to the sensitivity of the
Southern Ocean in our results.

The Ocean Topography Experiment (TOPEX)/Posei-
don altimeter mission provided oceanographers with sea
surface height anomaly data that have an accuracy of
the order of 2 cm (Wunsch and Stammer 1998). The
accuracy of these data may serve as the benchmark for
the difference in sea surface variability. The square root
of the variance of the sea surface height over 100 model
years is shown in the top panel of Fig. 3 for the Bous-
sinesq model. The difference in sea surface height var-
iability between Boussinesq and non-Boussinesq model
(second panel of Fig. 3) is smaller than that due to quasi-
hydrostatic terms (third panel of Fig. 3). It is hardly
detectable with today’s high precision altimetry.

All experiments so far use the polynomial equation
of state derived by Jackett and McDougall (1995) from
the United Nations Educational, Scientific, and Cultural
Organization (UNESCO) formula. The bottom panel of
Fig. 3 shows the difference due to a different equation
of state, namely the polynomial published by McDou-
gall et al. (2003). While the difference in the density
computed by these different formulas is of the order of
1023 kg m23, it still causes differences in sea surface
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FIG. 2. (top) Mean sea surface elevation (cm) of the hydrostatic,
Boussinesq model; contour interval is 20 cm. (second) Sea surface
height difference due to Boussinesq effects; contour interval is 1 cm.
(third) Sea surface height differences due to quasi-hydrostatic effects;
contour interval is 1 cm. (bottom) Difference in sea surface height
variability due to a change of 1% in vertical diffusivity; contour
interval is 1 cm.

FIG. 3. (top) Sea surface height variability (square root of the
variance in meters); contour interval is 1 cm. (second) Difference in
sea surface height variability due to Boussinesq effects; contour in-
terval is 0.5 cm. (third) Difference in sea surface height variability
due to quasi-hydrostatic effects; contour interval is 0.5 cm. (bottom)
Sea surface height differences due to a changed equation of state;
contour interval is 0.5 cm.

variability of the same order as those due to Boussinesq
effects.

Bottom pressure gauges and the satellite mission
GRACE produce measurements of the bottom pressure
fluctuations. We therefore compare the temporal vari-
ations of bottom pressure in the models. The top panel

of Fig. 4 shows the square root of the bottom pressure
variance over a period of 100 years for the Boussinesq
model (with the global mean subtracted at every time
step). The difference in the bottom pressure variability
between the Boussinesq model and the non-Boussinesq
model (second panel of Fig. 4) is on the order of 1-cm
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FIG. 4. (top) Bottom pressure variability (square root of the vari-
ance); contour interval is 40 Pa ø 4 mm equivalent sea surface height.
(second) Difference in bottom pressure variability due to Boussinesq
effects; contour interval is 10 Pa ø 1 mm. (third) Difference in bottom
pressure variability due to quasi-hydrostatic effects; contour interval
is 10 Pa ø 1 mm. (bottom) Difference in bottom pressure variability
due to numerical noise in the forcing fields; contour interval is 10
Pa ø 1 mm.

equivalent sea surface height in the Southern Ocean and
much smaller everywhere else. This difference is as
large as 30% of the signal and is therefore not negligible.
However, the difference in bottom pressure variability
due to the quasi-hydrostatic effects (third panel of Fig.
4) has a still larger amplitude.

To assess the extent to which the above responses are
an innate property of the system (i.e., does any small
perturbation lead to large changes?), the height coor-
dinate model run is repeated with slightly different forc-
ing fields: all forcing fields are perturbed by random
noise with a relative amplitude of 2.22 3 10216. This
amounts to changing the last digit of a 64-bit (double
precision) real number and simulates the differences in
round-off error that one encounters when changing com-
pilers or computing platforms. The bottom panel of Fig.
4 shows the resulting differences in bottom pressure
variability. As with the use of a different equation of
state and a perturbed vertical diffusivity, the effect of
these tiny perturbations on the variability is of the same
order of magnitude as the Boussinesq effects. This again
suggests, that our model is particularly sensitive in the
Southern Ocean, where the flow is geostrophically bal-
anced by large density gradients.

The most likely explanation for the observed sensi-
tivity is the choice of mixed boundary conditions. The
combination of restoring conditions for temperature and
flux boundary conditions for salinity has been reported
to make OGCMs unstable (Power and Kleeman 1994;
Rahmstorf 1996). Repeating the above experiments with
restoring boundary conditions for both temperature and
salinity constrains the height coordinate and the pressure
coordinate model to stay on very similar trajectories.
However, this does not change the qualitative result:
when the models are restored to the same surface fields,
the solutions of the various models become more similar
and all differences are reduced by one order of mag-
nitude. But the relative sizes of the differences remain
the same (not shown).

Figure 5 summarizes the previous comparisons as a
function of scale. Plotted is the square root of the degree
variances of the bottom pressure variability2ÏS | c |m nm

differences (in millimeters equivalent sea surface
height) projected onto spherical harmonic coefficients
cnm. To bring the experiments into the context of the
current high precision satellite gravity mission GRACE,
the expected error of a geoid model that will be derived
from the GRACE gravity data (Balmino et al. 1998) is
also drawn as a function of spherical harmonic degree.
(It is assumed that the bottom pressure measurement
errors, which are unknown at this time, are comparable
to the errors of the mean geoid. In this sense, the geoid
errors provide only a rough estimate of the measurement
errors.) All differences in bottom pressure variability
are larger than the geoid errors on the very large scales;
degree 10 corresponds to a wavelength of approximately
4000 km, degree 15 to approximately 2670 km. On
shorter scales the geoid errors dominate. For most co-
efficients, that is spatial scales, the differences due to
Boussinesq effects are smaller than those due to both
nonhydrostatic effects and round-off noise in the forcing
fields.

Last, we found that the differences in the interior
between experiments are small (not shown). For ex-
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FIG. 5. The difference in bottom pressure variability as a function
of scale. Shown is the square root of the degree variances

of the spherical harmonic coefficients cnm. All approx-2ÏS | c |m nm

imations and errors give rise to differences in bottom pressure var-
iability that exceed the estimated errors of a geoid derived from
GRACE (Balmino et al. 1998) at large scales. However, the hydro-
static approximation (QH), small changes in the vertical diffusivity
(KAPPA), small differences in the equation of state (EOS), and nu-
merical noise in the forcing fields (NOISE) seem to be as important
as Boussinesq effects (NB).

ample, the global root-mean-square (rms) differences
between the height coordinate and the pressure coor-
dinate model is 0.088C, the differences due to hydro-
static effects, different vertical viscosity, different equa-
tion of state, and perturbed forcing are 0.038, 0.058,
0.048, and 0.058C, respectively. Note that to calculate
the rms temperature difference between Boussinesq and
non-Boussinesq models interpolation is used, which in-
curs an error of at least 0.018C in the interpolated tem-
perature and which accounts for a significant portion of
the rms difference. Also the seasonal variance of tem-
perature has an rms value of order 0.58C. With this in
mind, we consider all the rms differences between the
models to be essentially of the same magnitude. But
there is a slight indication that the Boussinesq approx-
imations might affect the temperature distribution more
than the other small effects.

In summary, comparison of solutions obtained using
Boussinesq and non-Boussinesq models shows signifi-
cant differences in the time mean and variance of surface
elevation and in the variance of bottom pressure. Com-
parison of the hydrostatic model to the quasi-hydrostatic
model indicates larger differences than those due to the
non-Boussinesq approximations in sea-surface height
and bottom-pressure variances though a considerably
smaller change in mean sea surface height. Thus the
relative effect of the two approximations seems com-
parable. Changing the vertical diffusivity by 1% (ac-
tually, we know that both vertical viscosity and diffusion
can potentially vary by 2–3 orders of magnitude) the

form of the equation of state, or adding truncation level
noise to the forcing leads to equally large changes.

4. Are the differences between height coordinate
and pressure coordinate models really due to
the Boussinesq approximations?

After showing that the differences between the Bous-
sinesq and the non-Boussinesq models are generally of
the same order of magnitude as those due to relaxing
the hydrostatic approximation or changing uncertain pa-
rameters slightly, it is still not clear whether the ob-
served differences between the models are really due to
the Boussinesq approximation or simply due to the nu-
merical difference introduced by the different coordi-
nate systems. These may arise because in a physically
identical fluid the gradient operators act along different
surfaces (pressure vs height surfaces) so that numerical
truncation may lead to different trajectories. The non-
linear free surface causes an additional numerical dif-
ference: in the height coordinate model the surface layer
has a variable thickness, while in the pressure coordinate
model it is the bottom layer that can vary in time and
space (Campin et al. 2003).

To test how much of the differences between the
height coordinate model and the pressure coordinate
model are due to the numerical discretization, any de-
pendence on the Boussinesq approximations is removed
by replacing the pressure dependent density with a con-
stant in both the height coordinate model and the pres-
sure coordinate model. The system is forced by wind
stress only, and there is no buoyancy flux. Then any
pressure level inclination is solely barotropic and due
to sea surface elevation changes.

Only two differences remain between the pressure
coordinate and the height coordinate model: changes in
layer thickness due to the nonlinear free surface (at the
bottom in pressure coordinates and at the top in the
height coordinate model) and the way the horizontal
gradients in the nonlinear advection terms and the hor-
izontal viscosity terms are evaluated (strictly along pres-
sure surfaces and along horizontal surfaces, which form
a small angle with the pressure surfaces). Note that in
this configuration, [ g2 , exactly.(p) (z) 2A A rV V 0

Figure 6 illustrates the contributions of the effects
due to the nonlinear free surface. Shown is the differ-
ence in sea surface height variability. Because of its
barotropic nature the model equilibrates very quickly
and the averaging period is the 10th year of integration.
Although both the height coordinate and the pressure
coordinate model describe the same fluid of constant
density, the answers are slightly different due to the
different truncation errors implied by the different for-
mulation (top panel of Fig. 6). The difference between
pressure and height coordinate model is three orders of
magnitude smaller than in the full model of section 3.
Replacing the nonlinear free surface by a rigid lid (bot-
tom panel of Fig. 6), decreases the difference in sea



314 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 6. Difference of the square root of the sea surface variance
over an averaging period of 1 yr for the model with constant density:
(top) with nonlinear free surface (contour interval is 1 3 1026 m);
and (bottom) with rigid lid (contour interval is 0.02 3 1026 m).

surface height variability further by two orders of mag-
nitude (and the differences in mean sea surface elevation
and bottom pressure variability as well, not shown).

The remaining differences in sea surface height var-
iability are largely due to the fact that sea surface el-
evation in the pressure coordinate model is a diagnostic
variable, whereas it is prognostic in the height coordi-
nate model. In a barotropic model, sea surface height
and bottom pressure are equivalent. Comparing the sea
surface height of the height coordinate model and the
bottom pressure anomaly of the pressure coordinate
model reveals that, after proper scaling, they are the
same in the case of a rigid lid to working precision. The
differences in horizontal velocities are also smaller than
10214 for the barotropic experiment with rigid lid, and
the two models give essentially the same result. That
is, the angles between surfaces of constant height and
surfaces of constant pressure are so small that the hor-
izontal gradients do not cause any differences that ex-
ceed the noise level. We can assume that in the case of
variable density, the differences in numerical discreti-
zation are also mainly due to the nonlinear free surface.
Although there may be a larger impact of the free sur-
face in the full baroclinic model because of the vertical
advection of buoyancy near the surface, the numerical
effects due to different coordinate systems are still much
smaller than the Boussinesq effects.

5. Discussion and conclusions
Conventional OGCMs make a number of approxi-

mations that influence their solution, such as the hy-

drostatic approximation and the Boussinesq approxi-
mations. We find that relaxing the hydrostatic approx-
imation has a larger impact on the variability of a coarse
resolution global model than do Boussinesq effects.
Non-Boussinesq effects lead to larger changes in mean
sea surface elevation than do nonhydrostatic effects and
this is consistent with switching from conserving vol-
ume to conserving mass, as discussed in Huang and Jin
(2002). Note, however, that we have not used the
MITGCM in a fully nonhydrostatic mode. The fully
nonhydrostatic model involves an additional algorithmic
step to compute the nonhydrostatic pressure contribu-
tion, which is complicated when using a nonlinear free
surface. The changed algorithm represents a further per-
turbation and will surely lead to additional deviations
from the solution of the hydrostatic model.

There is also convincing evidence that the changes
due to Boussinesq effects are smaller than the errors
introduced by other approximations and parameteriza-
tions generally made by ocean general circulation mod-
els.

Greatbatch et al. (2001) showed that the differences
between a Boussinesq model and a non-Boussinesq
model are reassuringly on the order of a few percent in
the mean fields. Here we confirm that the differences
between the non-Boussinesq pressure coordinate model
and the Boussinesq height model are small in the time
mean. But even the coarse resolution experiments are
sensitive to small differences in the dynamics or param-
eterizations. These small perturbations lead to detectable
changes in the computed circulation, particularly in the
variability of bottom pressure and sea surface height.

It is particularly interesting to point out that all results
shown here were obtained by using the same compiler
on the same platform. Use of a different compiler or
platform changes the results due to differing numerical
floating point operations, and gives an additional clue
about the order of magnitude of errors the Boussinesq
approximations introduce: the numerical noise level.
This conclusion is supported by the experiment that
shows the differences due to round-off noise in the forc-
ing fields. Such differences are as large as those due to
Boussinesq effects.

McDougall et al. (2002) showed that the steady-state
geostrophic Boussinesq equations are equivalent to the
non-Boussinesq equations under the same dynamical re-
gime. Therefore, at the coarse resolution used here, we
can expect only small differences between a Boussinesq
and a non-Boussinesq ocean model because much of
the simulation should be geostrophically balanced. With
increasing realism of the simulations (increased reso-
lution, higher frequencies, etc.) that leads to sufficient
ageostrophic and time-dependent motion, one expects
the Boussinesq effects to become more important. But
at the same time, hydrostatic effects will become more
prominent as well. Further, the model solutions of cha-
otic (eddy resolving) systems will be highly sensitive
to noise in the initial fields and the boundary conditions.
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Whether the Boussinesq effects will be discernible un-
der these circumstances remains questionable.

Still, models that do not make the Boussinesq ap-
proximation are recommended over the conventional
height coordinate models when they are not more ex-
pensive to integrate. This point of view is taken for the
puristic reason of abandoning an approximation. If,
however, there is a considerable additional effort in-
volved in integrating these mass conserving models, the
minor effects of the Boussinesq approximation do not
justify that cost. Instead, efforts to improve the param-
eterization of unresolved physics such as mixing will
be more beneficial to OGCM solutions that relaxing the
Boussinesq approximations.

One of the conclusions of this study is only indirectly
related to the Boussinesq approximations. In the con-
figuration of this study with mixed boundary conditions
for temperature and salinity, the OGCM yields robust
results on the large scale. But at the same time, it is so
sensitive to small, in fact, almost indetectable changes
in the parameterizations, largely unknown forcing fields,
or approximations made that one cannot expect two
models that use a different coordinate system to stay on
almost identical trajectories for an infinite time (of in-
tegration). The results presented here possibly depend
on this detail. It is particularly important to compare the
model variances while the two models are on a similar
trajectory. Once the models have diverged, there is little
hope of recovering the results shown.

When the property of exact mass conservation is re-
quired for a particular study, non-Boussinesq models
must be preferred. Also when working with hydrograph-
ic data, a pressure coordinate model seems to have the
advantage that the data are originally measured in that
coordinate. However, current Boussinesq models in
height coordinates still have their benefits. For instance,
at eddy resolving scales, nonhydrostatic effects are be-
lieved to be important, and a nonhydrostatic model is
much easier to formulate in height coordinates than in
pressure coordinates. [On this note, the approach by
Greatbatch et al. (2001) may allow the inclusion of non-
Boussinesq effects into the nonhydrostatic version of
the MITGCM and make the comparison of the different
height coordinate models simpler. However, we suspect
that the Greatbatch et al. approach also introduces ar-
tificial differences due to the different structure of the
equations—new terms—while the height-pressure iso-
morphic equations have the same structure.] Also, the
representation of atmospheric pressure load in a pressure
coordinate model is slightly more complicated than in
a height coordinate model because it involves two mov-
ing surfaces. Further, while the representation of bottom
pressure in the pressure coordinate model is more nat-
ural, the bottom pressure diagnosed from the height co-
ordinate model appears accurate enough in the light of
other approximations made, namely, the hydrostatic ap-
proximation.

Constraining pressure coordinate OGCMs with bot-

tom pressure data is more straightforward in the same
way that height coordinate models are more easily con-
strained by sea surface elevation data. Although we
found high sensitivities to dynamical formulation under
mixed boundary conditions, constrained models may
show less sensitivity, as was the case with restoring
boundary conditions. If this is the case, then concerns
about assimilation of bottom pressure even in height
coordinate OGCMs are unwarranted, particularly since
we have demonstrated that the evolution of net ocean
mass can be quite accurately accounted for in such a
model.
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APPENDIX A

Isomorphic Pressure and Height Coordinate
Formulation of the Primitive Equations

To familiarize the reader with an ocean model in pres-
sure coordinates, the symmetry between the pressure
and the height model formulations as pointed out by de
Szoeke and Samelson (2002) and MACH is reviewed.

a. Boussinesq hydrostatic ocean model in height
coordinates

The equations of motion in z coordinates after making
the Boussinesq approximation can be cast as

Du p
5 2= 2 f k 3 u 1 F, (A1)zDt r 0

]p
5 2gr, (A2)

]z

]w
= · u 1 5 0, (A3)z ]z

Du
5 Q, and (A4)

Dt

DS
5 Q . (A5)SDt

In these equations, u is the horizontal velocity and w is
the vertical velocity; p is the full hydrostatic pressure;
F is the frictional force; Q and QS represent the source
terms of potential temperature u and salinity S, for ex-
ample, atmospheric fluxes of heat and freshwater, re-
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spectively. The subscript of =z indicates that the gra-
dient is taken along surfaces of constant z; the substan-
tial time derivative (rate of change) operator is

D ] ]
5 1 u · = 1 w , (A6)z1 2Dt ]t ]z

z

where again the subscript at the differential operator
means that these operators are applied at constant z. At
the free surface, z 5 h(x, y, t), we assume that the
pressure is constant (taken to be zero), which leads to
the boundary conditions

Dh
p 5 0, w 5 2 (P 2 E ) at z 5 h, (A7)

Dt

and w 5 2u · = H at z 5 2H(x, y);z

(A8)

(P 2 E) is the freshwater flux into the ocean (precip-
itation minus evaporation).

A prognostic equation for the sea surface elevation
h is obtained by integrating (A3) and applying (A7) and
(A8):

h ]h
= · u dz 1 5 (P 2 E ). (A9)z E1 2 ]t

2H

Linearizing this equation is equivalent to neglecting a
term =z · (uh) in the surface boundary condition for w
(Roullet and Madec 2000).

b. Non-Boussinesq hydrostatic ocean model in
pressure coordinates

The equations of motion written in terms of pressure
as an independent variable are well known and much
used in dynamical meteorology (e.g., Haltiner and Wil-
liams 1980). Using an isomorphism (MACH), the
MITGCM implements these equations in pressure co-
ordinates:

Du
5 2= F 2 f k 3 u 1 F, (A10)pDt

]F
5 2a, (A11)

]p

]v
= · u 1 5 0, (A12)p ]p

Du
5 Q, and (A13)

Dt

DS
5 Q . (A14)SDt

Here, F 5 gz is the geopotential and =p is the gradient
along pressure surfaces; the substantial time derivative
(rate of change) operator is

D ] ]
5 1 u · = 1 vp1 2Dt ]t ]p

p

] ]
5 1 u · = 1 w , (A15)z1 2]t ]z

z

where the pseudovelocity v, the pressure tendency, is
defined by

Dp
v 5 . (A16)

Dt

The specific volume a is given by the equation of state
21r 5 a 5 a(S, u, p). (A17)

At this point, it is interesting to point out that the
form of the continuity equation (A12), albeit resembling
the incompressibility statement of Boussinesq models
in z coordinates, is a consequence of the hydrostatic
assumption (A11) and does not require the neglect of
dilation r21Dr/Dt (de Szoeke and Samelson 2002).
Hence, a non-Boussinesq model with continuity equa-
tion (A12) conserves mass in contrast to a Boussinesq
model, which conserves volume.

As before, we assume that the pressure is constant at
the upper surface (taken to be zero). Any freshwater
flux into the ocean (precipitation minus evaporation)
appears as a boundary condition for v (see appendix
B). The flux is scaled by the gravitational acceleration
g and the density of freshwater rFW 5 999.8 kg m23:

v 5 gr (P 2 E ) at p 5 0. (A18)FW

At the ocean bottom, z 5 2H(x, y), the boundary con-
dition is expressed in terms of bottom pressure pb(x, y,
t) as

]pbv 5 1 u · = p at p 5 p . (A19)p b b]t

Together with the continuity equation (A12), the bound-
ary conditions yield a prognostic equation for the bot-
tom pressure

pb ]pb= · u dp 1 5 gr (P 2 E ), (A20)p E FW1 2 ]t0

which is the analog to Eq. (A9). Equation (A20) can be
viewed as a statement of mass conservation for the en-
tire water column.

c. Symmetry of the primitive equations and the
isomorphism in the MITGCM

The two sets of equations in the preceding two sec-
tions have a strikingly similar form. By making the
following substitutions, they can be transformed into
each other:

z ↔ p, w ↔ v,

p /r ↔ F, and gr ↔ a. (A21)0
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In the model code of the MITGCM, these variables are
replaced by general variables. A run time switch then
selects the meaning they have in the present experiment.
This makes it possible to use the identical dynamical
kernel for simulations in both pressure and height co-
ordinates (MACH).

Exploiting this symmetry, both models can be sum-
marized in terms of more general r coordinates:

Du
5 2= f 2 f k 3 u 1 F, (A22)rDt

]f
5 b, (A23)

]r

]ṙ
= · u 1 5 0, (A24)r ]r

Du
5 Q, and (A25)

Dt

DS
5 Q . (A26)SDt

The general coordinate r replaces p and z, the vertical
velocities v and w become ṙ 5 Dr/Dt, the general po-
tential f takes the place of F and p/r0, and the gen-
eralized buoyancy b is substituted for the specific vol-
ume 2a and the scaled density 2gr/r0. The substantial
time derivative (rate of change) operator in this for-
mulation is

D ] ]
5 1 u · = 1 ṙ , (A27)r1 2Dt ]t ]r

r

where now the horizontal gradients are taken along the
surfaces of constant r.

To see the symmetry in the kinematic boundary con-
ditions it is convenient to distinguish between a (mov-
ing) free surface, which is at the top in height coordi-
nates and at the ocean floor in pressure coordinates, and
a fixed boundary surface, which conversely is at the top
for pressure coordinates and at the bottom for height
coordinates. The boundary conditions at the free and at
the fixed boundary surfaces are

Drsṙ 5 at r 5 r and (A28)sDt

ṙ 5 2u · = R at r 5 2R (x, y), (A29)r fixed fixed

where r 5 rs is the free surface; rs is the bottom pressure
pb in pressure coordinates and the sea surface elevation
h in height coordinates; and r 5 2Rfixed is the topog-
raphy of the fixed surface, that is, 0 in pressure coor-
dinates and depth H in height coordinates. So with the
additional substitutions for the boundary conditions

r : h ↔ p ,s b

R : H ↔ 0 (A30)fixed

the symmetry is complete, except for freshwater flux at

the ocean surface. The flux 2g(P 2 E) has to be added
to the boundary condition (A28) or (A29), whichever
is the one at the ocean–atmosphere interface. The scale
factor g converts the freshwater flux into pressure or
height units, that is, mass flux (g 5 grFW) or volume
flux (g 5 21), respectively. The prognostic equation
for the free surface rs is again the same for both co-
ordinate systems:

rs ]rs= · u dz 1 5 g(P 2 E ). (A31)r E1 2 ]t
2Rfixed

APPENDIX B

Natural Boundary Conditions in
Pressure Coordinates

At the surface, a freshwater flux not only dilutes the
salinity, but adds mass to the water column. To represent
this flux through the material surface (interface between
atmosphere and ocean), the boundary condition for v
in pressure coordinates (or w in height coordinates) has
to be modified. Without a freshwater flux, v 5 0 at the
surface. Including the flux leads to the boundary con-
dition (A18), which may appear inconsistent at first,
because the surface p 5 0 is a coordinate plane. Inte-
grating the non-Boussinesq, hydrostatic continuity
equation in height coordinates for w over the top pres-
sure layer with thickness Dp yields

0 ]r ]
0 5 1 = (ru) 1 (rw) dp or (B1)E z[ ]]t ]z

Dp

h(p50) ]r ]
0 5 1 = (ru) 1 (rw) dz; (B2)E z[ ]]t ]z

2z (p5Dp)1

h and 2z1 are the respective heights of the surface pres-
sure and the base of the layer. Multiplying through with
g, using Leibniz’s rule, and using the boundary con-
dition (A7) for w, we get

h]
0 5 Dp 1 = · (gru) dzE]t

2z1

]h
2 gr 2 gru · = hp]t

](2z )11 gr 1 gru · = (2z )p 1]t

Dh
1 gr 2 gr (P 2 E ) 2 (grw) ; (B3)FW )Dt

2z1

=ph and =pz1 are gradients along surfaces of constant
pressure. With the layer-averaged velocity and ob-u
serving that Dp is constant (]Dp/]t 5 0),

0 5 = · (Dpu) 2 gr (P 2 E )FW
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]z12 gr w 2 2 u · = z or (B4)p 11 2 )[ ]]t
2z1

1
0 5 = · u 1 2gr (P 2 E )1 v | , (B5)FW 2z1[ ]Dp

because

Dz ]z ]z
w 5 5 1 u · = z 1 v . (B6)pDt ]t ]p

Equation (B5) is the full continuity equation in pressure
coordinates for the top layer. For Dp → 0, one recovers
the differential form, and the implied boundary condi-
tion for v becomes

v 5 gr (P 2 E ) at p 5 0. (B7)FW

APPENDIX C

Finite-Volume Discretization of the
Hydrostatic Equation

Let k be the index of the grid point at the center
between the vertical cell interfaces k 2 1/2 and k 1 1/2.
If the distance between these vertical cell interfaces is
called Drk, a finite-difference discretization of the hy-
drostatic equation (A23) that yields the potential f at
the center between two grid planes is

Dr 1 Dr b 1 bk k11 k k11f 5 f 1 . (C1)k11 k 1 21 22 2

This formulation has been shown to conserve energy
(Adcroft et al. 1997). However, an arbitrary choice
about discretization at the top and bottom boundaries
leaves the definition of bottom pressure (surface geo-
potential) somewhat ambiguous. This ambiguity can be
avoided by using the finite-volume discretization where
the hydrostatic pressure is integrated over half levels as
follows:

f 5 f 1 Dr b ,k11/2 k21/2 k k (C2)

and at the center points,

1
f 5 f 1 Dr bk11 k11/2 k11 k112

1
5 f 1 (Dr b 1 Dr b ). (C3)k k k k11 k112

In this formulation, bottom pressure in the height co-
ordinate model (or sea surface elevation in the pressure
coordinate model) can be diagnosed consistently.

APPENDIX D

Quasi-Hydrostatic Equations

The momentum equations in spherical (height) co-
ordinates are

Du uw uy tanf
5 2 2 2 {2Vw cosf 2 2Vy sinf}5 6Dt R R

] p
2 1 F , (D1)u]x r 0

2Dy yw u tanf
5 2 2 2 {2Vu sinf}5 6Dt R R

] p
2 1 F , and (D2)y]y r 0

2 2Dw u 1 y
5 2 2 {2Vu cosf}5 6Dt R

1 ]p
2 gr 1 1 F , (D3)w1 2r ]z0

where D/Dt 5 ]/]t 1 v · =. Here, v 5 (u, y, w) is the
three-dimensional velocity and

1 ] 1 ] ]
= 5 , ,1 2R cosf ]l R ]f ]z

is the three-dimensional gradient operator in spherical
coordinates, V is the frequency of earth rotation, R is
the radius of the earth, and f is the latitude; Fu,y,w stand
for all friction terms. The so-called metric terms are the
terms in the first set of braces after the equal sign in all
equations; the Coriolis terms are in the second set of
braces after the equal signs. In the quasi-hydrostatic
approximation the terms that are underlined twice are
dropped. Making the full hydrostatic approximation
amounts to dropping the total time derivative and the
friction term Fw in the vertical momentum equation and
all terms involving w or cosf in the horizontal equa-
tions, that is, all terms that are underlined once or twice
(Marshall et al. 1997b). Note that for the quasi-hydro-
static approximations the classical hydrostatic equation
is augmented by a metric term and a Coriolis term.
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