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ABSTRACT

Mathematical isomorphisms between the hydrostatic equations that govern the evolution of a compressible
atmosphere and an incompressible ocean are described and exploited to guide the design of a hydrodynamical
kernel for simulation of either fluid.

1. Introduction

The large-scale circulation of the atmosphere and
ocean are governed by equations and boundary condi-
tions that are similar to one another because the un-
derlying fluid dynamics are the same. Yet the devel-
opment of numerical models of the atmosphere and
ocean has occurred almost independently. There has
been delayed exchange of ideas developed in one ap-
plication for use in the other. The reasons for this lie
largely, we believe, in the sociology of the two disci-
plines. Atmospheric and oceanic models are developed
by different groups of scientists, with different goals
and levels of support and who often do not communicate
with one another. But the increasing importance of and
challenges posed by coupled climate modeling has
meant that the need for collaboration is urgent.

Here we report on an approach to coupled climate
modeling in which the same hydrodynamical algorithm
is used to simulate both the atmosphere and ocean by
exploiting the well-known1 isomorphism between the
equations that govern the respective fluids. Detailed
treatment and exploitation of the isomorphism is rare,
however, and is the goal of this paper. From one hy-
drodynamical kernel, separate atmospheric and oceanic
models are rendered by use of appropriate physics

1 Eliassen (1949), for example, says of the hydrodynamic equations
in p coordinates ‘‘the equations prove simpler than in the usual form;
and some of them become formally identical to the equations for a
homogeneous and incompressible fluid’’.
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‘‘overlaid’’ on the dynamics, as illustrated schematically
in Fig. 1. Although the hydrodynamical kernel described
has been developed with the express purpose of using
it for simulation of either fluid, existing atmospheric/
oceanic models could be ‘‘converted’’ from one to the
other.

In section 2 we discuss the theoretical underpinning
of our approach. In section 3 we describe the formu-
lation and implementation of the ideas in the MIT hy-
drodynamical kernel, Marshall et al. (1997a,b). In par-
ticular we discuss how one can use a normalized pres-
sure coordinate related to eta coordinates (Mesinger et
al. 1988) to represent the lower boundary condition of
the atmospheric model. In section 4 we present illus-
trations of the kernel in action in studies of both fluids.
In section 5 we summarize and conclude.

2. Atmosphere–ocean fluid isomorphisms

We begin by simply stating the equations of motion and
boundary conditions that govern the large-scale atmo-
sphere and ocean in pressure and height coordinates, re-
spectively. We exploit the well-known fact that these equa-
tions are isomorphic: a simple mapping between coordi-
nates and state variables renders complementary equations
and boundary conditions. For the purposes of designing
a single hydrodynamical kernel to model both atmosphere
and ocean, we then go on to write the equations of motion
in terms of a generic vertical coordinate, r.

a. Pressure coordinate equations for the atmosphere

The equations representing the evolution of a com-
pressible, hydrostatic atmosphere in pressure coordi-
nates are (see, e.g., Haltiner and Williams 1980):
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FIG. 1. A single dynamical kernel is used to drive forward both
oceanic or atmospheric models.

FIG. 2. The vertical structure of the atmospheric model. The hy-
drostatic equation is integrated up from the lower boundary to yield
geopotential height, the continuity equation down from the upper
boundary to yield vertical velocity.

D
v 1 f k 3 v 1 = F 5 F (1)h h pDt

]F
1 a 5 0 (2)

]p

]v
= · v 1 5 0 (3)p h ]p

]P
a 5 a(u, p) 5 u (4)

]p

D Q uu 5 (5)
Dt P

D
q 5 Q , (6)qDt

where vh 5 (u, y, 0) is the horizontal component of
velocity, v 5 (D/Dt)p is the vertical velocity in pressure
coordinates, f is the Coriolis parameter, k is a unit vector
in the vertical, F 5 gz is the geopotential, a is the
specific volume, T is the temperature, u 5 cpT/P is the
potential temperature, P 5 cp(p/po)k is the Exner func-
tion, and q is specific humidity. Here cp is the specific
heat at constant pressure, k 5 R/cp with R the gas con-
stant and D/Dt 5 ]/]t 1 vh · =p 1 v(]/]p) is the total
derivative in pressure coordinates.

The terms F, Q u, and Q q represent sources and sinks
of momentum, heat, and moisture, respectively. They
must be parameterized.

The total energy equation can be formed by taking
the dot product of vh with (1), adding v times (2) and
P times (5) to give

D 1
2|v | 1 F 1 Pu 5 v · F 1 Q 1 ] F, (7)h h u t1 2Dt 2

where Pu 5 cpT is the enthalpy.2

ATMOSPHERIC BOUNDARY CONDITIONS

The boundary conditions at the top and bottom of the
atmosphere, shown schematically in Fig. 2, are3

2 To derive Eq. (7) we made use of the following relations:

D D D
P u 5 (Pu) 2 u P

Dt Dt Dt

D D D
5 (Pu) 2 u] P p 5 (Pu) 2 av.pDt Dt Dt

3 Equation (8) is the exact upper boundary condition but Lindzen
et al. (1968) have shown that when this is employed in a model with
discrete levels, there may be false reflection of energy that can have
a deleterious effect on lower levels. This problem can be ameliorated
by incorporating a damping process (a ‘‘sponge layer’’) in the up-
permost levels of the model—see discussion in Haltiner and Williams
(1980).

0 at p 5 0 (top of the atmosphere),
Dpsv 5 (8)at p 5 p (x, y, t)s Dt

(bottom of the atmosphere),

where ps is the surface pressure. The boundary con-
dition used on integration of the hydrostatic equation
(2) is

F 5 F 5 gH at p 5 p (x, y, t),s s

where H is the height of the mountains at the lower
boundary.

The surface pressure evolves according to

]
p 1 = · (p v ) 5 0, (9)̂s s h]t

where
ps1

v 5 v dpĥ E hps 0

is the p-averaged horizontal wind.
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FIG. 3. The vertical structure of the ocean model. The hydrostatic
equation is integrated down from the surface to yield the pressure
field: the continuity equation up from the bottom to yield the vertical
velocity.

b. Z-coordinate equations for the ocean

The hydrostatic equations of motion for an incom-
pressible, Boussinesq ocean in height coordinates are

D p
v 1 f k 3 v 1 = 5 F (10)h h z1 2Dt ro

] p r
1 g 5 0 (11)1 2]z r ro o

= · v 1 ] w 5 0 (12)z h z

r 5 r(u, S, p) (13)

D
u 5 Q (14)uDt

D
S 5 Q , (15)sDt

where vh 5 (u, y, 0) is the horizontal component of
velocity, w 5 (D/Dt)z is the vertical velocity, p is the
pressure, r(u, S, p) is the density, ro is a constant ref-
erence density, u is the potential temperature, S is the
salinity, and D/Dt 5 ]/]t 1 vh · =z 1 w(]/]z) is the total
derivative in z coordinates.

The terms F, Q u, and Q q represent sources and sinks
of momentum, heat, and salinity, respectively.

An equation for kinetic energy 1 potential energy
can be formed by taking the dot product of rovh with
Eq. (10), adding row times Eq. (11) to give

D 1 D
2r |v | 1 grz 1 ¹ · (v p) 5 v · F 1 gz r.o h 3 3 h1 2Dt 2 Dt

(16)

The source term in Eq. (16) involving (D/Dt)r 5
]r/]u | SQ u 1 ]r/]S | uQ S 1 ]r/]p | S,u(D/Dt)p is compli-
cated by the nonlinear equation of state. Note that the
Boussinesq model approximates total energy by internal
energy [whose evolution is governed by Eq. (14)]: the
kinetic energy and potential energy, Eq. (16), appear at
higher order; independently of the internal energy.

OCEANIC BOUNDARY CONDITIONS

The boundary conditions at the bottom and top of the
ocean, shown schematically in Fig. 3, are

2v · =H at z 5 2H (ocean bottom),hw 5 Dh 5 2(P 2 E ) at z 5 h (ocean surface),
Dt

(17)

where P 2 E is precipitation minus evaporation.
The boundary condition used in integration of the

hydrostatic equation is

p 5 p at z 5 h,s

where ps is the pressure exerted by the atmosphere at
the ocean’s surface.

The surface elevation evolves according to

]
h 1 = · [(H 1 h)v ] 5 P 2 E, (18)ĥ]t

where
h1

v 5 v dzĥ E h(H 1 h)
2H

is the depth-averaged horizontal velocity.

c. The isomorphism

If we simply replace the variables and coordinates in
sections 2a and 2b—set out in Eqs. (1)–(6) and Eqs.
(10)–(15)—thus

ocean ↔ atmos iso

z ↔ p r

w ↔ v ṙ
p

ro

↔ F f

r
2g

ro

↔ 2a b

u ↔ u u

S ↔ q s

h ↔ ps r9s

P 2 E ↔ 0 Pr ,

then we see that the equation sets representing atmo-
spheric and oceanic motion are isomorphic—see Fig. 4.

It is important to note that the boundary conditions—
Eqs. (8) and (17)—and the equations governing the evo-
lution of the ‘‘free surface’’ in the respective fluids—
Eqs. (9) and (18)—are also exactly isomorphic.
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FIG. 4. The atmosphere and ocean rendered in terms of the ‘‘r’’ coordinate.

d. General purpose equations in ‘‘r’’ coordinates

To render atmosphere and ocean models from one
dynamical core we exploit the aforementioned ‘‘iso-
morphisms’’ between equation sets and boundary con-
ditions that govern the hydrostatic evolution of the re-
spective fluids. One system of hydrodynamical equa-
tions is written down and encoded in a generic coor-
dinate ‘‘r.’’ The model variables have different
interpretations depending on whether the atmosphere or
ocean is being studied. Thus, for example, the vertical
coordinate of our hydrodynamical kernel, ‘r’, is inter-
preted as pressure, p, if we are modeling the atmosphere
and height, z, if we are modeling the ocean—(see Fig.
4 and section 2c).

The state of the fluid at any time is characterized by
the distribution of velocity v, active tracers u and s, a
‘‘geopotential’’ f, and buoyancy b 5 b(u, s, p) which
may depend on u, s, and p. The equations that govern

the evolution of these fields4 are, written in terms of a
generic vertical coordinate, r:

Dvh 1 f k 3 v 1 = f 5 F (19)h rDt

]f
2 b 5 0 (20)

]r

]ṙ
= · v 1 5 0 (21)r h ]r

b 5 b(u, s, r) (22)

Du
5 Q (23)uDt

Ds
5 Q . (24)sDt

4 Note that we make the hydrostatic approximation—isomorphic
nonhydrostatic forms are not discussed here.
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Here, r is the vertical coordinate,

D ] ]
5 1 v · = 1 ṙ (25)hDt ]t ]r

is the total derivative,

]
= 5 = 1 k is the ‘‘grad’’ operatorh ]r

with =h operating in the horizontal on surfaces of con-
stant r and k(]/]r) operating in the vertical, where k is
a unit vector in the vertical, t is time, v 5 (u, y, ṙ) 5
(vh, ṙ) is the velocity, f is the ‘‘pressure’’ or geopo-
tential, f is the Coriolis parameter, b is the ‘‘buoyancy,’’
u is potential temperature, s is specific humidity in the
atmosphere, salinity in the ocean, F represents forcing
and dissipation of v, Q u represents forcing and dissi-
pation of u, and Q s represents forcing and dissipation
of s.

The fields F, Q u, and Q s are provided by physical
parameterizations of subgrid-scale turbulent fluxes in
the atmosphere and ocean. The simple parameterizations
used to test our modeling approach are described in the
appendix.

1) KINEMATIC BOUNDARY CONDITIONS

In discussion of the vertical axis of the model it is
useful to distinguish between boundaries which are fixed
and boundaries which are moving in our r coordinate—
see Fig. 4. In the atmosphere where r → p and increases
downward, the upper boundary (r 5 0) is fixed and the
lower boundary (r 5 ps, the surface pressure) moves.
In the ocean where r → z and increases upward, the
lower boundary (r 5 2H, the bathymetry) is fixed and
the upper boundary (rs 5 h, the height of the free sur-
face about its resting position) moves.

At bounding r surfaces we set (see Fig. 4):

2v · =R at r 5 Rfixed fixedṙ 5 (26)Drs 2 P at r 5 R ,r sDt

where

2H at the bottom of the ocean
R 5fixed 50 at the top of the atmosphere

defines the position of the fixed bounding coordinate
surface and

R 5 R 1 rs o s (27)

defines the position of the moving bounding coordinate
surface where

0 at the surface of the ocean
R 5o o5R (x, y) 5 p (x, y) at the groundo s

is the reference position of the moving boundary and

h at the surface of the ocean
r 5s 5p9 at the ground.s

are the deviations from the reference.
In Eq. (26),

P 2 E at the surface of the ocean
P 5r 50 in the atmosphere

is the volume flux through rs.
Note that Rs is the ‘‘r-value’’ of the moving bounding

coordinate surface—that is, the upper surface of the
ocean, the bottom surface in the atmosphere. If the fluid
is at rest then this bounding coordinate takes on the
value Ro(x, y); when the fluid is moving the bounding
coordinate moves about this reference by an amount rs.
Thus in the ocean, Ro 5 0; rs 5 h is the height of the
free surface about its resting height, Ro, chosen to be
zero; in the atmosphere, Ro 5 (x, y); rs 5 , theop p9s s

fluctuation of the surface pressure about its reference
value, (x, y).ops

At lateral boundaries, we suppose that there is no
normal flow and impose

v · n 5 0,

where n is the normal to a solid boundary.

2) ISOMORPHIC INTERPRETATION

(i) Atmosphere: ‘r 5 p’

In the atmosphere—see Figs. 2 and 4—we interpret

r 5 p as the pressure (28)

Dp
ṙ 5 5 v as the vertical velocity in

Dt
p coordinates (29)

f 5 F 5 gz as the geopotential height (30)

]P
b 5 2a 5 2 u as the buoyancy (31)

]p
kpou 5 T as potential temperature (32)1 2p

s 5 q, as the specific humidity, (33)

where T is absolute temperature, p is the pressure, and
z is the height of the pressure surface.

At the top of the atmosphere (which is ‘‘fixed’’ in
our r coordinate):

R 5 p 5 0.fixed top

In an atmosphere at rest the pressure at the top of the
mountains is given by

oR 5 R (x, y) 5 p (x, y)s o s

and the geopotential height of the mountains is
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1000 hPa

f 5 gH 5 a dp (34)topo E ref
ops

assuming mean sea level pressure is 1000 hPa.
The boundary conditions at the top and bottom are

given by

0 at r 5 p 5 0 (top of the atmosphere),top
Drsṙ 5 ; at r 5 R 5 p (x, y)s s Dt

(bottom of the atmosphere),

where ps 5 1 is the surface pressure and (becauseop p9s s

there is no term analogous to P 2 E arising in the
atmosphere) Pr 5 0.

With the interpretation of variables set out in Eqs.
(28)–(33), Eqs. (19)–(27) then yield the set of atmo-
spheric equations and boundary conditions in p coor-
dinates, written out in section 2a.

(ii) Ocean: ‘r 5 z’

In the ocean—see Figs. 3 and 4—we interpret

r 5 z as the height (35)

Dz
ṙ 5 5 w as the vertical velocity (36)

Dt
p

f 5 as the pressure (37)
ro

r(u, S, r)
b 5 2g as the buoyancy, (38)

ro

where ro is a fixed reference density of water and g is
the acceleration due to gravity.

At the bottom of the ocean

R (x, y) 5 2H(x, y)fixed

At the surface of the ocean

R 5 h,s

where h is the elevation of the free surface because
Ro 5 0.

The boundary conditions at the top and bottom of the
ocean are

ṙ 5 2v · =R withfixed

R 5 2H (ocean bottom),fixed

Drsṙ 5 2 P at r 5 h (ocean surface) withrDt

P 5 P 2 E.r

With the interpretation of variables set out in Eqs.
(35)–(38), Eqs. (19)–(27) yield a consistent set of ocean
equations which are written out in z coordinates in sec-
tion 2b.

3. A hydrodynamical kernel for simulation of the
circulation of the atmosphere and ocean

The model we use to step forward Eqs. (19) to (27)—
the MITgcm—employs the ‘‘pressure method’’ com-
prising prognostic steps for velocity and tracer fields
and a diagnostic step to find the pressure field required
to maintain three-dimensionally nondivergent flow from
one time step to another. Details of the numerical meth-
od can be found in Marshall et al. (1997a,b). Briefly,
we proceed by dividing the total potential into two parts,
a surface part fs(x, y), and a hydrostatic part fhyd(x, y,
r), and writing the momentum equation in the form

]
v 1 = f 1 = f 5 G , (39)h r s r hyd v]t

where Gv represent advective, Coriolis, and stress terms.
Of interest here, in the context of fluid isomorphisms,

is the diagnostic step used to obtain hydrostatic and
‘‘surface’’ pressure fields. This is now described in some
detail.

a. Finding the potential

1) HYDROSTATIC POTENTIAL

The hydrostatic pressure field in the interior is ob-
tained by integrating Eq. (20) w.r.t. r from the (moving)
r 5 Rs boundary into the interior of the fluid to yield
(see Fig. 4):

Rs

f 5 f 1 2b drs E
r

R Ro s

5 f 1 2b dr 1 2b drs E E
r Ro

Ro

5 f 1 2b dr 1 f , (40)s E l

r

where f l 5 2 b dr is the f at r 5 Ro due to theRs#Ro

load induced by rs 5 Rs 2 Ro, Eq. (27).
The boundary condition applied at r 5 Rs is

p at ocean surfacesf 5 (41)s 5gH at land surface.

Here ps is the atmospheric pressure (loading) at the sur-
face of the ocean, see Fig. 3, and gH is the geopotential
height of the orography over land defined by Eq. (34).

2) SURFACE PRESSURE

The surface pressure equation can be obtained by
integrating continuity, Eq. (21), vertically from r 5 Rfixed

to r 5 Rs

Rs ]ṙ
= · v 1 dr 5 0.E r h1 2]rRfixed
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FIG. 5. (top): (right) Rescaled pressure, p* follows (middle) surface pressure undulations which
are difficult to represent using pressure as (left) a vertical coordinate in atmospheric models.
(bottom): (right) Rescaled height, z* is designed to follow (middle) free surface undulations which
are not readily captured in (left) z-coordinate ocean models.

Then, applying the kinematic boundary conditions, Eq.
(26), we can write

Rs]rs 1 v · =r 1 = · v dr 5 P ,s E r h r]t Rfixed

where rs 5 Rs 2 Ro is the free-surface r-anomaly in
units of r. Using Leibnitz’s theorem, the preceding can
be rearranged to yield

Rs]rs 1 = · v dr 5 P . (42)h E h r]t Rfixed

Equation (42) is stepped forward in time to yield rs,
which has units of r—the surface pressure in the at-
mosphere, the free surface height in the ocean.

Finally we note that in our implementation we ap-
proximate Fl in Eq. (40) by

F . 2b r ,l s s

where bs is the buoyancy at the surface.

b. Vertical coordinate and discretization

In our numerical implementation, rather than adopt
terrain-following coordinates—for example, s-coordi-
nates, the standard approach in meteorology [see, e.g.,
discussions of vertical coordinates in atmospheric mod-
els in Simmons and Burridge (1981) and Thuburn
(1993)]5—we use rescaled height/pressure as a vertical
coordinate, as described in Adcroft and Campin (2003).
Use of this scaled coordinate ensures that as the vertical
resolution of our model is increased, the discrete model
mimics the continuous system.

In the atmospheric isomorph, our rescaled pressure

5 Terrain-following coordinates introduce considerable complica-
tions in the ocean because hydrostatic consistency is very difficult
to ensure numerically in the presence of steep slopes and islands—
see, for example, the discussion in Adcroft et al. (1997).

is the eta coordinate of Mesinger et al. (1988): p* 5
(p/ps) . The coordinate ‘‘stretches’’ with surface pres-ops

sure variations, as illustrated in Fig. 5 (top). The lower
boundary is not a coordinate surface but is fixed in time.
Along with this rescaled p, we employ partial cells to
represent topography—as described in Adcroft et al.
(1997)—a technique that has considerable advantages
over the conventional implementation of eta coordi-
nates.

In the oceanic isomorph we employ z* 5 [(z 2 h)/
(H 1 h)] H, as shown in Fig. 5 (bottom). This readily
allows one to numerically treat finite-amplitude free-
surface effects and the fluxes of E 2 P across the sea
surface in a physically appealing way.

4. Numerical tests of the isomorphic
hydrodynamical kernel

The experiments described here were carried out us-
ing the hydrodynamical kernel described in Marshall et
al. (1997a,b) and outlined earlier (see also http://
mitgcm.org). One model is used in all calculations: iso-
morphisms are used to render atmospheric and oceanic
cousins.

a. The atmosphere

The atmospheric isomorph of MITgcm was put
through its paces on the cubed sphere, as described in
Adcroft et al. (2004), with 32 3 32 grid points per face
(C32—nominally 2.88 resolution). The ‘‘vector-invari-
ant’’ form of the momentum equations, on which the
model is based, supports any orthogonal curvilinear
grid, of which the cubed sphere is a convenient choice
permitting uniform gridding and facilitating treatment
of polar cap dynamics without the need of a polar filter.
The ‘‘dry’’ model is driven by relaxation to a radiative–
convective equilibrium profile, following the descrip-
tion set out in Held and Suarez (1994), designed to test
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FIG. 6. Instantaneous plot of the temerature field at 500 mb obtained
using the atmospheric isomorph of MITgcm on the cubed sphere at
C32. The projection of the cube onto the sphere can be clearly dis-
cerned in the grid pattern which is also shown.

FIG. 7. Zonally averaged (top) zonal flow, (middle) potential tem-
perature, and (bottom) temperature variance from a cube–sphere sim-
ulation using Held–Suarez forcing with 20 vertical levels. The so-
lution compares very favorably to that published in Held and Suarez
(1994).

atmospheric hydrodynamical cores. Twenty equally
spaced levels (Dp 5 50 mb) are used in the vertical.
Because of our use of a scaled vertical coordinate, there
is no limit to the vertical resolution that can be em-
ployed. The forcing and boundary layer friction are
specified analytically according to Held and Suarez
(1994). As in the finite-difference model described
therein, gridpoint noise is controlled using the eighth-
order Shapiro (1970) applied to the wind field. Note that
in this first example with a flat bottom, p* is exactly
equivalent to a s coordinate.

Figure 6 shows an instantaneous plot of the 500 tem-
perature field on the cubed sphere. We see cold air over
the pole (blue) and warm air along an equatorial band
(red). Fully developed baroclinic eddies spawned in the
Northern Hemisphere storm track are evident. Figure 7
shows the 5-yr mean, zonally averaged zonal wind. It
compares very favorably with the gridpoint and spectral
models described in Held and Suarez (1994). Indeed,
on close comparison it is clear that the use of the cubed
sphere (obviating the need for polar filters) outperforms
the gridpoint model used in Held and Suarez (1994).
More detailed comparisons are described in Adcroft et
al. (2004).

To further demonstrate how our isomorphed model
works in practice we briefly examine the climatology
of an atmospheric version of the model (which we call
AIM, for atmosphere of intermediate complexity) ob-
tained by ‘‘plugging in’’—see Fig. 1— the atmospheric
package developed by Molteni (2003) into our dynam-
ical core with five vertical levels at C32 on the cubed
sphere. Mountains are represented using ‘‘partial cells,’’
as described in Adcroft et al. (1997), with an eta co-

ordinate as described in Adcroft and Campin (2003).
This example is only presented as a ‘‘proof of concept.’’
The model physics (christened SPEEDY by Molteni
(2003) are briefly described in the appendix) are of in-
termediate complexity and intended to be used in ex-
tended coupled climate integrations for studies of pre-
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TABLE 1. Parameters used in the ocean circulation experiment.

Horizontal eddy viscosity, Ah

Vertical eddy viscosity, Ay

Isopycnal/thickness eddy
diffusion, kGM

3 3 105 m2 s21

1 3 1023 m2 s21

800 m2 s21

Vertical eddy diffusion, ky

Enhanced mixing (convection), kc

Reference density, ro

Level thickness, Dz (m)

3 3 1025 m2 s21

10 m2 s21

1035 kg m23

10, 10, 15, 21, 28, 36, 45, 55,
66, 78, 91, 105, 120, 136,
154, 172, 191, 211, 232,
254, 278, 302, 327, 353,
380, 408, 437, 466, 497, 529

FIG. 8. The zonal-average U field obtained from (top) a 5-yr in-
tegration of the model [contour interval (c.i.) 5 4 m s21] compared
to the (middle) NCEP reanalysis (c.i. 5 4 m s21) and (bottom) ‘‘mod-
el’’ minus ‘‘analysis’’ (c.i. 5 2 m s21).

dictability and paleoclimate. Despite the idealized na-
ture of the model ‘‘physics’’ and its crude vertical struc-
ture, the model exhibits some realism.

In the experiment described here, AIM is configured
with five vertical levels (at 75, 250, 500, 775, and 950
mb)—one in the stratosphere, three in the free tropo-
sphere, and one in the planetary boundary layer, as in
the model described in Molteni (2003). Monthly mean
global sea surface temperature, land temperature, soil
moisture, and surface albedo are prescribed. We have
compared a wide variety of fields from our isomorphed
atmospheric model with that of Molteni (2003)—who
coupled SPEEDY physics to the Geophysical Fluid Dy-
namics Laboratory (GFDL) dynamical core—and find
very similar results. Figure 8 compares the zonal av-
erage zonal wind with analyzed fields from National
Centers for Environmental Prediction (NCEP). There is
broad correspondence in the troposphere: the jet streams
are of reasonable strength but the trade wind belt is
somewhat weak in the troposphere. Modeled anomalies
in the height of the 500-mb surface in December–Jan-
uary–February (DJF) are compared with the observa-
tions in Fig. 9. The pattern of variability is broadly
consistent with observations, but with considerably re-
duced amplitude. We believe, however, that discrep-
ancies between observed and modeled climatologies are
almost entirely a consequence of the highly idealized
physics rather than inherent problems with the dynam-
ical core.6

b. Ocean

To illustrate the application of the hydrodynamical
kernel configured for the ocean, Figs. 10 and 11 shows
a numerical solution on exactly the same cubed grid as
the atmospheric model, C32. The model is configured
with 15 levels in the vertical with a maximum depth of
5200 m, forced with monthly wind stress (Trenberth et

6 It should be noted that the vertical coordinate employed in our
atmospheric isomorph is not ideally suited to high vertical resolution
of, for example, the planetary boundary layer. In this regard, con-
ventional s-coordinates have a clear advantage over the p* coordinate
used here. One avenue presently under investigation is to run the
‘‘physics’’ on a different (higher resolution) grid than the dynamics.

al. 1989), monthly observed heat and freshwater fluxes
(Jiang et al. 1999), and with a restoring of sea surface
temperature and salinity to monthly climatology (Boyer
et al. 2002; Stephens et al. 2002). A restoring time scale
of two months for SST and two years for salinity is
chosen. The model parameters are listed in Table 1. The
bathymetry was generated from the Elevation Data for
Areas Greater than 50 degrees North (ETOPO5) world
bathymetry using a topology-preserving algorithm (A.
Adcroft 2002, unpublished manuscript).

Figure 10 shows the streamfunction for the depth-
integrated horizontal flow at equilibrium after 5000 yr
of integration, revealing the major ocean gyres and the
circumpolar current. The global meridional overturning
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FIG. 9. The geopotential height anomly of the 500-mb surface in DJF from (top) the AIM
model and from (below): the NCEP analysis (c.i. 5 30 m).

streamfunction is plotted in Fig. 11 showing down-
welling at the northern polar regions and upwelling
around Antarctica.

5. Conclusions

We have described how mathematical isomorphisms
between the equations that govern the atmosphere and
ocean can be exploited to design a single hydrodynam-
ical core that can be used to simulate both fluids. Our
approach has been illustrated by ‘‘plugging in’’ physics
packages to the hydrodynamical core of the MITgcm
to render atmospheric and oceanic models of interme-
diate complexity.

The advantages of the approach outlined here are con-
siderable:

1) Developments of the core hydrodynamics are inher-

ited by both atmosphere and ocean with no extra
cost. For example, parallelization of forward hydro-
dynamics and its differentiation to yield tangent lin-
ear and adjoint models—see, for example, Marotzke
et al. (1999)—is automatically inherited by both
components of the coupled climate system.

2) Models of one fluid could be converted to study the
other, by exploiting the isomorphism studied here.
Although MITgcm has been designed specifically
with the isomorphism in mind, we believe that ex-
isting atmospheric7 (oceanic) cores could, with jus-
tifiable effort, be modified to yield an oceanic (at-
mospheric) counterpart.

7 The exception would be atmospheric cores based on spectral tech-
niques which cannot be easily modified to describe fluid flow in ocean
basins.
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FIG. 10. The streamfunction for the depth-integrated flow obtained from the cubed sphere ocean
model. The contour interval is in Sverdrups (SV [ 106 m3 s21). The edges of the cube are
superimposed.

FIG. 11. The global overturning streamfunction (in Sv) obtained from the cubed
sphere ocean circulation model.

3) Coupling of atmospheric and oceanic models is in-
herently simpler and more logical because the two
models can use the same grid. Although in an ideal
world the deformation radii of the respective fluids
would strongly influence the choice of horizontal
resolution, computational economics dictates that, at
the present time, horizontal resolutions employed in
the two fluids in climate research are roughly com-
parable (;18). Thus, to our advantage, they can be
made equal.

4) Working on a common core brings atmospheric and
oceanic modelers together and breaks down the ar-
tificial barriers between them.

The points just cited are more than ‘‘programmatic’’
issues: the isomorphic approach to the modeling of both
fluids advocated here can lead to real innovations. For
example, recent examples of model developments driv-
en by applications in one fluid finding immediate ap-
plication in the other, made possible (and straightfor-
ward) by the isomorphism, are
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1) The cubed sphere of Adcroft et al. (2004), developed
for applications in meteorology, has obvious advan-
tages in the ocean too, with improved treatment of
polar cap, ice dynamics, and avoidance of polar fil-
ters to lengthen the time step.

2) Studies of the importance of the Boussinesq ap-
proximation in ocean modeling—as described in de
Szoeke and Samelson (2002), non-Boussinesq ef-
fects in ocean models can be elegantly taken in to
account by adopting pressure as a vertical coordi-
nate. The z ↔ p isomorphism outlined here can be
readily used to switch between z-coordinate ocean
models and p-coordinate ocean models—see Losch
et al. (2004) where the MITgcm isomorphic kernel
is used in this manner.
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APPENDIX

Details of Model Physics

The distinguishing difference between the atmo-
sphere and the ocean systems is not the dynamics, but
rather the source terms that appear on the right-hand
sides of Eqs. (1)–(6) and Eqs. (10)–(15) that represent
distinct physical processes. To accommodate different
physical processes in the two fluids we have constructed
component software packages that can be easily
switched in and out, as represented schematically in Fig.
1. Substitution of the ocean physics package by an at-
mospheric physics package is all that is required to
transform the model between ocean or atmospheric mi-
lieus.

a. Atmospheric package

The physics package developed by Molteni (2003) is
well suited to exploratory climate simulation and based
on the same physical principles as ‘‘state-of-the-art’’
models. It is sufficiently concise that a single person
can grasp it in its entirety but, as illustrated in section
4, exhibits considerable realism. Briefly, it utilizes the
following limited set of modules parameterizing key
processes:

Surface fluxes of momentum and energy. Fluxes are
defined by bulk aerodynamic formulas with different
exchange coefficients between land and sea. Coeffi-
cients for (sensible and latent) heat fluxes also depend
on the vertical gradient of potential temperature between
the surface and the lowest model level.

Convection. A simplified mass-flux scheme is acti-
vated when conditional instability is present (namely,
where saturation moist static energy decreases with
height between the planetary boundary layer (PBL) and
the two upper-tropospheric layers), and where relative

humidity in the PBL exceeds a fixed threshold. The
cloud-base mass flux (at the top of the PBL) is such
that the PBL relative humidity is relaxed towards the
threshold value. Detrainment occurs only at the cloud-
top level (determined by the conditional instability cri-
terion), while entrainment occurs in the lower tropo-
sphere if the cloud top is at the highest tropospheric
level. The air in the updrafts is assumed to be saturated.

Large-scale condensation. When relative humidity
exceeds a fixed threshold, specific humidity is relaxed
towards the corresponding threshold value, and the la-
tent heat content removed from the atmosphere is con-
verted into dry static energy.

Cloud cover. Cloud cover is determined diagnosti-
cally from the maximum relative humidity in an air
column including all tropospheric layers except the
PBL.

Shortwave radiation. SW radiation is reflected by
clouds at the top of the troposphere and at the surface;
the cloud albedo is proportional to the total cloud cover.
SW transmissivity is a function of layer mass, specific
humidity and cloud cover.

Longwave radiation. A four-band LW scheme is used,
one for the atmospheric ‘‘window’’ and the others for
the absorption by water vapor and carbon dioxide, de-
pendent on the mass and humidity of the layers.

Vertical diffusion (shallow convection). Vertical dif-
fusion only acts between the two lowest model layers.
Dry static energy and specific humidity are diffused
when a conditional instability criterion is satisfied. Oth-
erwise, only humidity is diffused, at a slower rate.

b. Ocean package

The oceanic counterparts to the atmospheric physics
have been extracted from our core ocean model—see
Marshall et al. (1997a,b) and http://mitgcm.org. Com-
ponents that represent ocean-only processes employed
in the calculations described here are:

Convective adjustment. Statically unstable fluid par-
cels are homogenized through adjustment or through
implicit vertical diffusion.

Geostrophic eddy parameterization. Following Gent
and McWilliams (1990), tracers are advected by the
‘‘Transformed Eulerian Mean’’ (TEM), expressed as a
function of the heat flux by unresolved baroclinic in-
stability, parameterised as a flux down the large-scale
temperature gradient. TEM is used together with an
along-isopycnal diffusion of tracers.
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