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a b s t r a c t

It has recently been proposed to formulate eddy diffusivities in ocean models based on a mesoscale eddy

kinetic energy (EKE) budget. Given an appropriate length scale, the mesoscale EKE can be used to estimate an

eddy diffusivity based on mixing length theory. This paper discusses some of the open questions associated

with the formulation of an EKE budget and mixing length, and proposes an improved energy budget-based

parameterization for the mesoscale eddy diffusivity. A series of numerical simulations is performed, using

an idealized flat-bottomed β-plane channel configuration with quadratic bottom drag. The results stress the

importance of the mixing length formulation, as well as the formulation for the bottom signature of the

mesoscale EKE, which is important in determining the rate of EKE dissipation. In the limit of vanishing plane-

tary vorticity gradient, the mixing length is ultimately controlled by bottom drag, though the frictional arrest

scale predicted by barotropic turbulence theory needs to be modified to account for the effects of baroclinic-

ity. Any significant planetary vorticity gradient, β , is shown to suppress mixing, and limit the effective mixing

length to the Rhines scale. While the EKE remains moderated by bottom friction, the bottom signature of EKE

is shown to decrease as the appropriately non-dimensionalized friction increases, which considerably weak-

ens the impact of changes in the bottom friction compared to barotropic turbulence. For moderate changes

in the bottom-friction, eddy fluxes are thus reasonably well approximated by the scaling relation proposed

by Held and Larichev (1996), which ignores the effect of bottom friction.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

The ocean circulation is strongly influenced by mesoscale turbu-

lent eddies (e.g., Gill et al., 1974; Johnson and Bryden, 1989; Hall-

berg and Gnanadesikan, 2006; McWilliams, 2008; Waterman et al.,

2011). However, the resolution of most current global ocean mod-

els is insufficient to resolve these eddies. Most current IPCC-class

climate models use ocean components with typical horizontal res-

olutions of about one degree or coarser (Flato et al., 2013). Longer-

term simulations, as used for paleo-climate applications, require even

coarser grids, due to the prohibitive computational costs associ-

ated with long-term simulations at high resolution. At resolutions of

about one degree or coarser, mesoscale eddies cannot be resolved,

and their effects on the transport of tracers and physical proper-

ties must be parameterized (e.g., Hallberg and Gnanadesikan, 2006).

Even when much higher resolutions are used and eddies are present

in the tropics and subtropics, the effects of eddies will still need

to be parameterized at higher latitudes and in near-coastal waters
∗ Corresponding author. Tel.: +1 617 230 0262.

E-mail address: mfj@uchicago.edu (M.F. Jansen).
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Hallberg, 2013). Mesoscale eddy effects are typically parameterized

ith a tracer diffusion, which is strongly enhanced in the along-

sopycnal direction (Redi, 1982), together with a closure based on

ent and McWilliams (1990) (hereafter: GM). The GM parameteriza-

ion acts to flatten isopycnals by re-arranging water masses adiabati-

ally. A closure of this form is motivated by the fact that eddies extract

vailable potential energy stored in the mean flow, by rearranging

ater masses adiabatically (Gent et al., 1995). In an isopycnal layer

odel (which is naturally adiabatic) the GM parameterization can be

escribed as a diffusion of the interface height between isopycnal lay-

rs (Gent et al., 1995; Vallis, 2006; Hallberg, 2013). A major question

hat remains is what sets the eddy tracer and interface height dif-

usivities. It is clear that both coefficients should vary in space and

epend on properties of the resolved flow itself. Some dependence of

he eddy diffusivity on the resolved flow is now commonly included

n numerical ocean models (e.g., Farneti and Gent, 2011). However,

xactly how this dependence should look remains unclear - yet it is

f primary importance for the response of eddy transports to changes

n the external forcing.

It has recently been proposed to formulate the eddy diffusivity

ased on a mesoscale eddy kinetic energy (EKE) budget (Cessi, 2008;

den and Greatbatch, 2008; Marshall and Adcroft, 2010). Both the
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racer and interface height eddy diffusivities are expected to scale

ith a typical eddy velocity times a mixing length. The eddy veloc-

ty can be inferred from the EKE, leaving the mixing length scale to be

pecified. A generally applicable scaling relation for the mixing length

as not yet been derived. However, even assuming a constant mixing

ength, an EKE budget based parameterization may be expected to be

uperior to the assumption of a constant eddy diffusivity, as it takes

nto account the dependence of the eddy velocity on the mean state.

The goal of this paper is to build upon some of the arguments pro-

osed by Cessi (2008) , Eden and Greatbatch (2008) and Marshall and

dcroft (2010). We will analyze a series of idealized numerical sim-

lations, test some of the assumptions made in these previous stud-

es, and discuss their implications for the estimated eddy diffusivity.

ased on these considerations, we will propose an improved param-

terization for the mesoscale eddy tracer diffusivity and GM transfer

oefficient.

One focus here will be on the role of frictional dissipation. The

KE level in a statistical equilibrium is controlled by a balance be-

ween the net transfer of energy from the large-scale mean flow to

KE (by instabilities of the mean flow) and the dissipation of EKE. It

as therefore been argued repeatedly that frictional dissipation must

e important in controlling the level of EKE and with it the eddy diffu-

ivity (e.g., Arbic and Flierl, 2004; Thompson and Young, 2007; Arbic

nd Scott, 2008; Cessi, 2008). However, none of the traditional pa-

ameterizations for the mesoscale eddy diffusivity (e.g., Green, 1970;

tone, 1972; Held and Larichev, 1996; Visbeck et al., 1997) includes

ny explicit dependence on parameters characterizing frictional dis-

ipation. Of the EKE budget based arguments cited above, only Cessi

2008) and Marshall and Adcroft (2010) explicitly consider the role of

rictional dissipation. In both cases frictional dissipation is described

y a simple linear loss term in the EKE budget, seemingly consistent

ith the linear bottom drag assumed in the numerical simulations

onsidered in these studies.

In addition to the role of frictional dissipation on the eddy en-

rgy budget, we will also make a new attempt at characterizing what

ets the eddy mixing length. In the limit of vanishing planetary vor-

icity gradient and topography, the mixing length is ultimately lim-

ted by bottom friction. However, the frictional arrest scale predicted

y barotropic turbulence theory (Grianik et al., 2004; Held, 1999)

eeds to be modified to include effects associated with baroclinicity.

oreover, any significant planetary vorticity gradient, β , is shown to

uppress mixing, and limit the effective mixing length to the Rhines

cale.

This paper focusses on some of the theoretical challenges in the

ormulation of the EKE budget and mixing length. A variant of the

KE budget equation is introduced in Section 2. In Section 3, we show

esults from a series of idealized numerical simulations, with the dis-

ussion focussing primarily on the mixing length, as well as the ver-

ical structure of EKE - which controls the dissipation rate of EKE via

ottom friction. In Section 4, we then use the results for the mixing

ength and vertical structure of EKE to derive a scaling relation for

he eddy diffusivity, assuming a spatially and temporally local bal-

nce of EKE generation and dissipation (similar to Cessi, 2008). In

ection 5, we discuss some outstanding questions and directions for

uture work, and we conclude with a summary of the main results in

ection 6.

. The EKE budget

Eden and Greatbatch (2008) formulate a predictive equation for

he three-dimensional field of mesoscale eddy kinetic energy, for use

n a numerical model which does not resolve the mesoscale flow.

uch a local budget leaves some arbitrariness as to the exact formula-

ion of large-scale to mesoscale energy transfer terms, with different

ormulations differing by flux terms, which vanish in a global integral,

ut may be large locally. Moreover, using any formulation, flux terms
o arise and need to be parameterized. This provides a challenge in

articular for the computation of the vertical structure of mesoscale

KE, which typically organizes mostly into the barotropic and lowest

aroclinic modes (Wunsch, 1997). For simplicity, we here formulate

budget equation only for the total vertically integrated mesoscale

KE (as also done by Cessi, 2008), thus circumventing the need for an

xplicit parameterization of vertical EKE fluxes.

If we assume that the effect of mesoscale eddies on the large scale

ow is represented by the GM parameterization and a viscous stress

erm, we can write the mesoscale EKE budget equation as

t E = ĖGM − Ė f ric − ∇ · T. (1)

˙
GM is the energy loss of the large-scale flow associated with the GM

arameterization - which parameterizes the conversion of large-scale

vailable potential energy into mesoscale EKE by baroclinic instabil-

ty. Ė f ric represents frictional dissipation of mesoscale EKE, and T de-

otes the horizontal transport of mesoscale EKE.

The simulations discussed in this paper employ an isopycnal layer

odel, in which the effect of the GM parameterization is obtained by

diffusion of the layer interface height, and thus

˙
GM = 1

H

∑
i

g′
iKη|∇ηi|2 (2)

here H is the total depth, g′
i

is the reduced gravity at the ith layer in-

erface, ηi is the interface height displacement of the large-scale “re-

olved” flow, and Kη is the interface height diffusivity, which is analog

o the GM coefficient in a z−coordinate model (Gent et al., 1995; Val-

is, 2006; Hallberg, 2013). The sum is here taken over all layer inter-

aces. As mentioned above, there is some freedom as to how exactly

his term is formulated, with the difference between formulations

mounting to a flux term, which vanishes upon global integration but

ot locally. The formulation in Eq. (2) has the desirable property that

t is locally positive definite.

We don’t include a direct transfer of kinetic energy between the

arge-scale resolved flow and the mesoscale eddies. A direct transfer

rom large-scale KE to mesoscale EKE represents the source of EKE in

arotropic instability (e.g. Marshall and Adcroft, 2010), which, how-

ver, is not expected to be important in the simulations discussed be-

ow. In general, the sign of the net kinetic energy transfer between

he large-scale flow and mesoscale eddies remains unclear. Jansen

nd Held (2014) propose to include a “backscatter” of KE from sub-

rid scales to the resolved flow in eddy permitting models, to rep-

esent the up-scale transfer of EKE in geostrophic turbulence. Even

t coarser, non-eddying, resolution such a backscatter term (which

an drive jets and Taylor caps) may be of at least similar magnitude

o the potential source of mesoscale EKE associated with barotropic

nstability. For simplicity neither barotropic instability nor energy

ackscatter are included in the EKE budgets discussed here.

Ė f ric is the frictional dissipation of EKE. Unlike three-dimensional

sotropic turbulence, geostrophic turbulence does generally not ex-

ibit a direct kinetic energy cascade towards the micro-scale, where

nergy can be dissipated effectively by the molecular viscosity.

his lack of a direct EKE cascade opens up the question of how

esoscale EKE is dissipated in the ocean. While the exact pathways

f mesoscale EKE to dissipation remain unknown and heavily de-

ated (e.g. Wunsch and Ferrari, 2004; Ferrari and Wunsch, 2009),

here is both observational and numerical evidence for strongly en-

anced dissipation near the bottom boundary, where rough topog-

aphy generates energy transfers into internal waves and boundary

ayer turbulence (e.g. Ledwell et al., 2000; Nikurashin et al., 2013). In

he numerical simulations discussed in this study frictional dissipa-

ion near the bottom boundary is parameterized using a quadratic

ottom drag. A quadratic drag law follows directly from dimen-

ional considerations, and is widely used in numerical ocean models

Egbert et al., 2004; Gill, 1982; Willebrand et al., 2001). Consistent

ith our numerical model we formulate the frictional dissipation of
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mesoscale EKE as

Ė f ric = CD

H
|Ub|2Eb. (3)

Here |Ub| = [U2
0 + |v(z = −H)|2 + 2Eb]1/2 is the total velocity near the

bottom. |v(z = −H)|2 is the large-scale (resolved) flow in the bot-

tom layer, and U0 is an unresolved background velocity, representing

e.g. tidal motions, which effectively leads to an additional linear drag

component. Notice, that it is only the EKE near the bottom, Eb, which

enters the dissipation via bottom friction. To obtain a closed budget

for the mesoscale EKE, we thus need to know the ratio of the EKE near

the bottom to the total EKE. This parameter will be discussed in more

detail in Section 3.5.

While appropriate for the numerical simulations discussed in this

study, it remains an open question whether Eq. (3) adequately cap-

tures the bulk of the mesoscale EKE dissipation in the real ocean. A

better understanding of the pathways to dissipation of mesoscale EKE

in the real ocean thus remains an important topic of future research

(see also Section 5).

T denotes the horizontal transport of EKE. Eden and Greatbatch

(2008) and Marshall and Adcroft (2010) parameterize this term by a

diffusion of EKE and advection by the resolved large-scale flow. In

practice flow-relative eddy propagation is arguably at least as im-

portant as mean flow advection, with the former dominating the net

eddy propagation over most of the ocean (e.g., Chelton et al., 2007;

Klocker and Abernathey, 2014; Klocker and Marshall, 2014).1 Cessi

(2008) ignores the transport of EKE, assuming a local balance be-

tween generation and dissipation of EKE. A similar approach will be

followed here. The assumption of a local mesoscale EKE balance is ex-

pected to be adequate for most of our simulations, which use a zon-

ally symmetric channel model. However, an accurate parameteriza-

tion of EKE transports will likely be of greater importance in a more

realistic ocean configuration, and thus provides an important topic

for future work.

2.1. The tracer diffusivity and GM coefficient

Once an EKE budget is formulated, it can be used to infer an eddy

diffusivity. Here, we are primarily interested in the interface height

diffusivity, which appears in the energy budget equation (1). The

passive tracer and potential vorticity (PV) diffusivities are expected

to scale largely similarly to the interface height diffusivity in a bulk

sense, though their vertical structures may differ substantially (e.g.,

Abernathey et al., 2013). In the two-layer simulations discussed be-

low, the PV diffusivities in both layers can be inferred directly from

the interface height diffusivity, as long as the flow is well approxi-

mated by planetary geostrophic scaling (Vallis, 1988). In the limit that

the contribution of β to the PV gradient is small, all diffusivities are

identical.

Mixing length theory (Plumb, 1979; Prandtl, 1925) suggests that

the eddy diffusivity scales as the product of a characteristic eddy ve-

locity times a mixing length, Lmix:

K ∼
√

E × Lmix. (4)

Cessi (2008), Eden and Greatbatch (2008), and Marshall and Adcroft

(2010) all use the formulation in Eq. (4), but with differing assump-

tions for the mixing length, Lmix. In the following section we will an-

alyze a range of numerical simulations to test the scaling relation in

Eq. (4) and determine what controls the mixing length.

Cessi (2008) argues that the characteristic eddy velocity should

be based on the barotropic mode EKE only, since the geostrophic flow
1 Some of this work focuses on the observed or inferred eddy phase speeds, while

EKE is expected to propagate with the group velocity. However, it also appears that the

dispersion relation typically shows only weakly dispersive behavior, suggesting that

phase and group-propagation are likely to be roughly similar (e.g. Early et al., 2011,

and references therein).

F

t

t

ssociated with a given baroclinic mode cannot advect baroclinicity

ssociated with that same mode. This argument is expected to hold

ell if the flow is dominated by the barotropic and first baroclinic

ode only, which is likely to be true over most of the ocean (Wunsch,

997). The argument is also expected to hold in the two-layer model

imulations discussed below, which by construction support only one

aroclinic mode.

. Numerical simulations

.1. Model description

We performed a series of numerical simulations using a flat-

ottomed, periodic channel configuration of MOM6, with two adia-

atic vertical layers, similar to the setup discussed by Hallberg (2013).

he domain is 1600 km wide in the meridional direction, 1200 km

ong in the zonal direction, and 2000 m deep. The zonal mean in-

erface height (in the following loosely referred to as “pycnocline

epth”) is restored to a hyperbolic tangent profile on a relatively fast

ime-scale (10d), but with no damping of anomalies relative to the

onal mean. Like a zonally-symmetric wind-stress, the forcing thus

oes not directly impact the eddy energy budget. The baroclinic zone

s here somewhat wider than in Hallberg (2013), with a hyperbolic

angent profile with a characteristic width of 800 km. The pycnocline

epth varies across the baroclinic zone from about 800 m in the south

o about 200 m in the north. The equilibrium solution for the restor-

ng is shown in Fig. 1. EKE is dissipated primarily by bottom drag,

hich is described via a quadratic drag law, as discussed in Section 2.

weak background velocity U0 = 1 cm s−1 is included in the formu-

ation of the bottom drag, but has relatively little impact in the more

nergetic region near the center of the jet. Enstrophy is dissipated

ear the grid-scale using a biharmonic viscosity, with a viscosity coef-

cient following Smagorinsky (1963) (see Griffies and Halberg, 2000,

or the biharmonic formulation applied here).

A series of simulations is analyzed, with differing buoyancy

ontrasts across the two layers: �ρ/ρ0 = (0.75, 1.5, 3.0) × 10−3,

iffering Coriolis parameters: f0 = (0.56, 1.1, 2.2) × 10−4 s−1, and

iffering planetary vorticity gradients: β = (0, 0.75, 1.5, 3) × 10−11

−1 s−1. The simulations use a β-plane approximation, with f0 here

eferring to the Coriolis parameter in the middle of the domain.

he planetary vorticity gradient, β = ∂y f is constant over the do-

ain. Each parameter is varied separately with the other param-

ters fixed at their reference value (marked above in bold face),

hich yields 8 different parameter sets. For all resulting parame-

er sets, the bottom drag coefficient is varied between 8 values:
y [km]

 
0 200 400 600 800 1000 1200 1400 1600

−2000 0

ig. 1. Interface height (grey line) and associated geostrophic velocity (shading) for

he equilibrium solution of the restoring forcing. The bottom layer is motionless due to

he lack of a momentum forcing and presence of bottom drag.
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Fig. 2. Snapshot of upper-layer relative vorticity for the reference simulation with

Cd = 0.01.
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Fig. 3. Time and zonal mean interface height (solid gray line) and zonal velocity (shad-

ing) for the reference simulation with Cd = 0.01. The dashed grey line (largely indis-

tinguishable from the solid gray line) shows the interface height for the equilibrium

solution of the restoring forcing.
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d = (0.625, 1.25, 2.5, 5, 10, 20, 40, 80) × 10−3, which yields a total

f 8 × 8 = 64 simulations. The bottom drag coefficient is typically as-

umed to be constant in ocean models, which might make it seem ir-

elevant to consider a range of simulations with varying bottom drag.

he reasoning to consider a wide range of bottom drags here is at least

wo-fold. First, there is a theoretical interest in exploring the role of

rictional dissipation in controlling the eddy statistics. Moreover, we

ill argue below that the relevant non-dimensional parameter char-

cterizing the role of frictional drag, is the ratio of a frictional length

cale to the deformation radius, which may vary considerably even

f the drag coefficient remains constant. Eventually, the drag coeffi-

ient may indeed vary significantly in the real ocean, depending on

he small-scale topographic roughness (e.g. Özgökmen and Fischer,

008).

The total range of deformation radii over the domain and

arameter-range used here extends from 8.1 km at the northern end

f the domain in the simulations with f0 = 2 × 10−4 s−1 to 53 km

t the southern end of the domain and for the simulations with

f0 = 0.5 × 10−4 s−1. Near the center of the baroclinic jet, the smallest

eformation radius is about 12 km (again for the simulations with

f0 = 2 × 10−4 s−1). Using a similar setup, Hallberg (2013) showed

hat a resolution of one to two grid-points per deformation radius

s sufficient to obtain adequately resolved eddy fluxes, with the exact

alue dependent on the supercriticality of the background flow. Based

n these results, we choose a grid-spacing of 5 km, which should be

dequately eddy-resolving over the entire parameter range. All simu-

ations are spun-up to a statistical equilibrium for 10 years, and statis-

ics are computed for 10 years following this initial spin-up period.

Notice that our model setup is highly idealized, and lacks sev-

ral ingredients that may be of importance in the real ocean, such as

ontinental boundaries, bottom topography, or higher vertical modes

which would require more vertical levels). This and the following

ection will focus on understanding and parameterizing the turbu-

ent flow properties arising in this idealized numerical model. The

imitations of the model for the interpretation of processes in the real

cean will be discussed in Section 5.

.2. General results

Fig. 2 shows a snapshot of relative vorticity in the upper layer for

simulation with the reference case parameters and C = 1 × 10−2.
d
e see vigorous eddy activity in the baroclinically forced region be-

ween about y = 400 km and y = 1200 km. Fig. 3 shows the zonal

ean flow associated with this simulation. Due to the fast restoring of

he zonal mean interface height, the large-scale slope of the interface

hanges little relative to the restoring profile, despite the obvious vig-

rous eddy activity. Since the flow is largely geostrophically balanced,

his implies relatively small deviations of the large-scale baroclinic

ean flow from the equilibrium state of the restoring (compare to

ig. 1). However, two localized eastward jets are spun up near the do-

ain center, which extend into the lower layer. The eastward jets in

he lower layer are accompanied by broader westward flows further

orth and south. The lower layer flow here is driven entirely by eddy

omentum fluxes, since the frictional drag acting on the deep-ocean

ow is balanced only by the vertically integrated eddy momentum

ux convergence. Lower layer jets thus cannot be generated if eddy

ffects are parameterized solely by a GM parameterization, or inter-

ace height diffusion, which does not generate a net momentum flux.

he snapshot in Fig. 2 suggests that the jets here are relatively weak

s compared to the eddies, and thus become apparent only in time-

nd zonal averages.

.3. The bulk eddy diffusivity

In this paper we are most interested in the eddy-driven mass

ransport, which can be related to the mean baroclinicity by an eddy

nterface height diffusivity, and which typically represents the major

ource of EKE (see Eq. (2)). Since the domain and forcing are zonally

ymmetric, it is natural to define eddies as deviations from the zonal

verage. Due to mass continuity, the long-term mean eddy driven

ass transport in the upper and lower layer are approximately equal

nd opposite, and we can compute an eddy driven overturning circu-

ation as

† ≡ 〈v′
1
h′

1
〉, (5)

here v1 and h1 represent the upper layer meridional velocity and

ayer thickness, respectively. The overbar denotes a zonal average,

ith primes denoting deviations from the zonal mean, and 〈〉 de-

otes a time average, here taken over the last ten years of each sim-

lation. The resulting eddy driven overturning transports are shown

n Fig. 4, for three example simulations, with the reference param-

ter values for f0, β , and �ρ/ρ0, but three different values for the

ottom drag coefficient: the lowest, highest and one intermediate

alue. As expected, the eddy driven overturning circulation is overall

argest where the baroclinic forcing is strongest and decays towards

he northern and southern ends of the domain. The peak overturning
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Fig. 4. Solid: eddy-driven overturning mass transport for three different values of the

drag coefficient (see legend). Dashed: overturning mass transport inferred by using

a diffusive closure for the thickness flux with a constant eddy diffusivity computed
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the region that is used to compute averaged quantities.
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circulation varies between about 1 m2 s−1 for the simulation with the

strongest frictional drag, to about 4 m2 s−1 in the simulation with the

weakest drag. If we were to extrapolate this to a 20000 km circumpo-

lar channel, we would obtain an overturning transport of about 20–

80 Sv, which is on the same order as the eddy driven overturning

transport in the antarctic circumpolar current (ACC), with the lower

end likely being more realistic (e.g. Mazloff et al., 2013).

While Fig. 2 through 4 show obvious meridional variations in the

eddy and mean flow statistics, the focus of this paper is on the bulk

parametric dependence of the eddy diffusivity. For this purpose we

will compute averaged quantities for each simulation, with averages

taken over the more strongly baroclinic region in the center of the

domain, between y = 500 km and y = 1100 km. Specifically, a bulk
C
d
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Fig. 5. (a) Eddy diffusivity against the bottom drag coefficient for all simulations performed

non-dimensionalized frictional length scale Lf/[Ld]. In both figures, pluses denote the simula

(black) and halved (gray) layer density contrast �ρ , squares denote the simulations with do

simulations with doubled (black) and halved (gray) Coriolis parameter f0, and circles denote
orizontal eddy interface-height diffusivity is defined as

K] ≡ [�†]

[〈∂yη〉]
, (6)

here ∂yη is the slope of the layer interface and [ ] denotes the merid-

onal average. Notice that �† = v′
1
h′

1
≈ v′

1
η′ ≈ v′

tη
′, where vt is the

arotropic velocity. In the second step we ignored the (very small)

ontributions to the layer thickness associated with the free sur-

ace, while in the last step we made the geostrophic approximation,

hich implies that (v1 − v2)′η′ ∝ −∂xη′η′ = 0. The quantity defined

y Eq. (6) can thus be interpreted as an eddy interface height diffu-

ivity, which is governed by the barotropic flow. The definition in (6)

s also equivalent to the GM coefficient in a z-coordinate model (e.g.,

ent et al., 1995; Vallis, 2006). The time- and meridional-averages

n Eq. (6), are taken separately in the numerator and denominator

o ensure that the bulk eddy diffusivity remains well defined if the

nterface height slope is weak at certain times and locations. Fig. 4

hows estimates of the time-mean eddy driven overturning circula-

ion obtained by multiplying the thus defined eddy diffusivity by the

onal mean interface height slope. The bulk eddy diffusivity success-

ully captures the bulk eddy transport over the region used to com-

ute the average. However, Fig. 4 also shows that a globally constant

ddy diffusivity would yield a poor representation of the local eddy

ransport in some regions.

The bulk eddy diffusivity obtained for all simulations is shown

n Fig. 5a, as a function of the drag parameter. The eddy diffusivity

aries widely with both the frictional drag as well as other parame-

er changes, ranging from about 400 m2 s−1 to about 50,000 m2 s−1.

he reference setup at realistic intermediate drag values has dif-

usivities around 4000 m2 s−1, which is significantly larger than

alues typically found over most the ocean (e.g. Abernathey and

arshall, 2013). Relatively large eddy diffusivities are expected for

ur reference case setup, because the baroclinicity is characteristic

f that found in the more energetic regions of the Southern Ocean

which served as a rough motivation for the setup), while the defor-

ation radius is significantly larger than in the Southern Ocean. This

s not likely to limit the interpretability of the results in the context

f the real ocean, since the dynamical properties of the flow depend

nly on the non-dimensional parameters (which will be discussed
L
f
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for this study. (b) Eddy diffusivity non-dimensionalized by [Ld] and [σ E] against the

tions with the reference parameter set, crosses denote the simulations with doubled

ubled (black) and halved (gray) planetary vorticity gradient β , diamonds denote the

the simulations with β = 0.
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Table 1

Overview of derived bulk quantities defined in this paper (see text for details). Dimensions are given in terms of length (L) and

time (T). All non-dimensionalized quantities discussed in this paper are normalized using the deformation radius and Eady growth

rate (marked in bold).

Symbol Description Definition Dimensions

[Ld] Deformation radius

[〈 √
g′he

f

〉]
L

[σE] Eady growth rate
√

g′/H[〈∂yη〉] T−1

[K] Eddy (interface-height) diffusivity [�† ]
[〈∂yη〉]

L2T−1

[E] Eddy kinetic energy (EKE)
[〈h1 (u′2

1
+v′2

1
)+h2 (u′2

2
+v′2

2
)〉]

2H
L2T−2

[Eb] Bottom EKE
[〈u′2

2
+v′2

2
〉]

2
L2T−2

[Et] Barotropic EKE [〈(h1 u1+h2 u2 )′2+(h1v1+h2v2 )′2〉]
2H2 L2T−2

γ Bottom to barotropic EKE ratio [Eb]/[Et] None

Lf Frictional scale H/Cd L

[LR] Rhines scale [Et ]1/4β−1/2 L

LBC Width of baroclinic zone 800 km L

[LLH] Effective mixing length implied by Larichev and Held (1995) scaling [Et ]1/2[σ ]−1 L

[Larr] Effective frictional arrest scale γ −3/2L f L

b

o

o

s

p

f

s

d

w

f

i

p

m

g

p

H

c

e

L

e

s

t

d

i

c

�

c

t

a

[

w

i

d

g

l

b

l

T

d

[

w

d

t

a

s

E

p

i

s

s

t

h

f

d

l

c

p

t

l

l

F

g

s

s

e

p

w

d

p

h

c

H

F

elow). The lack of topography in our simulations likely causes an-

ther bias towards larger eddy diffusivities, as compared to the real

cean. We will return to this issue in the discussion.

For most of the parameter sets considered here, the eddy diffu-

ivity increases as the frictional drag is reduced, which might be ex-

ected considering the reduced dissipation of eddy energy. However,

or the simulations with doubled planetary vorticity gradient (black

quares) and halved Coriolis parameter (gray diamonds), the eddy

iffusivity instead decreases for low frictional drag values. At the very

eakest drag values, a slight decrease in the eddy diffusivity is also

ound in some of the other simulations.

To understand the variability of the eddy diffusivity observed

n 5a, it is helpful to consider the most relevant non-dimensional

arameters. Following homogeneous, quasi-geostrophic scaling, we

ay expect the four most relevant dimensional parameters to be

iven by the deformation radius, Ld, an Eady growth rate, σ Eady, the

lanetary vorticity gradient, β , and a frictional length scale Lf ∼
/Cd. Lf may be thought of as the scale at which the frictional de-

ay time-scale for a barotropic perturbation, τ f ∼ L f U
−1, equals the

ddy overturning time-sale, τeddy ∼ LU−1. In barotropic turbulence,

f represents the halting scale of the inverse energy cascade Grianik

t al. (2004); Held (1999). Normalizing length scales by Ld and time-

cales by σ Eady, we are left with two non-dimensional parameters:

he non-dimensionalized frictional length scale, Lf/Ld, and the non-

imensionalized planetary vorticity gradient, β∗ ≡ βLd/σ Eady, which

s inversely proportional to the super-criticality of the flow to baro-

linic instability.2 Notice that the Eady growth rate is proportional to

U/Ld, where �U denotes the shear velocity between the two verti-

al layers. The normalization used here is thus analogous to one using

he deformation radius and baroclinic shear.

For the present model, a bulk deformation radius can be defined

s

Ld] ≡
[〈√

g′he

f

〉]
, (7)

ith the averages defined as before. g′ ≡ g�ρ/ρ is the reduced grav-

ty for the layer interface, and he = h1h2/(h1 + h2) is the equivalent

epth scale for the baroclinic mode. A bulk Eady growth rate can be
2 In the two layer model, the super-criticality of the system to baroclinic instability

enerally depends on βLd/σ Eady , as well as the ratio between the upper and the lower

ayer depth, which is held constant here (e.g., Nakamura and Wang, 2013). As argued

y Flierl (1978), the two mode interpretation of the two-layer model suggests that the

ayer depth ratio may be interpreted as the surface intensification of the stratification.

he role of this parameter has been discussed by Arbic and Flierl (2004).

g

c

1

a

σ

h

efined as

σE] =
√

g′/H[〈∂yη〉], (8)

here H is the total depth.3 A summary of all the derived quantities

efined in this paper is given in Table 1.

Fig. 5b shows the eddy diffusivity normalized by L2
d
σE , as a func-

ion of Lf/Ld. We first note that the normalized eddy diffusivity varies

t least as widely over the considered set of simulations as the dimen-

ional eddy diffusivity, suggesting that the deformation radius and

ady growth rate alone do not explain much of the variability. The de-

endence of the normalized eddy diffusivity on the normalized drag

s similar to what is observed without the normalization: the diffu-

ivity mostly increases with reduced drag (larger Lf/Ld), though the

mallest diffusivities are found in the weak-drag limit of the simula-

ions with doubled planetary vorticity gradient (black squares) and

alved Coriolis parameter (grey diamonds).

The simulations considered here can be grouped into four dif-

erent sets based on their non-dimensional planetary vorticity gra-

ient, or super-criticality. Due to the fast zonal mean restoring, the

ayer depths and slope of the layer interface change little over the

onsidered range of simulations, so that to a reasonably good ap-

roximation β∗ = βLd/σEady ∝ β/ f . Changes in the density contrast

hus have little impact on β∗. A doubling of β or halving of f both

ead to a doubling of β∗, while a doubling of f or halving of β both

ead to a halving of β∗. β∗ is zero for the simulations with β = 0.

ig. 5b shows that simulations with large β∗ (weak super-criticality)

enerally have weaker eddy diffusivities, while simulations with

mall β∗ (strong super-criticality) have larger eddy diffusivities, for

imilar values of the normalized drag. Most of the variability in the

ddy diffusivity appears to be explained by the two non-dimensional

arameters – particularly for strong and moderate drag. However, at

eak drag there remain significant discrepancies between the eddy

iffusivities of simulations with almost identical non-dimensional

arameters. These discrepancies are likely primarily due to spatial in-

omogeneities – we will return to this issue below.

The dependence of the normalized eddy diffusivity on the super-

riticality is in qualitative agreement with many previous studies (e.g.

eld and Larichev, 1996; Thompson and Young, 2007; Jansen and

errari, 2013). The dependence of the normalized eddy diffusivity
3 There is some arbitrariness as to what depth scale to use to estimate the Eady

rowth rate, which has originally been defined only for a fluid with constant stratifi-

ation - which is roughly analogous to a two-layer setup with equal layer depth (Flierl,

978). The definition here was chosen such that the energy extraction associated with

n interface height diffusion generally scales with the interface height diffusivity times
2
E (see Section 4). Since all layer depths are held constant in the simulations discussed

ere, alternative definitions would only impact constant factors.
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Fig. 6. Bulk eddy diffusivity against estimates based on a mixing length argument: K = E1/2
t Lmix, with Et the diagnosed barotropic EKE, and various choices for the mixing length:

(a) Lmix = αBCLBC = const, where αBC = 0.04 (b) Lmix = αd[Ld], with αd = 2.0, (c) Lmix = α f L f , with α f = 0.3, and (d) Lmix = αR[LR], with αR = 0.45. The constant coefficients, αx ,

were chosen empirically to match the data. The markers used for the different sets of simulations are as in Fig. 5. Notice that panel (c) has an increased axis-range to include the

very large diffusivity estimates.
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on the frictional drag qualitatively resembles the results reported by

Thompson and Young (2007), who find that the eddy diffusivity de-

creases with increasing drag for moderately and highly supercritical

mean states, while the eddy diffusivity increases with drag for weakly

supercritical mean states. This qualitative similarity comes despite of

the use of a linear friction in Thompson and Young (2007), where the

non-dimensional drag coefficient is computed as the ratio of the drag

rate to the Eady growth rate.

3.4. The mixing length

Eq. (4) formulates an eddy diffusivity in terms of the EKE and a

mixing length. To isolate the question of what sets the mixing length,

we compute estimates of the eddy diffusivity based on the diag-

nosed EKE, and various formulations for the mixing length. Since the

eddy interface height diffusivity is expected to be controlled by the

barotropic flow, estimates are computed as

K = [Et ]1/2L , (9)
mix
here Et denotes the barotropic EKE, and different quantities will

e chosen for the mixing length. Using the total EKE instead of the

arotropic component yields qualitatively similar results, but the best

t to the observed eddy diffusivity shows somewhat more spread.

Fig. 6 tests Eq. (9) using four different formulations for the eddy

ixing length: 1) the total width of the baroclinic region, LBC (Green,

970; Visbeck et al., 1997), 2) the baroclinic deformation radius, Ld

Stone, 1972), 3) the frictional halting scale, Lf (Grianik et al., 2004;

eld, 1999), and 4) the Rhines scale, LR, (Held and Larichev, 1996;

hines, 1979). Due to the fast zonal-mean interface height restoring,

BC is here well approximated by a constant: LBC ≡ 800 km. A constant

ixing length is also commonly used in climate model implementa-

ions of the Visbeck et al. (1997) parameterization (e.g., Farneti and

ent, 2011). The Rhines scale is computed based on the diagnosed

arotropic EKE: [LR] ≡ [Et ]1/4β−1/2.

Fig. 6 a, suggests that the barotropic EKE by itself is a useful pre-

ictor of the eddy diffusivity, but the combination with a constant

ixing length appears to underestimate the dependence of the eddy
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Fig. 7. Bulk eddy diffusivity against estimates based on a mixing length argument:

Kest ∼ E1/2
t Lmix, for the simulations with β = 0. Three different choices have been used

for the mixing length: Lmix ∼ Lf , Lmix ∼ ([Et]/[Eb])3/2Lf , and Lmix ∼ LLH ≡ [Et]
1/2[σ E] – see

text for an explanation of the different length scales. For each case the constant factor

has been chosen to match the data.
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iffusivity on the EKE level. Replacing the mixing length with the de-

ormation radius worsens the fit, suggesting that Ld is not a useful

redictor of the mixing length (Fig. 6b). The frictional scale, Lf, ap-

ears to over-estimate the sensitivity of the eddy diffusivity to the

ottom drag (Fig. 6c).

A very good fit is obtained for most simulations if the mixing

ength is chosen as the Rhines scale (Fig. 6d). Some limitations re-

ain in the limit of very low friction and in the weakly super-critical

imulations with small f0 or large β , which show lower eddy dif-

usivities than predicted. In these limits the eddies tend to spin up

trong barotropic jets, with large associated horizontal shears. It ap-

ears that these shear flows suppress baroclinic instability and eddy

ixing as discussed by James and Gray (1986), who dubbed this effect

he “barotropic governor”. The results of Zurita-Gotor (2007) suggest

hat this effect might be captured by including the barotropic vortic-

ty gradient of the zonal mean flow in the definition of a generalized

. A predictive theory which incorporates this generalization would

equire a theory for the vorticity of the barotropic jets, which is be-

ond the scope of this study. More generally the Rhines scale here

rovides an upper bound on the mixing length. The Rhines scale,

owever, provides no bound for the mixing length in the limit of

→ 0, where LR → ∞. This makes clear that some other process must

alt the cascade and control the mixing length in this limit. In the fol-

owing sub-section we will argue that, in the absence of a planetary

orticity gradient, the mixing length is ultimately limited by friction.

Before proceeding to the limit case of β = 0, we shall note that

or our simulations with β > 0 the Rhines scale represents a better

pproximation for the mixing length than the eddy length scale itself,

s diagnosed from the first moment of the EKE spectrum (not shown).

his is in qualitative agreement with previous studies, who pointed

owards the difference between the mixing and eddy length scales

Thompson and Young, 2007; Ferrari and Nikurashin, 2010; Klocker

nd Abernathey, 2014).

he f-plane limit

In the f-plane limit (β = 0), barotropic turbulence theory predicts

hat quadratic bottom drag halts the inverse EKE cascade when L = L f

Grianik et al., 2004; Held, 1999). However, as shown in Fig. 6c, Lf

ver-estimates the dependence of the mixing length on the bottom

riction in all simulations, including those with β = 0. The reason ap-

ears to be primarily related to the fact that the bottom flow decou-

les from the barotropic flow component, thus reducing the impact

f changes in the frictional drag.

The frictional arrest scale can be derived by equating the energy

ux in the barotropic inverse EKE cascade with the frictional dissipa-

ion. The EKE flux in the barotropic cascade may be argued to scale

s V 3
t /Larr (e.g. Larichev and Held, 1995), where Vt is the character-

stic barotropic eddy velocity and Larr is the arrest scale. Eq. (3) in

urn suggests that the frictional dissipation (per unit depth) scales as

dV 3
b

/H ∼ V 3
b

/L f , where Vb is the eddy velocity in the lower layer. In a

urely barotropic flow Vb = Vt , and thus Larr ∼ Lf (Grianik et al., 2004).

or a baroclinic flow, the argument suggests a more general frictional

rrest scale

Larr] ≡ ([Et ]/[Eb])3/2L f . (10)

s shown in Fig. 7, this modified arrest scale provides a better esti-

ate for the mixing length than Lf. The dependence of the eddy dif-

usivity on the bottom drag, however, still appears to be somewhat

verestimated. This is likely due to additional losses of EKE, mostly

y turbulent advection out of the central jet region, particularly at

ow friction. This additional energy loss invalidates the assumption

f a local balance between the energy cascade rate and the frictional

issipation, which is the basis for the derivation of Eq. (10).

Larichev and Held (1995) proposed to equate the inverse EKE cas-

ade rate with the generation of EKE (rather than the frictional dis-

ipation rate). The generation of EKE is given by Eq. (2), which, with
he definition of the Eady growth rate in Eq. (8), suggests a genera-

ion rate proportional to Kσ 2
E . If K ∼ LVt, a balance between the EKE

eneration and the cascade rate, V 3
t /L, implies a length scale

LLH] ≡ [Et ]1/2[σ ]−1. (11)

s shown in Fig. 7, Eq. (11) provides a good approximation for the

ffective mixing length in the limit of β = 0. For finite β , Eq. (11) gen-

rally over-estimates the mixing length (not shown), suggesting that

LH provides another upper bound for Lmix.

Larr and LLH are identical if the EKE generation and frictional dissi-

ation balance locally (as will be assumed in Section 4), because both

re derived from a balance of the generation/dissipation rate and the

caling for the EKE cascade rate, V 3
t /L. Even though Eq. (11) shows no

xplicit dependence on the bottom friction, the mixing length is then

imited by bottom friction, with the latter entering indirectly in (11),

ia the dependence on the EKE.

Comparison of LLH with the Rhines scale, LR, suggests a transi-

ion between the f-plane regime and the Rhines scale limited regime

hen β ∼ σ 2E−1/2
t . Again, a dependence on the bottom friction is im-

lied via the dependence on Et. We will see in Section 4 that for all our

imulations with β > 0 the Rhines scale remains the limiting factor

n controlling the mixing length.

.5. Bottom flow and barotropic EKE

The EKE budget discussed in Section 2 shows that it is only the

KE near the bottom which enters in the frictional dissipation of

esoscale EKE. The results in Section 3.4 instead show that it is the

arotropic component of the eddy velocity which is most important

n determining the eddy diffusivity. In this section we discuss what

ets the bottom- and barotropic-fraction of the EKE. In general we ex-

ect that the inverse energy cascade acts to accumulate energy in the

arotropic mode, which then also dominates the bottom flow. Fric-

ional drag, however, will inhibit this barotropization by selectively

issipating EKE in the bottom layer. We will therefore hypothesize

hat most of the variability in the bottom- and barotropic-fraction of
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Fig. 8. (a) Ratio of EKE in the bottom layer to vertically averaged EKE, as a function of the frictional parameter Lf/Ld . The solid line shows [Eb]/[E] = (1 + cb(L f /[Ld])−1)−4/5, where

cb = 25 was chosen to match the data in the limit of strong friction. (b) Ratio of EKE in the barotropic mode to vertically averaged EKE, as a function of the frictional parameter Lf/Ld .

The solid line shows [Et ]/[E] = (1 + ct (L f /[Ld])−1)−1/4, where ct = 50 was again chosen to match the data in the limit of strong friction. (c) Ratio of EKE in the bottom layer to the

barotropic mode EKE, as a function of the frictional parameter Lf/Ld . The solid line shows the ratio of the two fits in (a) and (b). The dashed line shows [Eb]/[Et] ∼ (Lf/[Ld])1/3. The

markers used for the different sets of simulations are as in Fig. 5. Notice the different scales for the y-axis in Figs. (a)–(c).
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EKE can be explained by variations in the non-dimensional frictional

drag parameter, Lf/Ld.

Fig. 8a shows the ratio of EKE in the bottom layer to the vertically

averaged EKE. The ratio varies by over an order of magnitude from

less than 0.1 for some of the simulations with the strongest friction

(i.e. smallest Lf/Ld) to just under 1 for some of the simulations with

the weakest friction (i.e. largest Lf/Ld). The frictional parameter, Lf/Ld,

explains most of this variability, though some spread remains, partic-

ularly at weak friction. Arbic and Scott (2008) derive scaling relations

for homogeneous 2-layer f-plane geostrophic turbulence in the limit

of strong quadratic bottom drag. For small Lf/Ld their predictions im-

ply that Eb/E ∼ (Lf/Ld)4/5. In the limit of large Lf/Ld (i.e. weak drag), we

may expect EKE to be dominated by the barotropic mode and thus

Eb/E → 1. To mimic this behavior, we propose a functional relation of

the form

[Eb]

[E]
=

(
1 + cb

[Ld]

L f

)−4/5

, (12)

where the constant cb is chosen to match the simulations in the limit

of strong drag. As shown in Fig. 8a, Eq. (12) provides a reasonable fit

to the results of the simulations. In the simulations with large β∗ (i.e.

those with doubled β or halved f0) the ratio of the bottom layer to

total EKE appears to converge to a value smaller than one in the limit

of weak friction, so that Eq. (12) more generally provides an upper

bound for the bottom fraction of EKE. The weaker bottom signature

in the simulations with large β∗ is not unexpected, since the plane-

tary vorticity gradient imposes an asymmetry between the layers and

acts to inhibit the energy cascade (and thus barotropization). For sim-

plicity we will here not attempt to quantify this additional effect on

the vertical structure of the EKE.

Fig. 8 b shows the ratio of the EKE in the barotropic mode to the to-

tal (i.e. vertically averaged) EKE. The fraction of EKE in the barotropic

mode varies less strongly than the bottom flow fraction over the con-

sidered range of simulations, ranging from about 1/3 for the simula-

tion with the smallest Lf/Ld (i.e. strongest drag) to just under 1 in the

limit of weak drag. Again, the variability of the barotropic EKE frac-

tion over the considered range of simulations appears to be largely

captured by changes in Lf/Ld. For relatively large drag, the fraction of

EKE in the barotropic mode appears to scale well with (Lf/Ld)1/4. We
id not find a satisfactory theoretical explanation for this behavior.

ndeed in the limit of very large bottom drag, one may expect the

KE in the bottom layer to become negligible compared to the upper

ayer EKE (e.g. Arbic and Scott, 2008), in which case one can show

hat Et/E → h1/H = 1/4 for the configuration used here. This limit,

owever, does not appear to be reached in the present simulations.

ased on the empirical power-law scaling found for strong frictional

rag, and the expectation that Et/E → 1 in the limit of weak drag, we

ropose a functional relation of the form

[Et ]

[E]
=

(
1 + ct

[Ld]

L f

)−1/4

, (13)

here the constant ct is again chosen to match the simulations with

trong drag. As shown in Fig. 8b, Eq. (13) provides a reasonable fit

o the results of the simulations. In the simulations with large β∗,

he ratio of barotropic to total EKE again appears to converge to a

alue somewhat smaller than one in the limit of weak friction – the

xpected reasons for which are as discussed above.

In Section 4 we will attempt to derive a scaling relation for the

ddy diffusivity, assuming a local and instantaneous energy balance.

s has been noted by Cessi (2008), the total EKE then drops out, and

e only require a scaling relation for the ratio of the EKE near the

ottom to the barotropic EKE. Cessi (2008) assumed that this ratio

s close to one, arguing that the bottom flow is expected to be domi-

ated by the barotropic mode. The results here, however, suggest that

he bottom EKE fraction is more sensitive to changes in the frictional

arameter than the barotropic mode EKE fraction. Fig. 8c shows the

atio of EKE in the bottom layer to EKE in the barotropic mode. We

nd that this ratio varies considerably, ranging from less than 0.2

or the simulation with the smallest Lf/Ld (i.e. strongest drag) to just

nder one in the limit of weak drag. The explanation for the much

tronger decline of the bottom flow (as compared to the barotropic

ode) in the limit of large drag may be understood as “baroclinic

hielding”. The flow in the limit of very strong drag is strongly in-

ensified in the upper ocean. While this upper ocean flow projects

ignificantly onto the barotropic mode, the flow may be vanishingly

mall near the bottom. The baroclinic mode component in this limit

cts to increase the amplitude near the surface while cancelling the

mplitude in the deep ocean, thus “shielding” the flow from the
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Fig. 9. Eddy diffusivity plotted against the scaling relation in Eq. (19). The markers
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figure legend, the reader is referred to the web version of this article.)
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ottom drag. This in-phase coupling between the barotropic and

aroclinic modes has been found in observations and ocean state es-

imates (Müller and Siedler, 1992; Wortham, 2013; Wunsch, 1997).

Eb/Et is simply the ratio of the quantities shown in Figs. 8a and b,

nd as a result is reasonably approximated by the ratio of the two fits

n Eqs. (8) and (13) (Fig. 8c).

. The eddy diffusivity from a local EKE balance

The relations derived in Sections 2, 3.4, and 3.5 provide a recipe

or the formulation of an eddy parameterization, based on a pre-

ictive sub-grid EKE budget equation. The predictive EKE budget-

ased closure will be discussed in a follow up paper. Here, we instead

ant to consider the implications of the preceding arguments for the

ddy diffusivity assuming a (spatially and temporally) local energy

alance.

Under the assumption of a local balance between EKE generation

y baroclinic instability and sub-grid EKE dissipation, Eq. (1) becomes

˙
f ric = ĖGM. (14)

rom Eq. (2) and the definition of the Eady growth rate (Eq. 8), it

an be seen that ĖGM ∼ Kσ 2
E

∼ E1/2
t Lmixσ

2
E

. From Eq. (3), and assum-

ng that the bottom flow is dominated by the eddies themselves, one

btains a scaling relation for the frictional dissipation rate as Ė f ric ∼
−1
f

E3/2
b

. Eq. (14) thus suggests a scaling relation for the barotropic

KE as

t ∼ γ −3/2L f Lmixσ
2
E , (15)

here we defined γ ≡ Eb/Et.

Inserting Eq. (15) into the scaling relation for the eddy diffusivity

Eq. 9) yields

∼ γ −3/4L1/2

f
L3/2

mix
σE . (16)

s discussed above, the derivation of a closed scaling relation for

he eddy diffusivity, requires arguments for the bottom fraction of

KE, γ , as well as the mixing length, Lmix. For easy comparison to

reviously proposed scaling relations, we are here interested in the

erivation of simple power-law relations for the eddy diffusivity, even

f they may be valid only over a limited parameter regime. Instead

f using the full semi-empirical relation for γ , given by the ratio of

qs. (8) and (13), we will thus simply approximate γ ∼ (Lf/Ld)1/3,

hich captures most of the variability of γ outside of the limit of

ery low bottom friction (Fig. 8c). For the mixing length, we want to

onsider two different limits: Lmix ∼ LR ∼ β−1/2E1/4
t , which in Section

.4 was found to be appropriate for simulations with non-zero β , and

mix ∼ LLH ∼ E1/2
t σ−1

E
, which in Section 3.4 was found to be appropri-

te in the limit where β = 0. Both scales provide upper bounds for

he mixing length.

If we assume Lmix ∼ LR ∼ β−1/2E1/4
t we can use Eqs. (15) and (16)

o obtain

∼ β−1γ −3/2L f σ
2
E ∼ β−1L1/2

f
L1/2

d
σ 2

E . (17)

ssuming instead that Lmix ∼ LLH yields

∼ γ −3L f σE ∼ L f LdσE . (18)

q. (18) could have alternatively been derived using the effective fric-

ional arrest scale from Eq. (10) as the mixing length, i.e. Lmix ∼ Larr ∼
−3/2L f ∼ L1/2

f
L1/2

d
. As discussed in Section 3.4, Larr and LLH are iden-

ical if a local balance is assumed between EKE generation and fric-

ional dissipation. Notice that the frictional arrest scale is found to

ltimately depend on both Lf and Ld, because the bottom flow frac-

ion γ is a function of Lf/Ld.

Since both LR and LLH provide upper bounds for the mixing length,

e can more generally define L = min(L , L ), which suggests a
mix R LH
caling relation for the eddy diffusivity as

est = min
(

cR β−1L1/2

f
[Ld]1/2[σE]2, cE L f [Ld][σE]

)
. (19)

q. (19) is tested in Fig. 9, with the constants cR = 0.06 and cE = 0.7

hosen such that the respective scaling relations provide overall up-

er bounds for the observed eddy diffusivity. As already indicated by

ig. 6c, the Rhines scale limits the mixing length in almost all simula-

ions except when β = 0. The second limiter in Eq. (19) thus becomes

mportant here only for the simulations with β = 0.

The scaling relation in Eq. (19) provides a reasonable fit to the

bserved eddy diffusivities over most of the considered simulations.

owever, Eq. (19) over-estimates the eddy diffusivity in simulations

ith weak supercriticality and at weak friction. A qualitatively sim-

lar behavior was discussed in Section 3.4, where we found that the

hines scale tends to overestimate the mixing length in these lim-

ts. This shortcoming is amplified in the closed scaling relation for

he eddy diffusivity, because the over-estimated mixing length also

eads to an over-estimate of the EKE. In addition, shortcomings to

he energy budget become apparent in this limit. The energy budget

n Eq. (14) assumes that all energy is dissipated locally in the form

f EKE. In the limit of weak supercriticality and weak friction, how-

ver, a significant part of the EKE gets transformed into zonal jets,

hich do not contribute to meridional mixing, but provide an addi-

ional sink for EKE. Since the energy transferred to the mean flow is

ventually dissipated by frictional drag acting on the mean KE, the

elative influence of this contribution can be measured by consid-

ring the ratio of mean flow KE to EKE in the bottom layer. Simu-

ations where the mean KE in the bottom layer exceeds 50% of the

KE are marked in blue in Fig. 9. The results suggest that transfer and

ventual dissipation of KE in the mean flow does not appear to be

dominant contributor in most simulations, but does become im-

ortant in the simulations with the largest misfits. Additional limita-

ions of the local energy budget argument considered here arise from

he inhomogeneity of the domain. Specifically, advection of EKE out
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Fig. 10. Comparison of various scaling relations for the eddy diffusivity, tested against the results of the numerical simulations performed for this study. (a) The scaling relation of

Green (1970) (Eq. (20)). (b) The scaling relation of Stone (1972) (Eq. (21)). (c) The scaling relation of Held and Larichev (1996) (Eq. (22)). (d) An adaptation of the scaling relation

implied in Marshall and Adcroft (2010) for quadratic bottom drag (Eq. (23)). (e) An adaptation of the scaling relation of Cessi (2008) for quadratic bottom drag (Eq. (24)). Panel (f)

shows the relation proposed here (Eq. (19)) for easy comparison. The markers used for the different sets of simulations are as in Fig. 5. The bold green markers denote simulations

with a fixed drag coefficient, CD = 5 × 10−3. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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of the central jet region can lead to a significant additional loss of

energy.

4.1. Comparison to previous work

In this section we will compare our results to some previously de-

rived relations for the mesoscale eddy diffusivity. The classical scal-

ing arguments proposed by Green (1970), Stone (1972), and Held and

Larichev (1996) can all be derived from a balance between the ex-

traction of potential energy from the mean flow (Eq. 2) and the en-

ergy flux in the inverse cascade ∼ E3/2
t /Lmix (Larichev and Held, 1995).

The difference between the three formulations arises from different

choices for the mixing length - the width of the baroclinic zone in

Green (1970), the deformation radius in Stone (1972), and the Rhines

scale in Held and Larichev (1996). The resulting scaling relations are

KG70 = cG70L2
BC[σE] (20)

KS72 = cS72[Ld]2[σE] (21)

KHL96 = cHL96β
−2[σE]3 (22)

The scaling relation of Green (1970) (Eq. 20) is identical to the ap-

proach proposed by Visbeck et al. (1997) which is now commonly

used in ocean circulation models (e.g., Farneti and Gent, 2011).
The scaling relations in Eqs. (20)–(22) are tested in Fig. 10a–c. The

onstant coefficients are chosen to match the data: cG70 = 4 × 10−3,

S72 = 4.5 and cHL96 = 0.15. By construction, none of the scaling re-

ations predicts a dependence on the bottom friction, which makes

hem unable to reproduce the dependence of the eddy diffusivity on

he frictional drag. The scaling relations of Green (1970) and Stone

1972) are also unable to reproduce changes in the eddy diffusivity as-

ociated with other parameter variations. The scaling relation of Held

nd Larichev (1996) (Eq. (22)) , on the other hand, does capture the

ulk of the variation in the eddy diffusivity associated with changes

n other external parameters. This is in agreement with the results

f Section 3.4, which suggested that the Rhines scale adequately cap-

ures the mixing length in most simulations. The results in Fig. 10 em-

hasize the role of bottom friction, which, for quadratic drag, enters

ia the frictional length scale, Lf ∼ H/CD. The frictional length scale is

aried by over two orders of magnitude in our simulations (since we

re interested specifically in illuminating the role of bottom friction),

hile other parameters are varied over at most a factor of four. Over

ost of the ocean, however, Lf is expected to vary relatively little, so

hat the scaling relation of Held and Larichev (1996) may perform

ell for practical purposes.

The mesoscale EKE budget proposed by Eden and Greatbatch

2008) assumes a dissipation rate of EKE independent of bottom drag.

nstead the loss of EKE is again assumed to be proportional to the in-

erse energy cascade rate E3/2/L . Eden and Greatbatch (2008) then
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hoose Lmix to scale with the deformation radius in mid-and high lat-

tudes, and with the Rhines scale at low latitudes. Assuming a local

nergy balance, this yields the scaling relation of Stone (1972) (i.e.

q. (21)) in mid- and high latitudes, and the scaling relation of Held

nd Larichev (1996) (i.e. Eq. (22)) at low latitudes

The models used in Cessi (2008) and Marshall and Adcroft (2010)

pplied linear friction, which prevents a direct comparison of their

nergy budget to our results. However, the fundamental assumptions

hat go into the derivation of their energy budget-based closure are

imilar to the ones here, except for the assumptions for the bottom

raction of the EKE, γ , and the mixing length Lmix. Both Cessi (2008)

nd Marshall and Adcroft (2010) choose4 γ = 1. Marshall and Ad-

roft (2010) use a constant mixing length, while Cessi (2008) assumes

mix = Ld . Plugging these assumptions into Eq. (16) suggests

MA10 = L3/2
c L1/2

f
[σE] (23)

C08 = cC08[Ld]3/2L1/2

f
[σE] (24)

he scaling relations in (23) and (24) are tested against the results

f the simulations in Fig. 10d and e, with Lc = 30 km and c08 = 1.9

hosen to match the results of the simulations. Coincidentally, both

caling relations predict the same dependence on the frictional scale,

f, as found in Eq. (17), which was derived using γ ∼ (Lf/Ld)1/3 and

mix ∼ LR. This similarity can be explained by canceling effects: while

he use of a constant γ increases the dependence of the eddy diffu-

ivity on the bottom friction, the use of a friction-independent mixing

ength decreases the sensitivity of the eddy diffusivity on the fric-

ional drag. (The Rhines scale indirectly depends on bottom friction,

ia its dependence on EKE.) The dependences of both KMA and KC08 on

ther parameters, however, differ from Eq. (17), and generally match

he simulations less well. The best overall fit is obtained with the pa-

ameterization proposed in this study (Eq. (19)).

The scaling relations in Eqs. (20),(21),(23) and (24), all suggest

linear dependence of the eddy diffusivity on the Eady growth

ate, and thus the baroclinicity. This property is a direct conse-

uence of their lack of dependence on β , which here provides the

nly time-scale in addition to the Eady growth rate. Using the non-

imensionalization discussed in Section 3.3, the eddy diffusivity pa-

ameterizations in (20),(21),(23) and (24) are all independent of β∗,

r supercriticality. The parameterization of Held and Larichev (1996)

Eq. (22)) implies a quadratic dependence on the supercriticality,

nd thus a cubic dependence on the baroclinicity, while the pa-

ameterization proposed here implies a linear dependence on the

upercriticality, and thus a quadratic dependence on the baroclin-

city, as long as the mixing length is limited by the Rhines scale

Eq. (19)). Fig. 5b shows that the normalized eddy diffusivity does

enerally depend on the supercriticality, with the eddy diffusivity

ncreasing for larger supercriticality (i.e. smaller β∗). This depen-

ence is weakest for strong drag and strong supercriticality, and

trongest for weak drag and weak supercriticality. As a result, Eq. (22)

nd Eq. (19) best capture the dependence of the eddy diffusiv-

ty on parameters that affect the supercriticality. The parameteri-

ation proposed in this paper (Eq. (19)) best captures this depen-

ence for relatively strong drag and/or strong supercriticality, while

he parameterization of Held and Larichev (1996) (Eq. (22)) bet-

er captures this dependence for relatively weak drag and/or weak

upercriticality.
4 The numerical simulations discussed in Marshall and Adcroft (2010) are

arotropic, which makes γ = 1 the obvious choice. Notice also that the argument in

arshall and Adcroft (2010) differs from the presented approach in that they use a dif-

usive closure for the PV flux, instead of the interface height or buoyancy flux. Marshall

nd Adcroft (2010) show that the use of an energy budget-based closure for the eddy

V flux naturally yields some of the stability properties of quasi-geostrophic flows. This

s promising and expected to be of importance particularly in the presence of topogra-

hy, where the implications of PV vs. interface-height diffusion can be quite different.

(

m

t

f

s

a

m

c

. Discussion

Our results imply that over most of the analyzed parameter

egime the mixing length is limited by the Rhines scale. However,

KE is dissipated primarily by bottom friction, with only a relatively

mall part being transferred into eddy-driven jets. To our knowledge

uch a regime has not been studied systematically in a homogeneous

D turbulence model. Instead, it is typically assumed that the mixing

ength is either controlled by bottom friction, in which case β does

ot enter the scaling for the eddy diffusivity, or by β , in which case

ottom friction does not enter scaling arguments for the eddy diffu-

ivity (e.g. Galperin et al., 2010). Smith et al. (2002) derive a scaling

elation for the eddy diffusivity in 2D β-plane turbulence with lin-

ar drag, under similar assumptions as used here (i.e. a mixing length

onstrained by the Rhines scale but an eddy energy level limited by

ottom friction). However, the simulations discussed in Smith et al.

2002) mostly cover the limit of very weak friction, where a differ-

nt diffusivity scaling applies. Moreover, we are not aware of any sys-

ematic studies of 2D or QG β -plane turbulence in the presence of

uadratic bottom drag.

It was argued here that the non-dimensional parameter governing

he role of friction is given by the ratio of the frictional length scale,

f = H/Cd, to the deformation radius, Ld. Assuming a drag coefficient

d ≈ 3 × 10−3 (as used in the MOM6 global model), a typical depth of

he ocean H ≈ 4 km, and deformation radii on the order of Ld ∼ 10–

00 km, suggests Lf/Ld ∼ 10–100. Somewhat larger frictional drags

corresponding to smaller Lf/Ld) may loosely be justified as a crude

epresentation of the effects of rough bottom topography. These con-

iderations suggest that much of the real ocean is likely in the inter-

ediate drag regime, between the ”weak” and ”strong” friction limits

een e.g. in Fig. 8. The placement of the ocean in a regime of ”inter-

ediate drag”, where neither of the typical strong or weak drag limit

rguments apply, is also in agreement with the results of Arbic and

lierl (2004).

The scaling relation derived here breaks down for simulations

ith weakly supercritical mean states and at low frictional drag. In

his limit the eddies spin-up strong barotropic jets whose strong

hear can suppress eddy mixing via a “barotropic governor” mecha-

ism (James and Gray, 1986). The results of Zurita-Gotor (2007) sug-

est that this effect may be captured at least partially by including

he curvature of the barotopic flow into a generalized definition of

he Rhines scale, but this approach was not tested here. The transfer

f KE to the mean jets also represents an additional sink of mesoscale

KE. This KE transfer is directly related to the idea of “backscatter” of

KE to the resolved flow (e.g. Jansen and Held, 2014), and could po-

entially be included in a generalized implementation of the sub-grid

KE budget. The barotropic governor regime is unlikely to be relevant

ver most of the real ocean, but may be important in localized jets,

uch as the gulf stream or Kuroshio extension.

It is likely that the Rhines effect, i.e. the transition from turbulence

o waves when the Rhines scale is reached, is modified in the real

cean by the presence of topography. Assuming that the barotropic

ode remains most relevant for eddy mixing of the ambient baro-

linicity, one may argue that the Rhines scale should more generally

e replaced by an “effective Rhines scale”, where β is modified to in-

lude the effect of topographic slopes on the barotropic PV gradient.

uch an approach has been used with some success by Grooms et al.

2014). A more detailed investigation into the effects of topography is

uch-needed.

The ratio of the barotropic EKE to bottom EKE, which was argued

o be important in controlling the frictional dissipation of EKE, was

ound to change primarily with the normalized frictional length

cale, Lf/Ld. In a continuously stratified ocean L f /Ld ∼ C−1
D

f/N. For

constant bottom drag coefficient (as typically assumed in ocean

odels), our results thus suggest that the bottom fraction of EKE in-

reases with f/N. This qualitative dependence may be expected, as the
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ratio f/N is commonly understood to set the aspect ratio of eddies

in the ocean. A large Coriolis parameter thus will cause more

barotropic eddies, extending to the bottom of the ocean, while

strong stratification allows for more surface-intensified eddies with

less bottom signature. Ocean observations further appear to point

towards stronger barotropization in generally more energetic regions

(Wunsch, 1997). This behavior is not expected to be captured ade-

quately by the proposed scaling relation. Instead, such an observation

might point towards the necessity to include a dependence of the

bottom-flow fraction on the super-criticality. Topography is also

likely to be important in governing the vertical structure of the

EKE in the real ocean (e.g., Barnier and Le Provost, 1993; Hallberg,

1997). Some effects of rough bottom topography may be expected

to broadly resemble those of enhanced bottom drag, but the effect

of larger scale topographic features is expected to be qualitatively

different from enhanced frictional drag. As with the effect of topog-

raphy on the mixing length, further investigation into the effects of

topography on the vertical structure of eddies is much-needed.

Eddy flux closures that depend on a mesoscale EKE budget natu-

rally rely on an adequate representation of the sink of mesoscale EKE.

In the model considered here, kinetic energy is dissipated almost en-

tirely by quadratic bottom friction. Viscous dissipation removes en-

strophy, but little energy, due to the lack of a forward energy cas-

cade (see also Jansen and Held, 2014). Unfortunately, the pathways

to dissipation of mesoscale EKE in the real ocean are still poorly un-

derstood (Ferrari and Wunsch, 2009; Wunsch and Ferrari, 2004). Ad-

ditional potential pathways to dissipation include the generation of

lee waves over rough topography (which eventually break and dis-

sipate their energy - e.g., Nikurashin and Ferrari, 2011), loss of bal-

ance in fronts near the surface (which can lead to a forward cascade

and eventual dissipation - Molemaker et al., 2010), interactions with

internal waves (e.g., Polzin, 2008; Arbic et al., 2013), losses at the

western boundaries (e.g., Zhai et al., 2010), and negative wind work

(Ferrari and Wunsch, 2009, and references therein). In addition to the

shortcomings mentioned before (primarily associated with the role

of topography), the pathways of mesoscale EKE to dissipation in the

real ocean require further attention. The parameterization proposed

here provides a framework which can be extended to include any of

these additional processes, once their parametric dependence on the

mean flow and EKE field are understood.

6. Summary and conclusions

We discuss the use of a mesoscale eddy kinetic energy budget for

the derivation of a scaling relation for the eddy interface height dif-

fusivity or GM coefficient. We show that the success of any energy

budget-based parameterization will depend fundamentally on an ad-

equate formulation for the mixing length, as well as an adequate rep-

resentation of the “bottom signature” of EKE, which is important in

determining the amount of frictional dissipation.

For most of the simulations discussed here, the mixing length is

very well approximated as proportional to the Rhines scale. This as-

sumption naturally breaks down in the limit of zero β , where instead

the energy cascade is arrested by bottom friction. The frictional arrest

scale, however, is less sensitive to bottom friction than predicted by

barotropic turbulence theory, due to the upper-ocean intensification

of EKE.

Eddy mixing is primarily accomplished by the barotropic eddy

component, while dissipation is governed by the flow near the bot-

tom, which makes the ratio of the barotropic to bottom EKE impor-

tant in the formulation of an energy-budget based eddy diffusivity.

The ratio of the barotropic EKE to bottom EKE was found to change

primarily with the normalized frictional length scale, Lf/Ld. As the ef-

fect of bottom drag is increased, eddies tend to become intensified

in the upper ocean with weak bottom signatures. In this configura-
ion, the baroclinic part of the flow effectively “shields” the barotropic

ode from the effects of bottom friction.

The EKE budget discussed in Section 2, together with the results

or the mixing length and bottom fraction of EKE from Sections 3.4

nd 3.5, provides a general recipe that can be used to formulate an

ddy closure based on a prognostic sub-grid mesoscale EKE budget.

local prognostic EKE budget, based on these results, is currently

eing implemented in GFDL’s ocean model, and is expected to be

he topic of a follow-up paper. Here we instead estimate the EKE

udget-based eddy diffusivity, assuming a temporally and spatially

ocal EKE balance. The resulting scaling relation (Eq. (19)) provides an

dequate fit for most of our simulations. Eq. (19) outperformed var-

ous scaling relations that have been proposed previously, including

he one proposed by Green (1970) and Visbeck et al. (1997), which

s commonly used in ocean models. The scaling relation of Held and

arichev (1996) adequately captures the dependence of the eddy dif-

usivity on various mean flow parameters, while it is by construction

nable to represent the dependence on the bottom friction.

The general results found here are in agreement with those found

n quasi-geostrophic models (e.g. Larichev and Held, 1995; Held

nd Larichev, 1996; Pavan and Held, 1996; Lapeyre and Held, 2003;

hompson and Young, 2007). Further study of the dependence of

ddy fluxes on frictional dissipation within a QG framework is thus

xpected to provide valuable insights. Since any such model depends

n the parameterization of frictional dissipation, we further need to

etter understand the pathways to dissipation in the ocean. Progress

n this question can likely be made using a combination of obser-

ations and high-resolution models, which can explicitly resolve the

rocesses that lead to loss of balance and eventual dissipation.
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