
Parallel Computing 40 (2014) 140–143

Contents lists available at ScienceDirect
An order-invariant real-to-integer conversion sum

Parallel Computing

journal homepage: www.elsevier .com/ locate /parco
Robert Hallberg ⇑, Alistair Adcroft
y 201

1. Introduction

http://dx.doi.org/10.1016/j.parco.2014.04.007
0167-8191/Published by Elsevier B.V.

⇑ Corresponding author at: NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540, USA. Tel.: +1 609 4
987 5063.

E-mail addresses: Robert.Hallberg@noaa.gov (R. Hallberg), Alistair.Adcroft@noaa.gov (A. Adcroft).
are inde-
NOAA Geophysical Fluid Dynamics Laboratory, 201 Forrestal Rd., Princeton, NJ 08540, USA
Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540, USA

a r t i c l e i n f o

Article history:

a b s t r a c t

This paper describes a technique for obtaining sums of floating point values that

massively
int values
low these
te stages,
used suc-

ial.
evier B.V.
Received 6 March 2012
Received in revised form 7 Februar
Accepted 21 April 2014
Available online 30 April 2014

Keywords:
Order-invariant
Global sums
Parallel programming
Fixed-point
Reproducibility
4
pendent of the order-of-operations, and thus attractive for use in global sums in
parallel computations. The basic idea described here is to convert the floating po
into a representation using a set of long integers, with enough carry-bits to al
integers to be summed across processors without need of carries at intermedia
before conversion of the final sum back to a real number. This approach is being
cessfully in an earth system model, in which reproducibility of results is essent

Published by Els
be inde-
this cri-

instance,
o leading
ve to the
invariant
or count
ulating a
lative to

-bit IEEE
10�10 or
e exam-
value of

ing sum.
ess likely
er deter-
ate sums
When writing scientific software for massively parallel computers, it is often desirable that the answers should
pendent of the number of processors used or how a model’s data is decomposed among these processors. Meeting
terion often requires bitwise invariant arithmetic operations on real numbers. Oceanic or atmospheric models, for
are highly nonlinear, and changes even in the least significant bit of a floating point number can rapidly cascade up t
order changes in local values (e.g., [1]). Other applications like molecular dynamics simulations are similarly sensiti
accumulation of round-off errors in sums (e.g., [2]). However, naïve approaches for obtaining a processor-count
global sum of a real array, such as collecting that global array on a single processor, do not scale with process
and can become extremely memory and communication intensive. This paper describes an approach for calc
sum of real values that is invariant to the order in which the sum is taken, and introduces no loss of precision re
the original values over a broad range of values.

Sums of floating-point numbers have truncation errors which make them non-associative. For example, with 32
real numbers [3], the result of 1 � 1 + 10�10 may give 10�10 or 0, depending on whether it is evaluated as (1 � 1) +
1 + (�1 + 10�10), respectively. Even roundoff on sums of positive numbers can lead to significant errors; as an extrem
ple, naïve evaluation of

P1010

1 10�10 by simply adding each successive value to the running sum would lead to a
roughly 8.4e�4 with 32-bit IEEE real numbers, at which point adding another 10�10 no longer changes the runn
There are several cost-effective approaches for greatly reducing the magnitude of these errors and making it much l
(but not impossible) that order-of-arithmetic would alter a global sum [4]. These include adding terms in an ord
mined by partially sorting them by the magnitude of their exponents [5], using 128-bit floating point intermedi
52 6508; fax: +1 609



to evaluate sums of 64-bit floating point numbers [6], or accumulating as a second floating point number an estimate of the
truncation errors in each step of a sum, which can then be used as a correction for the next step [7]. The accumulation of the

nately, a
omposi-
s in par-
ility that
to indi-

mbers of
d integer
to avoid

echnique

hin each
er. A real

ð1Þ

R. Hallberg, A. Adcroft / Parallel Computing 40 (2014) 140–143 141
truncation errors can be extended to arbitrary precision, making order dependent round-off highly unlikely [8]. Alter
deterministically ordered reduction tree can be used to give truncation errors that are independent of domain dec
tion, although the final answer does depend on the choice of tree structure [9]. Implementation of these approache
allel sums can require modifications to the standard global reduction routines, and even then there can be the possib
the sums could be changed at the level of round-off, particularly when the global sum is a small residual compared
vidual values [4].

By contrast, integer arithmetic has no truncation errors, and sums are associative. Integer sums across large nu
processors exactly reproduce. However, integer sums are subject to overflow. The largest representable 64-bit signe
is 263 � 1 � 9.2e18. If a large number, p, of 64-bit integers are summed, each must initially be less than (263 � 1)/p
the possibility of overflow in the sum. These properties of integer sums are a primary motivation behind the t
described here.

2. Proposed technique

This paper proposes to represent real numbers with a series of integers, which can then each be summed, first wit
processor, and then across a large number of processors without overflow, before conversion back to a real numb
number, r, can be represented with a set of N 64-bit integers ai, as

r ¼
XN�1

ai2
ði�N

2ÞM
integers
he ai are
i¼0

where M is a positive integer that is less than 63. When two such representations are added together, each of the N
can be added independently, with values larger than 2M being carried and 1 added to the next integer. If each of t
a collec-
h essen-

ate sums

l results.
tegers at
ncreases
nce, if M
range of
. Setting
ng more
resented
numbers
int num-
ed preci-
y are of
ranging
itude of
ich case

ollowing

ð2Þ
smaller in magnitude than 2M, (263�M � 1) such values can be added before there is a risk of overflow, followed by
tive carry to make the representation as a set of integers unique and invariant to the order of the sums. This approac
tially uses fixed-point arithmetic of arbitrary precision, but with a large enough number of carry bits to accommod
across a large number of processors, using standard routines for global sums of a standard integer data type.

A key objective in a massively parallel computation is to do the sum without any special treatment of incrementa
Ideally the sums should be able to occur across P processors without worrying about carrying values between the in
intermediate stages of the calculation. For 64-bit integers, this is true if P < 263�M. Since choosing a larger value of M i
the information content of each integer, the right choice for M is determined by P, as illustrated in Table 1. For insta
is chosen as 46, up to 131,071 values can be added before overflow becomes an issue, and each of the integers has a
±7.036 � 1013. The range of representable values is determined by the product of N and M, as illustrated in Table 2
N = 6 and M = 46 allows values with magnitudes between 2.87 � 10�42 and 3.48 � 1041 to be represented, coveri
than the valid range for 32-bit IEEE floating-point numbers, although numbers smaller than 2.41 � 10�35 are rep
at reduced precision. Scientific programs, such as ocean- and climate-models, typically use 64-bit floating point
in their calculations (usually for their greater precision, not their larger range). When summing 64-bit floating po
bers the same range applies as for 32-bit floating point numbers, but values smaller than 1.29 � 10�26 have reduc
sion when N = 6 and M = 46. If nothing is known about the size of the values being summed, except that the
reasonable magnitude, N = 6 would seem to be a reasonable choice; it permits, for instance, operations on values
from the S.I. mass of the electron (9.1 � 10�31 kg) to the S.I. mass of the sun (1.99 � 1030 kg). If the rough magn
the final sum is known a priori, it might be possible to rescale the floating-point numbers being summed, in wh
N = 2 might give a perfectly adequate range and precision.

The algorithm for converting real numbers into the proposed set of integers is very simple, as illustrated by the f
line of C-style pseudocode converting a floating point number r into the form described in (1):

for ði ¼ N � 1; i >¼ 0; i��Þ ai ¼ ðlong integerÞ r � 2� i�N
2ð ÞM

h i
; r ¼ r � ai � 2ði�

N
2ÞM

n o
:

Table 1
Maximum processor count (max PEs) and precision per integer as a function of the number of
bits (M) used in the 64-bit signed integer representation.

M Max PEs = 263�M � 1 Precision per 64-bit integer = 2M

43 1,048,575 8.796093 � 1012

46 131,071 7.036874 � 1013

49 16,383 5.629500 � 1014

53 1023 9.007199 � 1015

55 255 3.602880 � 1016



In practice, the powers of 2 can be pre-computed and stored, so each conversion involves 2N real multiplies and N real sub-
tracts. The addition of each new value to a running sum requires an additional N integer adds, and can occur as a part of the

int num-
omputa-

at has to
he ai are
ted from
s among
give the
o a stan-
number

the sum
ys e and
st place).
eger sets
re exact.

fying the
tal mass
onserva-
g the dif-
ation can
ed Ocean
iagnosed
entical).
ts. In an
ue gives

Table 2
The range of representable positive real numbers (2�MN/2 to 2MN/2) as a function of the number (N) of 64-bit signed integers used and the number of bits (M) in
each integer that is used. Because the integer with the largest basis does not have any carry bits, the largest representable value for the ‘‘high-water-mark’’ in
sums is increased by a factor of 263�M (up to 2MN/2+63�M, listed in parentheses). However, the individual values being summed can only safely use the original
range extended by floor (263�M/P) and still have proper overflow error handling. By comparison, the largest representable 32-bit IEEE binary floating-point
number is �3.403 � 1038, while the largest representable 64-bit floating-point number is 1.798 � 10308. The choice to center this range around 1 is arbitrary,
and could be shifted to larger or smaller numbers to optimally suit a particular application.

M/
N

2 4 6 38 44

43 1.137 � 10�13 to
8.796 � 1012

1.292 � 10�26 to
7.737 � 1025

1.469 � 10�39 to
6.806 � 1038

1.144 � 10�246 to
8.740 � 10245

1.681 � 10�285 to
5.948 � 10284

(9.223 � 1018) (8.113 � 1031) (7.236 � 1044) (9.164 � 10251) (6.237 � 10290)
46 1.421 � 10�14 to

7.039 � 1013
2.019 � 10�28 to
4.952 � 1027

2.870 � 10�42 to
3.486 � 1041

7.939 � 10�264 to
1.260 � 10263

2.279 � 10�305 to
4.389 � 10304

(9.223 � 1018) (6.490 � 1032) (4.567 � 1046) (1.651 � 10268) (5.753 � 10309)
49 1.776 � 10�15 to

5.630 � 1014
3.155 � 10�30 to
3.169 � 1029

5.605 � 10�45 to
1.784 � 1044

5.509 � 10�281 to
1.815 � 10280

<10�310 to >10310

(9.223 � 1018) (5.192 � 1033) (2.923 � 1048) (2.974 � 10284)
53 1.110 � 10�16 to

9.007 � 1015
1.233 � 10�32 to
8.113 � 1031

1.368 � 10�48 to
7.308 � 1047

7.291 � 10�304 to
1.372 � 10303

<10�310 to >10310

(9.223 � 1018) (8.378 � 1034) (7.483 � 1050) (1.404 � 10306)
55 2.775 � 10�17 to

3.603 � 1016
7.704 � 10�34 to
1.298 � 1033

2.138 � 10�50 to
4.677 � 1049

<10�310 to >10310 <10�310 to >10310

(9.223 � 1018) (3.323 � 1035) (1.197 � 1052)

142 R. Hallberg, A. Adcroft / Parallel Computing 40 (2014) 140–143
same loop as above. The other steps, such as carrying the values larger than 2M or conversion back to a floating po
ber, can occur after a large number of values have been accumulated, and do not contribute significantly to the c
tional cost of the algorithm.

The conversion of the final sum back to a floating point number follows directly from (1), but with one subtlety th
be taken into account to get order-invariant sums. The representation in (1) is not unique, in that while each of t
required to be in the range �2M < ai < 2M after carrying, 2M could be added to (or subtracted from) ai and 1 subtrac
(or added to) ai+1 to represent the same value. The result after any sum may have both positive and negative value
the ai. The different representations of the same result could give different roundoff error in taking the sum (1) to
final floating point result, To counter this, the integer series representation of the final result has to be converted int
dard unique form, such as requiring that all of the ai be of the same sign, before conversion back to a floating point
using (1).

The results from taking sums with the approach described here are not only invariant to the order in which
occurs, they also give the right answer in all cases where there is not overflow. For instance, 1 � 1 + e is alwaPZ

i¼11=Z is always 1 (provided that e and 1/Z are within the range of values that can be represented in the fir
The only point at which there is any loss of information is the original conversion of the real numbers to the int
and in the conversion of the final sum back to a floating-point number. The sums of the integer sets themselves a
The final floating-point result is completely independent of the order of arithmetic.

The robustness of the sums that are calculated with this technique also has clear utility, for instance in veri
numerical conservation of integrated quantities in ocean or atmospheric models (such as total mass of water or to
of salt) that should be conserved according to the underlying equations. With a simple floating point global sum, c
tion can only be evaluated to within roundoff relative to the globally summed quantity (at best). However, by takin
ference directly between the integer sums from successive states, before conversion back to a real number, conserv
be verified to within roundoff relative to the largest individual element. In idealized test cases with the Generaliz
Layered Dynamics (GOLD) ocean model [10], this approach led to a reduction of up to 3 orders of magnitude in the d
non-conservation of water or salt (to 1 part in 1018), relative to the naïve approach (the solutions themselves were id
This added diagnostic accuracy can be useful for detecting subtle bugs or demonstrating algorithmic improvemen
ice-sheet model with solutions that depend on global sums in its conjugate-gradient elliptic solver, this techniq
results that are invariant to the number of processors used (D. Goldberg, pers. comm.).
3. Computational performance in a test case

the real
he added
takes 2N

ingle real
Summing a series of real numbers with this approach is more computationally expensive than simply adding
numbers, although in an actual application like a coupled climate model there are relatively few global sums and t
expense is almost undetectable in overall model runtime. The conversion of each real number to the set of integers
real multiplies and N real adds, while adding to the running sum takes another N integer adds, as compared with a s



add with a simple sum of the original real numbers. On computationally bound codes the proposed approach will be
between 2N and 4N times as expensive as simply taking an order-sensitive sum of real numbers (it could be 2N since one

s, some-
The tim-
int array

the real
= 3 and

er, when
parison.

indepen-
ross pro-
nication

st row of
costs), or
hich can
not scale
eger sets
osts, the
t to pro-

ice-sheet

. 18 (1997)

GPUs, in:

g/10.1137/

001) 259–

numerical

e stepping,

Table 3
Wall-clock CPU time in seconds required to do global sums of a 360 � 180 array of 64-bit real numbers 24,000 times on dedicated nodes of a Cray XT6 (which
has 24 cores per node) using standard MPI calls for data reduction or collection, averaged over 5 trials each (except the 648-core case using collection of whole
arrays, which is for a single trial).

Technique Wall-clock time on 72 cores Wall-clock time on 648 cores

Direct non-reproducing sum 0.98 ± 0.04 2.22 ± 0.18
Order-invariant real-to-integer conversion sum, N = 3 10.4 ± 0.3 5.0 ± 0.4
Order-invariant real-to-integer conversion sum, N = 6 21.1 ± 0.7 8.1 ± 0.4
Reproducing sum by collection of whole arrays to a single processor 3247 ± 74

(Extrapolated from 240 sums)
1,800,000
(Extrapolated from 24 sums)

R. Hallberg, A. Adcroft / Parallel Computing 40 (2014) 140–143 143
of the real multiplies, the real add and the integer add can occur within the same clock cycle on modern computer
thing single-processor tests support); on memory or communication bound codes this factor can be much smaller.
ings of a test of these scalings in parallel applications are shown in Table 3. In a test summing a 64,800 po
decomposed over 72 processors, the integer conversion sum with N = 3 takes 10.5 times longer than simply adding
numbers, while with N = 6 it takes 21 times as long. For the same test with 648 processors, the ratios are just 2.2 for N
3.5 for N = 6, because the time used for the communication across processors is similar between approaches. Howev
it matters that the sum is independent of processor count or domain decomposition, this is not the relevant com
Since the order of integer addition does not affect the result, with the proposed approach values can be summed
dently on each processor, and then only a single one of these integer sets needs to be communicated and added ac
cessors in an arbitrary order. By contrast, an exactly reproducing sum across processors would take either a commu
of all values to a single processor (which may be very memory and communication intensive, as illustrated in the la
Table 3), repeated communication of partial sums across processors (which may have large communication latency
doing the global sum via a deterministic reduction tree structure to enforce a specified order of operations (w
involve communication costs, load imbalances, or redundant calculations [9]). Many of these costs typically will
well with increasing numbers of processors; any of these costs can dwarf the added costs of converting to the int
or summing the sets, especially on larger numbers of processors. Compared with these high parallelization c
approach described here may be an attractive alternative for applications where sums that are certain to be invarian
cessor count or domain decomposition are required.

Acknowledgment

We would like to thank Dan Goldberg for his patient help in testing our implementation of these ideas in his
model.

References

[1] J.M. Rosinski, D.L. Williamson, The accumulation of rounding errors and port validation for global atmospheric models, SIAM J. Sci. Comput
552–564.

[2] M. Taufer, O. Padron, P. Saponaro, S. Patel, Improving numerical reproducibility and stability in large-scale numerical simulations on
Proceeedings of the IEE/ACM IPDPS, 2010.

[3] IEEE, IEEE standard for floating point arithmetic, IEEE Std. 754-2008, 2008, doi: 10.1109/IEEEESTD.2008.4610935.
[4] R.W. Robey, J.M. Robey, R. Aulwes, In search of numerical consistency in parallel programming, Parallel Comput. 37 (2011) 217–229.
[5] J. Demmel, Y. Hida, Accurate and efficient floating point summation, SIAM J. Sci. Comput. 25 (2003) 1214–1248, http://dx.doi.or

S1064827502407627.
[6] Y. He, C. Ding, Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications, J. Supercomput. 18 (2

277.
[7] W. Kahan, Further remarks on reducing truncation errors, Commun. ACM 8 (1965) 40.
[8] S.M. Rump, Ultimately fast accurate summation, SIAM J. Sci. Comput. 32 (2009) 3466–3502, http://dx.doi.org/10.1137/080738490.
[9] O. Villa, D. Chavarría-Miranda, V. Gurumoorthi, Andrés Márquez, S. Krishnamoorthy, Effects of floating-point non-associativity on

computations on massively multithreaded system, in: Proceedings of the Cray User Group, CUG 2009 Meeting, 2009.
[10] R. Hallberg, A. Adcroft, Reconciling estimates of the free surface height in Lagrangian vertical coordinate ocean models with mode-split tim

Ocean Model. 29 (2009) 15–26, http://dx.doi.org/10.1016/j.ocemod.2009.02.008.


