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ABSTRACT

Internal wave reflection from a sloping topographic boundary may lead to enhanced shear if the topographic
angle to the horizontal is close to that of the internal wave group velocity vector. Previous analytic studies have
suggested that shear enhancement is reduced at concave slopes as compared with convex and planar slopes near
the critical angle. Here the internal wave reflection from concave and convex slopes that pass through the critical
angle is investigated numerically using the nonhydrostatic Massachusetts Institute of Technology General Cir-
culation Model (MITgcm). Overturning, shear instability, and resultant mixing are examined. Results are com-
pared with simulations of wave reflection from planar slopes with angles greater than, less than, and equal to
the critical angle. In contrast to the analytic predictions, no reduction in mixing is found for the concave slope
as compared with the other slopes. In all cases, stratification is eroded in a band above the slope, bounded at
its outer edge by the internal wave characteristic. The difference between numerical and analytic results is caused
by the nonlinearity of the numerical calculations, where the finite-amplitude flow leads to generation of upslope-
propagating bores for a wide range of topographic slopes around the critical angle.

1. Introduction

Recently the tides have been reexamined as a possible
source of energy for diapycnal mixing in the ocean in-
terior (Munk and Wunsch 1998). Evidence from satellite
altimetry indicates that as much as 30% of tidal dissi-
pation occurs in the open ocean (Egbert and Ray 2000),
a process previously thought to occur almost exclusively
on the continental shelf. Much recent activity has there-
fore been focused on understanding where and how this
open-ocean component of tidal dissipation occurs (Bell
1975; Baines 1982; Khatiwala 2003; Llewellyn Smith
and Young 2002; St. Laurent and Garrett 2002; Polzin
2004). A particular question of interest for climate stud-
ies is how much of the tidal energy is converted into
potential energy through diapycnal mixing. In deep wa-
ter, energy is transferred from the large-scale barotropic
tide to small turbulent mixing scales through a series of
stages. First baroclinic motions are generated by the
barotropic tidal flow over topography. Baroclinic energy
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is then transferred to smaller scales, leading to wave
breaking and mixing, through nonlinear wave–wave in-
teractions or further interactions with topography. In this
study we examine only one of these stages—the mixing
that results when baroclinic internal tides reflect from
sloping topography. A scenario that seems particularly
likely to lead to mixing is the reflection of an internal
wave from a slope with the same angle to the horizontal
uc as the internal wave characteristic

1/22 2k v 2 f
tanu 5 5 5 s, (1)c 2 21 2m N 2 v

where k is the horizontal wavenumber, m is the vertical
wavenumber, N is the buoyancy frequency, f is the Cor-
iolis frequency, v is the wave frequency (equal to the
tidal frequency for internal tides), and uc is known as
the critical angle. Internal waves preserve their angle to
the horizontal upon reflection, so that reflection from
slopes near the critical angle given above leads to re-
flected waves with higher wavenumbers and greater
shear (Eriksen 1985; Wunsch 1969). Numerical simu-
lations (Slinn and Riley 1996) and laboratory experi-
ments (Cacchione and Wunsch 1974; Ivey and Nokes
1989) of internal wave reflection from a planar slope at
the critical angle have shown mixing near the slope.

In the real ocean a slope is more likely to pass through
the critical angle at a point rather than over an extended
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FIG. 1. Schematics of continental slopes, showing the location of
the two critical points (where u 5 uc). (a) A generic continental slope
with a convex critical point at top and a concave critical point below;
(b) a ‘‘convex’’ slope, for which most of the slope is convex around
a midlevel critical point; (c) a ‘‘concave’’ slope, for which most of
the slope is concave around a midlevel critical point.

region. The consequences of a nonuniform slope for
internal wave reflection must therefore be considered.
A typical steep continental slope has at least two critical
points (see Fig. 1a). Around a critical point, the slope
may be either concave or convex, where a concave slope
has u , uc for h , hc and u . uc for h . hc, and vice
versa for convex slopes (hc is the topographic height at
the critical point; see Fig. 1). The continental slope in
Fig. 1a has both a convex region and a concave region.
In an analytical study, Gilbert and Garrett (1989) pre-
dicted that reflection from concave slopes near the crit-
ical angle will not give rise to the same enhanced shear
and mixing as planar and convex slopes because re-
flected waves from above and below the critical point
will destructively interfere, a conclusion also reached
by Muller and Liu (2000a,b) in a study of wave scat-
tering from finite-amplitude topography. No laboratory
or fully nonlinear numerical studies have yet confirmed
these predictions. [Cacchione et al. (2002) suggest that
the interaction between the internal waves and sediment
tends to favor formation of slopes at the critical angle,
but we will only consider rigid slopes here.]

Here we examine numerical simulations of internal
wave reflection from variable continental slopes close
to the critical angle, in particular comparing planar, con-
vex, and concave slopes. We focus on the curvature over
most of the slope. [A ‘‘convex’’ slope will have a narrow
concave region at the base of the slope (Fig. 1b), while
a ‘‘concave’’ slope will have a narrow convex region
at the top of the slope (Fig. 1c).] We will examine wheth-
er the Gilbert and Garrett (1989) prediction of weaker
mixing on concave slopes holds for finite-amplitude
flows and for realistic continental slopes.

Our motivation is the mixing generated by tides, and
so our numerical simulations focus on internal waves
at the tidal frequency. However, the wave-breaking pro-
cesses we examine may occur for internal waves at any
frequency between the Coriolis and buoyancy frequen-
cies. None of our results are dependent on the specific
frequency of the incident wave.

2. Numerical model and problem configuration

For our calculations we use the Massachusetts Insti-
tute of Technology General Circulation Model
(MITgcm), a versatile ocean model developed at MIT
for use on parallel computers (Marshall et al. 1997).
The model integrates the incompressible Boussinesq
equations, assuming a linear equation of state:

]u
1 u · =u 1 f k̂ 3 u

]t

2 2 2] ] ]
5 2=P 1 bk̂ 1 n 1 u 1 n u, (2)h y2 2 21 2]x ]y ]z

= · u 5 0, and (3)
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]b
21 u · =b 5 k¹ b, (4)

]t

where u 5 (U, V, W), the three-dimensional velocity
vector; P is the density-scaled pressure; t, x, y, and z
are the time and space coordinates; and b is the buoy-
ancy. Here, nh and ny are the horizontal and vertical
viscosity constants, and k is the tracer diffusivity; k̂ is
the unit vector in the vertical direction.

Most of our calculations make use of the model’s
nonhydrostatic capability, allowing us to explicitly sim-
ulate shear instability and overturning processes. We use
sufficiently high resolution to explicitly resolve the mix-
ing processes due to Kelvin–Helmholz instability and
do not employ a sophisticated subgrid-scale mixing
scheme: constant eddy viscosities are used instead, with
values of nh 5 1022 m s22 and nz 5 1023 m s22. The
model employs a direct discretization method with flux
limiting for tracers (Pietzrak 1998), preventing the ap-
pearance of spurious oscillations in the tracer field and
introducing diffusivity where needed for stability. Con-
sequently we can set the explicit diffusivity to zero—
that is, k 5 0—so that the stratification is not eroded
in the absence of flow. However, our simulations are
not analogous to infinite Prandtl number (where Pr 5
n/k) since in regions of small-scale structure the implicit
numerical diffusivity is finite (but variable).

The MIT model represents topography through a fi-
nite-volume formulation, allowing arbitrarily small in-
crements in topographic height [to within limits set by
the Courant–Friedrichs–Lewy (CFL) criterion; Adcroft
et al. 1997]. All of our calculations in this study are
two-dimensional, with topography consisting of a flat
bottom in the left-hand side of the domain, a sloping
region to the right, and finally a continental shelf region
to the far right. Initial conditions consist of a stable,
horizontally uniform stratification, and no flow:

2b(t 5 0) 5 N z and

U(t 5 0) 5 V(t 5 0) 5 W(t 5 0) 5 0, (5)

where N is the uniform buoyancy frequency.
The boundary conditions for b are no-flux at top and

bottom. Since k 5 0 this does not lead to an erosion
of the initial stratification in the absence of flow. Bound-
ary conditions for the velocity fields are no-slip at the
bottom topography (i.e., ut 5 0 where ut is the velocity
parallel to the topography) and no-stress at the surface
(]u/]z 5 ]y/]z 5 0). There is no flow normal to the
topography, while at the surface a linear free surface
condition is applied, so that wz50 5 ]h/]t, where h is
the free surface height.

At the offshore boundary an internal wave is forced
by specifying oscillating velocities and buoyancy anom-
alies that satisfy the internal wave equations,

U(0, z, t) 5 U cos(mz) sin(vt), (6)0

f
V(0, z, t) 5 U cos(mz) cos(vt), (7)0 v

1/22 2v 2 f
2b(0, z, t) 5 N z 1 U N sin(mz) sin(vt),0 21 2v

(8)
and

1/22 2v 2 f
W(0, z, t) 5 2U sin(mz) cos(vt), (9)0 2 21 2N 2 v

where v is the forcing frequency; m is the vertical wave-
number appropriate to a mode-1 internal wave, m 5 p/
H; U0 is the velocity amplitude of the forcing; U is the
velocity in the x direction (toward the slope); V is the
velocity in the y direction (along the slope); and W is
the vertical velocity.

These anomalies forced at the boundary lead to an
onshore-propagating internal wave of the form

U(x, z, t) 5 2U cos(mz) sin(kx 2 vt),0 (10)

where k is given from the dispersion relation in Eq. (1).
The oscillation frequency is set to the M2 tidal fre-
quency: v 5 1.41 3 1024 s21. Since we include the
Coriolis frequency in our calculations, the along-slope
velocity component (V) of an internal wave propagating
normal to the slope is nonzero, and is one-quarter of a
period out of phase with the velocity in the cross-slope
direction (U). We ramp up the boundary forcing slowly
over one tidal period to avoid transients caused by im-
pulsively switching on the forcing.

These boundary conditions do not allow internal
waves reflected from the topography to radiate out of
the domain. Hence after such time that internal waves
might reflect from the topography and be re-reflected at
the boundary back into the domain, we can no longer
be assured of an internal wave of the pure form given
above propagating toward the slope. It may be possible
to handle this problem by separating the flow near the
boundary into the incoming and outgoing wave com-
ponents and applying the Orlanski radiation condition
to the outgoing component only. However, we did not
explore this possibility here and hence focus primarily
on the initial flow evolution at the slope, before such
contamination might have taken place.

Several nondimensional parameters control the be-
havior of internal tide–topography interactions. The first
is the ratio of the topographic slope to the wave char-
acteristic slope:

dh /dx
a 5 , (11)

2 2 2 2 1/2(v 2 f )/(N 2 v )

where if a , 1 the topography is subcritical, if a 5 1
the slope is critical, and if a . 1 the topography is
supercritical. As described in the previous section our
focus is on topography where a 5 1 somewhere. Con-
cave slopes have a . 1 above the critical point and a
, 1 below the critical point, and vice versa for convex
slopes.

A second nondimensional parameter describes the
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FIG. 2. Snapshots of cross-slope velocity (color) and buoyancy at a time t 5 5.39T after the
beginning of the calculation. The color scale extends between U 5 20.05 m s21 (blue) and U
5 0.05 m s21 (red), and the contour interval is Db 5 9.81 3 1026 m s22.
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nonlinearity of the flow in terms of a wave Froude num-
ber:

Fr 5 U /c ,0 p (12)

where U0 is the amplitude of the internal tide horizontal
velocity and cp is the horizontal component of the phase
velocity of the wave. In all of our calculations, Fr is
small for the boundary-forced wave, which behaves like
a linear internal wave. However, both the internal tide
velocity and the phase velocity are modified upon re-
flection from topography, and so Fr may increase sig-
nificantly.

All of our experiments have uniform stratification N 2

5 1 3 1026 s22, Coriolis frequency f 5 1024 s21,
internal wave amplitude U0 5 0.024 m s21, and gravest
vertical mode m 5 p/H, where H is the depth of the
fluid. The domain size is Lx 3 Lz 5 13.3 km 3 200
m, with resolution nx 3 nz 5 640 3 60; x therefore
varies from x 5 0 to x 5 13.3 km. The resolution is
nonuniform in the x direction, with most grid points
concentrated over the sloping topography, where Dx 5
7.2 m and Dz 5 3.333 m. At the left-hand boundary, x
5 0 where the wave is forced, the fluid has a depth of
200 m, with flat-bottomed topography. At x 5 2.5 km
the slope begins. The 40-m-depth flat shelf begins at x
5 4.08 km for most calculations The large extent of the
shelf (from x 5 4.084 km to x 5 13.3 km) ensures that
the slope processes are not influenced by the onshore
boundary, where Orlanski radiation conditions are ap-
plied. Also, N has been chosen to give a horizontal
wavelength that is not too large in comparison with the
vertical depth, thereby minimizing the disparity in ver-
tical and horizontal resolution.

A third important parameter regarding the slope is
the ratio of length scales lx/Lh, where lx is the hori-
zontal wavelength of the wave and Lh is the horizontal
length scale of the slope. For our simulations with a
mode-1 internal wave, lx 5 3.96 km, and for the critical
slope from h 5 2200 m to h 5 240 m, lx/Lh 5 2.5.
The slope therefore occupies a little less than one-half
of an incoming wave wavelength.

We examine five different slopes. The first, a linear
slope (hereinafter referred to as Planar), has slope equal
to that of the wave characteristic: dh/dx 5 s 5 0.101
for our choice of N, v, and f . Two other slopes are
concave (Concave) and convex (Convex) about the mid-
point of the slope, with the slope beginning and ending
at the same location as the linear slope, and with critical
slope halfway up the slope, at z 5 2120 m. (Note that
the ‘‘convex’’ slope has a concave corner at the base of
the slope, and the ‘‘concave’’ slope has a convex corner
at the top of the slope.) Then we include a linear sub-
critical slope, with dh/dx 5 0.06 (Subcrit) and a linear
supercritical slope, with dh/dx 5 0.142 (Supercrit).

We also repeat the linear critical slope calculation
using a hydrostatic version of the MIT model (Hydstat),
with implicit convective adjustment (large vertical dif-
fusivity in statically unstable regions) to parameterize

vertical mixing. In the hydrostatic calculations horizon-
tal viscosity had to be increased by an order of mag-
nitude relative to the nonhydrostatic calculations to en-
sure stability, so that nh 5 1021 m s22 (ny is unchanged).
To ensure a clean comparison we therefore also include
a nonhydrostatic calculation with the higher value of
horizontal viscosity (Highvisc), but with vertical mixing
explicitly resolved. We therefore consider a total of sev-
en calculations. Each calculation is run for a total of 18
M2 tidal periods. A quasi–steady state is achieved after
about four M2 tidal periods.

The Reynolds number is given by Re 5 UL/n, where
U 5 U0 and n 5 nh and L is an advective length scale,
which for the waves can be estimated as U0/v 5 170
m. Then Re 5 200 for most calculations, or Re 5 20
for the high-viscosity calculations. Of course, the Reyn-
olds number is modified on reflection, as the wave am-
plitude changes.

Final governing nondimensional parameters are the
off-normal oblique angle of incidence of the wave,
which is held at zero in this study, and the Rossby
number Ro 5 U/( fL). On the advection scale Ro 5 1.4,
while on the wavelength scale Ro 5 0.06: rotation is
important for the wave motion but may not influence
the advective motions associated with mixing.

3. Results

a. Qualitative features

To illustrate the qualitative features of the flow when
the internal wave reflects from the slope, we show two
snapshots, one at t 5 5.39T (Fig. 2) and the other at t
5 5.94T (Fig. 3) after the beginning of the calculation,
for each of the seven cases. Here T is the internal wave
period, equal to the M2 tidal period. At t 5 5.39T there
is a bore clearly visible in all calculations, located some-
where on the lower to middle part of the slope. The
bore consists of a sharp, almost vertical density front
adjacent to the slope, separating dense fluid advected
up the slope from the less dense fluid into which it is
moving. Similar borelike features have been noted in
earlier laboratory studies (Ivey and Nokes 1989) and
numerical simulations (Slinn and Riley 1996). Analyt-
ical studies of finite-amplitude internal wave reflection
from near-critical planar slopes predict the symmetry
breaking that leads to the formation of these density
fronts (Thorpe 1992; Dauxois and Young 1999). The
bore is propagating up the slope in all cases. Vertically
above the sharpest density gradients, there is a region
of overturned isopycnals, characteristic of a breaking
wave. This feature is seen in all the nonhydrostatic cal-
culations but not in Hydstat. Instead in Hydstat statically
unstable fluid is immediately homogenized by the con-
vective parameterization, so that vertical isopycnals re-
sult instead. The bore is accompanied by convergent
flow in the region adjacent to the slope. The downslope
flow ahead of the bore is confined to a thinner layer
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FIG. 3. As for Fig. 2, but for t 5 5.94T.
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FIG. 4. Time–depth plots of cross-slope velocity U at a location where the topographic height h
5 2180 m. Contour spacing is DU 5 0.005 m s21.
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FIG. 5. Profiles of the rms cross-slope velocity as a function of height for topographic depth
(a) h 5 2180 m and (b) h 5 280 m, for planar (blue), concave (red), convex (green), subcritical
(black), and supercritical (magenta) slopes.

FIG. 6. Profiles of the skewness of the time-derivative of cross-slope velocity as a function of
height for topographic depth (a) h 5 2180 m and (b) h 5 280, for planar (blue), concave (red),
convex (green), subcritical (black) and supercritical (magenta) slopes.

than the upslope flow and therefore leads to strong shear,
resulting in instability and mixing in low-viscosity cal-
culations but not in Highvisc or Hydstat.

About 0.5 forcing period later, at t 5 5.94T, the bore
has now moved up the slope. In most cases, an accom-
panying front is seen in upper layers, this time asso-
ciated with downward depression of the isopycnals. This
front, associated with convergent flow above and di-
vergent flow below, is collocated with the rear of the
dense bore below and propagates toward shallow water
at the same rate as the dense bore. Behind this front,
the isopycnals are relatively flat away from the slope,
while at the slope the dense fluid that has been carried
up the slope is accelerating back down under gravity.
The bore in Concave is less marked than in the other
cases, having disappeared in the steepest part of the
slope, and is just reappearing at the shelfbreak corner.
Highvisc differs from Planar primarily in the smooth-
ness of the flow, with less shear instability and mixing,
especially in the downslope flow. The hydrostatic cal-
culation Hydstat appears to reproduce many of the fea-
tures of the nonhydrostatic calculation Highvisc, but the
fronts and bores are more extreme and shocklike.

Note that the nature of the slope—critical, supercrit-
ical, subcritical, convex, concave—appears to have rel-
atively little influence on the qualitative features of the
flow in this particular regime. All cases show a dense
front propagating up the slope, even though the direction
of the group velocity of the reflected wave is toward
shallower water for subcritical slopes and toward deeper
water for supercritical slopes.

Another view of the evolution of the flow can be
obtained by examining time–depth plots of the velocity
and density fields at specified locations on the slope.
We compare profiles taken in the same depth of water
(not the same distance on the x axis, because of the
different topography). Figure 4 shows cross-slope ve-
locity profiles at water depth of 180 m for two time
periods, after a quasi–steady state has been reached. At
this depth Planar shows enhanced upslope and down-
slope flow near the bottom, with upslope flow extending
slightly higher into the fluid. The flow pattern does not
show upward or downward phase propagation, except
perhaps for some downward phase propagation visible
in the upslope flow at about z 5 2130 m, and slight
upward phase propagation below. The Concave, High-
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FIG. 7. Time–depth plots of buoyancy b at a location where the topographic height h 5 2180
m. Contour spacing is Db 5 9.81 3 1026 m s22.
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FIG. 8. As for Fig. 7, but for a location where the topographic height h 5 280 m.
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FIG. 9. Profiles of the rms buoyancy as a function of height for topographic depth (a) h 5
2180 m and (b) h 5 280 m, for planar (blue), concave (red), convex (green), subcritical (black),
and supercritical (magenta) slopes.

FIG. 10. Profiles of the skewness of the time-derivative of buoyancy as a function of height
for topographic depth (a) h 5 280 m and (b) h 5 280 m, for planar (blue), concave (red),
convex (green), subcritical (black), and supercritical (magenta) slopes.

visc, Hydstat, and Subcrit cases are all qualitatively sim-
ilar to Planar at this depth (note that Concave has sub-
critical slope at this depth). However, Convex and Su-
percrit show a local maximum in the upslope flow at
about z 5 2120 to 2130 m, displaced above the bottom,
and upward phase propagation is pronounced, especially
in Supercrit. Upward phase propagation indicates down-
ward energy propagation, which would be expected for
a wave reflected from a supercritical slope. The bore
snapshots (Fig. 2) show that the upslope velocity in the
bore, rather than being aligned with the topography on
a supercritical slope, is aligned along the wave char-
acteristic slope and hence is displaced slightly above
the slope. In the convex case, which is supercritical in
water depth of d 5 2180 m, the maximum upslope
velocity at z 5 2120 m is therefore the extension of
the upslope flow above the critical point at d 5 2120
m. We can quantify these differences in the velocity
time–depth plots by examining the profiles of root mean
square velocity, shown for all calculations in Fig. 5a,
which all show a similar shape, dominated by the gravest
vertical mode but with small local maxima for Convex

and Supercrit at middepths. (To avoid crowding we omit
the profiles for Hydstat and Highvisc, but these are very
similar to Planar.) The skewness of the time derivative
of U (Fig. 6a) shows that, for all cases, the flow changes
suddenly from downslope to upslope (positive skew-
ness), signifying the passage of the convergence zone
associated with the bore on the slope.

The buoyancy time–depth plots at this location on the
slope, d 5 2180 m (Fig. 7) all show dense fluid dis-
placed up-slope, with strongest density fronts in Convex
and Supercrit and weakest in Concave and Subcrit. This
is quantified in the root mean square buoyancy profiles
(Fig. 9a); near the boundary, Convex and Supercrit have
the largest values of brms, and Concave and Subcrit have
the smallest, while at upper levels Concave has the
greatest brms. The passage of the bore, with sudden
changes from less dense to denser fluid, is shown by
the negative skewness in all cases for db/dt (fig. 10a).
This skewness is predicted by weakly nonlinear ana-
lytical studies (Thorpe 1992; Dauxois and Young 1999).
Similar magnitude negative skewness of the temperature
time derivative has been observed near topography by
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Thorpe et al. (1991), who propose fronts generated by
reflecting internal waves as the likely cause.

Higher up the slope, at d 5 280 m (Fig. 8), most
cases show both upper- and lower-level density fronts,
with sudden increases in density at the topography, fol-
lowed by sudden decreases in density in upper layers.
The exception is Concave, which shows more sym-
metrical changes in density. This is quantified by the
skewness of the time derivative of buoyancy, which is
negative near the bottom boundary (passage of a dense
front) for all cases (Fig. 10b) except Concave, which
has skewness close to zero. Concave does, however,
have significantly larger brms at this fluid depth than the
others (Fig. 9b). At this depth the cross-slope velocity
signal is less coherent (as shown by the skewness of
the time derivative, which does not show any identifi-
able pattern; Fig. 6b) and Urms is similar for all cases
(Fig. 5b).

Our calculations therefore show that there is a sim-
ilarity between all calculations when the slope is sub-
critical or critical. Even when the slope is supercritical
many of the same qualitative features may be found,
with a bore propagating up the slope. However, the up-
slope flow is aligned along the wave characteristic, dis-
placing it off the slope behind the bore in the super-
critical cases (Supercrit and Convex below d 5 2120
m). Near the top of the concave slope qualitatively dif-
ferent behavior is found. When the bore reaches this
steep slope (steeper than Supercrit), the motion is forced
to become more vertical, leading to large-amplitude but
symmetric buoyancy oscillations, rather than the asym-
metric bores seen on the other slopes.

b. Net changes in stratification

Having demonstrated that qualitative differences in
the flow are confined locally to the regions of steep
supercritical slope, we now consider how the slope cur-
vature affects the mixing, indicated by changes in strat-
ification. We must bear in mind, however, that mixing
in two-dimensional calculations such as these may differ
from that in three-dimensional calculations and the real
three-dimensional ocean. The process of wave break-
down into turbulence is known to be more efficient and
rapid in three dimensions, and mean alongslope currents
established through the wave breaking might signifi-
cantly modify the mixing in three dimensions. None-
theless, we present the mixing diagnostics here as a
reference with which future three-dimensional calcu-
lations can be compared and as a qualitative guide to
the effects of slope curvature on mixing.

Figure 11 shows the net change in vertical buoyancy
stratification defined as follows:

t21T t11T] 1 ] 1
2DN 5 b dt 2 b dt , (13)E E1 2 1 2]z T ]z Tt2 t1

where T is the tidal period and t1 5 2.5T and t2 5

7.5T; t1 is just before the mixing begins and t2 is nearly
halfway through the calculation. (As will be seen below,
relatively little mixing occurs in the second half of the
calculation.) Planar shows a broad band of reduced
stratification running parallel to the slope, bounded by
increased stratification both away from the slope and in
a thin zone on the slope. In both Concave and Convex
the increased stratification at the slope is found only
where the slope is subcritical, and the band of increased
stratification away from the slope is not parallel to the
slope, but aligned with the wave characteristic slope. In
both Concave and Convex the mixing is less well or-
ganized near the supercritical slope. Highvisc is similar
to Planar, but with a slightly thinner band of modified
stratification, less reduction in stratification farther down
the slope, and more marked increase in stratification at
the slope. Hydstat has less stratification increase in the
band away from the slope. There is not much mixing
on the lower part of the slope. The hydrostatic calcu-
lation therefore appears to simulate the mixing less suc-
cessfully than the propagating bores. This inability to
reproduce the mixing cannot be attributed entirely to
the absence of shear instability, since this is also absent
in Highvisc. Highvisc does capture overturning in the
head of the bore that Hydstat cannot. Subcrit shows
similar features to Planar, with the band of increased
stratification aligned with the wave characteristic. Su-
percrit has many similar features, but the zones of re-
duced and increased stratification appear less well or-
ganized.

The time evolution of the stratification is shown in
Fig. 12 for the Planar, Concave, Convex, Highvisc, and
Hydstat calculations as a time–depth contour plot lo-
cated near the bottom of the slope (d 5 2120 m). In
each case the stratification change has been calculated
from the density field averaged over one tidal cycle, and
there is some aliasing due to the relative infrequency
with which fields are analyzed (nine times per tidal cy-
cle).

In Planar after about seven tidal periods, the strati-
fication reaches an approximate steady state. Both the
weakened stratification and the increased stratification
above remain at the same height above the boundary,
without any further noticeable changes. The region of
increased stratification on the slope becomes somewhat
thinner and more intermittent. Similar features are seen
in Concave and Convex (and in Subcrit and Supercrit
too, but not shown), but with different depths of the
‘‘mixed’’ layer. Highvisc has a much thinner region of
modified stratification, with a proportionately wider re-
gion of increased stratification on the slope, and thinner
and more intermittent region of increased stratification
above. Hydstat is qualitatively different from all the
others, with a thick layer of increased stratification near
the slope, little decrease in stratification above, and bare-
ly any increase in stratification above that. Hence the
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FIG. 11. Snapshots of the change in buoyancy stratification over five tidal periods. The color
scale extends from DN 2 5 21.56 3 1026 s22 (blue) to 1.56 3 1026 s22 (red), with values close
to 0 in green.
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FIG. 12. Depth–time plots of the change in stratification db/dz 2 db/dz(t 5 0) for (a) Planar, (b)
Concave, (c) Convex, (d) Highvisc, and (e) Hydstat. Contour spacing is Ddb/dz 5 2 3 1027 s22.

differences in stratification changes seen in Fig. 11 per-
sist for the whole length of the integration.

For comparison the final stratification profile for all
of these five cases is shown in Fig. 13. The three low-
viscosity cases (Planar, Concave, Convex) all have very
similar profiles, while the Highvisc profile has weaker
anomalies confined to a shallower depth, and the Hyd-
stat profile is completely different from the rest, espe-
cially near the topography. The minimum stratification
in Planar, although only a small fraction of its initial
value, is still nowhere near zero and is considerably
greater than v2. Hence mixing has not ceased simply
because the fluid is already completely mixed. The ces-

sation of mixing seen in these experiments may indicate
that the reduction in stratification has in some way mod-
ified the wave-breaking process so that mixing no longer
occurs. Another possibility is that the incoming wave
is corrupted by waves that have been successively re-
flected from the topography and the offshore boundary,
so reducing the internal wave signal near the slope. (This
would be expected to be a problem particularly for the
concave and supercritical planar slopes, yet the end state
for the concave case stratification is very similar to that
for the planar and convex cases.) Even if the cessation
of mixing is real, and not an artifact of the offshore
boundary conditions, it is possible that in three dimen-
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sions a different result might be obtained—a steady state
could be established by three-dimensional processes
such as secondary circulations, baroclinic instability,
lateral eddy fluxes, and so on, so that the net mixing to
be expected in the ocean cannot be deduced from the
transient mixing seen here.

c. Energy budgets and mixing efficiency

In the MIT model, which has a linear free-surface
representation, the kinetic energy equation is given by

] p
2K 1 = · K 1 1 gh u 1 n¹ K 2 wb1 2]t r 0

1 n¹u · ¹u 5 0, (14)

where K 5 (u · u)/2, h is the free-surface elevation, b
is the buoyancy, p is the pressure, and n is the viscosity.
The term wb represents transfer between kinetic and
potential energy. If we integrate this over a volume V
defined by z 5 2H → z 5 0, and x 5 x1 → x2, we
have

x5x2x5x2 x5x20 0 0 x2] p ]K
K dV 5 2 Ku dz 2 1 gh u dz 2 n 2 (K 1 gh)w dxE E E E E1 2 1 2 1 2[ ] [ ]]t r ]x0 x5x1 z50V 2H 2H 2H x1x5x1 x5x1

1 2 3 4 5

1 wb dV 2 n=u · =u dV, (15)E E
V V

6 7

where term 1 is the kinetic energy tendency, 2 is the
kinetic energy advection term, 3 is the pressure transport
term, 4 is the diffusive transport term, 5 is the transport
at the top surface (only nonzero because we do not have
a rigid lid at z 5 0), 6 is the potential energy conversion
term, and 7 is the dissipation term. The companion po-
tential energy equation is

]
F 1 = · Fu 1 wb 5 0, (16)

]t

where F 5 2zb, the potential energy. Again we inte-
grate over a volume defined as above to obtain

x5x20]
F dV 5 2 Fu dz 2 wb dV, (17)E E E1 2]t V 2H Vx5x1

1 2 3

where term 1 represents the potential energy tendency,
2 is the potential energy advection, and 3 is the transfer
of potential energy to kinetic energy. Now we evaluate
the energy budgets for the various numerical simula-
tions, using x1 5 2.16 km and x2 5 4.34 km so that
the whole of the slope and a little of the surrounding
flat-bottomed regions are contained within the volume.
We confine our examination of the budgets to the region
over the slope, thereby avoiding the question of the work
done by the boundary forcing. (In particular the work
done by the boundary forcing may not be constant since
there may be contamination by waves re-reflected from
the offshore boundary.)

The potential energy tendency for Planar (Fig. 14)
is dominated by the internal wave oscillations and is
largely balanced by the flux of potential energy into the

region from the boundary (there is little flux out of the
region onto the shallow slope). However, there is a finite
net flux of potential energy into the region, when av-
eraged over a tidal cycle, that is not compensated by a
corresponding rise in potential energy and therefore
must be balanced by a transfer of potential energy to
kinetic energy. Hence the net, tidally averaged, buoy-
ancy flux shown in Fig. 14 in the region over the slope
is positive. This is true for all cases except Supercrit,
which has a buoyancy flux that is highly variable but
averages close to zero.

In the tidally averaged kinetic energy budgets (Fig. 15)
the pressure transport and potential energy conversion
terms (for most cases) supply kinetic energy to the region.
The kinetic energy initially rises steeply, but thereafter
reaches a quasi–steady state, when dissipation balances
the energy inputs by the pressure transport and potential
energy conversion. Other terms in the kinetic energy bud-
get are small. In most cases a quasi–steady state is reached
after about five tidal periods, including for Hydstat and
Highvisc (not shown). However, Concave shows a decline
in pressure transport matched by a decline in dissipation
toward the end of the calculation and fluctuations in kinetic
energy level that continue throughout the calculation (per-
haps caused by the contamination of the incoming wave
by waves that have been successively reflected from the
topography and offshore boundary).

The net positive buoyancy flux arises from the prop-
agation of buoyancy anomalies—the incoming wave—
which then break, releasing their potential energy to
kinetic energy. Some of the kinetic energy generated
during the wave breaking may be converted back to
potential energy through mixing of the basic stratifi-
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FIG. 13. Profiles of the change in stratification for Planar (blue),
Concave (red), Convex (green), Hydstat (black), and Highvisc (ma-
genta) calculations at the completion of all computation.

FIG. 14. Time series of the potential energy budget terms for the
region over the slope for Planar. Shown are the instantaneous po-
tential energy tendency (blue), the instantaneous potential energy
transport (red), and the tidally averaged conversion to kinetic energy
(green).

cation. This pathway for loss of kinetic energy cannot
be quantified by examining the total budgets. Winters
and D’Asaro (1996) show that many oceanic mixing
scenarios are associated with both an adiabatic and a
diabatic component of buoyancy flux, which may have
opposite signs as in this case. Here we attempt to deduce
that part of the buoyancy flux that is responsible for
mixing by examining the net change in the tidally av-
eraged buoyancy field, assuming in the absence of dif-
fusion or horizontal fluxes,

]b ]
5 ^w9b9&. (18)

]t ]z

This component of the buoyancy flux can be evaluated
by integrating the net change in tidally averaged buoy-
ancy with depth. Since vertical buoyancy flux is zero
near the top surface, but nonzero at the sloping topog-
raphy, we start the integration from the top:

^w9b9& (x, z)t

0 t21T1 1
5 b(x, z, t) dtE E[t2 2 t1 Tz t2

t11T1
2 b(x, z, t) dt dz. (19)E ]T t1

As for the stratification shown in Fig. 11 we use t1
5 2.5T and t2 5 7.5T, thereby concentrating on the
earlier part of the calculation during which mixing of
stratification is most active. The time-averaged buoy-
ancy flux responsible for mixing is shown as a function
of x and z in Fig. 16. In all cases, negative buoyancy
flux (down gradient flux) is localized over the slope. In
the low-viscosity cases, it is localized over the center
of the slope, where both the slope is critical and the
mode-1 internal wave displacements are greatest. In
Highvisc and Hydstat the buoyancy flux is higher up
the slope. This would reflect the qualitative observation
that the higher-viscosity cases do not include sufficient
shear instability, which tends to be the principal mech-
anism for mixing lower down the slope, whereas the
bore, which is represented by both Highvisc and Hydstat
as well as the other calculations, is responsible for most
mixing higher up the slope. These values of downgra-
dient buoyancy flux suggest a local eddy diffusivity on
the order of k ; 1023 m2 s21.

We have previously shown the kinetic energy dissi-
pation averaged over the region over the slope (Fig. 15).
The spatial distribution of the total kinetic energy dis-
sipation, time-averaged over the period t2 2 t1, is shown
in Fig. 17. In all cases dissipation is highest close to
the slope in the frictional bottom boundary layer. There
is a band of high dissipation bounded by a line roughly
parallel to the wave characteristic, but slightly narrower
at the bottom of the slope in Planar, and considerably
narrower in Highvisc. In Concave the highest dissipation
near the slope is not as marked, and instead there is a

broader region of high dissipation at the bottom of the
slope (the subcritical part of the slope). Hydstat has
lower magnitude of dissipation than the other cases with
the shocklike bores associated with the hydrostatic dy-
namics responsible for a large fraction of the total. In
general the dissipation distribution differs from the
buoyancy flux in that it is less localized to a particular
area of the slope, and it is enhanced right near the bound-
ary, whereas the buoyancy flux maximum is slightly
displaced to the fluid interior, where reductions in strat-
ification are concentrated.

Laboratory experiments of reflection of an internal wave
beam (Ivey et al. 2000) show a mixing region of depth

2p
h 5 Kl 5 K , (20)p

2 2Ï(k 1 m ) cos(b 1 u)

with dissipation averaged over this layer (assuming all
incoming wave energy is dissipated):

2U v sin[2(b 1 u)]0e 5 , (21)
28pK cos (b)

where lp is the wavelength of the incoming wave in the
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FIG. 15. Time series of the tidally averaged kinetic energy budget terms for the volume over
the slope for (a) Planar, (b) Concave, (c) Convex, (d) Subcrit, and (e) Supercrit. Highvisc and
Hydstat are not shown, but are very similar to Planar. Shown are kinetic energy tendency (blue),
pressure transport (red), dissipation (black), potential energy conversion (green), advective trans-
port (magenta), and diffusive transport (cyan).

direction normal to the slope and K is a constant, found
empirically to be K ; 0.1–0.15; b is the angle of the
wave characteristic to the horizontal [s 5 tan(b)], and
u is the angle of the topography to the horizontal. For
our parameters. Eq. (20) gives a lower limit of h ; 40
m for the critical planar slope, and Eq. (21) predicts e
; 1028 m2 s23 for the critical slope, both of which agree
favorably with our simulated dissipation layer. Note,
however, that Eq. (20) does not account for the variation
in depth seen both in noncritical planar slopes and near-

critical concave and convex slopes. Nonetheless, the
reasonable agreement between the laboratory-derived
empirical models and the numerical simulations gives
some confidence in these simulations despite their re-
striction to two dimensions.

We can estimate the mixing efficiency, G 5 ^w9b9&/
e, from the time-averaged dissipation and mixing com-
ponent of buoyancy flux, averaged over the region over
the slope. We find G 5 0.02 (Hydstat and Highvisc)–
0.095 (Concave). Convex and Planar have similar G,
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FIG. 16. Snapshots of buoyancy flux ^w9b9& deduced from the net change in buoyancy over
five tidal periods. The contour spacing is 5 3 10210 m2 s23, and dashed contours indicate negative
values.
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FIG. 17. Snapshots of net kinetic energy dissipation averaged over five tidal periods for (a)
Planar, (b) Concave, (c) Convex, (d) Highvisc, (e) Hydstat, (f ) Subcrit, and (g) Supercrit. The
color scale is logarithmic and extends from 10211 to 1026.5 m2 s23.
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FIG. 18. Snapshots of cross-slope velocity (color) and buoyancy, for calculations of waves encountering a
slope of height 160 m in a fluid of total depth 2000 m. The color scale extends between U 5 20.05 m s21

(blue) and U 5 0.05 m s21 (red), and the contour interval is Db 5 9.81 3 1025 m s22 in (a) and 9.81 3 1026

m s22 in (b)–(e).

0.053 and 0.057, respectively, as do Subcrit and Su-
percrit. Overall these are considerably smaller than val-
ues quoted by other authors (e.g., 30%, Slinn and Riley
1996), perhaps because our calculations are two-di-
mensional rather than three-dimensional. Furthermore,
our dissipation Reynolds number Re 5 e/(nN 2) is a

relatively small O(1–10) for the low-viscosity calcula-
tions, so that we fall just at the edge of the stratified
turbulence regime. (Highvisc and Hydstat, of course,
have still lower Re and hence are not turbulent.) Often
mixing efficiencies of 0.2 are assumed [e.g., in calcu-
lating diffusivities using the Osborn (1980) model], but
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this only applies to highly turbulent, large-Re regimes
(Itsweire et al. 1986).

d. Relative importance of shoaling as compared with
critical reflection

Throughout this analysis we have focused on the re-
flection of the incoming internal wave from a slope near
the critical angle as a cause of the wave breaking and
mixing. However, in our simulations, there is a second
important process—the shoaling of the wave due to the
large decrease in total depth of the fluid. The probable
importance of shoaling increases as Dh/H → 1, where
Dh is the total change in topographic height and H is
the total depth. In the simulations discussed thus far,
Dh/H 5 0.8. Even for a slope that is far from critical,
the energy density in a shoaling wave would be expected
to increase significantly and perhaps lead to mixing. To
ascertain whether shoaling is indeed the dominant pro-
cess, we have performed two simulations of internal
wave breaking in a fluid of depth H 5 2000 m, with
Dh/H 5 0.08, where shoaling would not be expected
to play an important role. The wavelength and frequency
of the incoming wave, slope gradient, stratification, and
horizontal resolution are kept as before. The vertical
resolution is unchanged in the bottom 200 m (near the
topography) and is coarser above. One simulation has
planar slope (DeepPlanar), and the other slope has con-
cave slope (DeepConcave).

Figure 18 shows snapshots of the cross-slope velocity
and buoyancy for the two instants shown in Figs. 2 and
3. In Fig. 18a, the total depth of the fluid is shown for
DeepPlanar, while the other snapshots show only the
bottom 200 m near the slope. At t 5 5.39T, both
DeepPlanar and DeepConcave look very similar to their
shallow counterparts, with bores on the lower half of
the slope, accompanied by overturning. At t 5 5.94T
there are some differences, when the bore reaches the
top of the slope, principally the absence of the reverse
front seen above the rear of the bore in the shallow
calculations. Hence we conclude that shoaling is re-
sponsible for the depression of isopycnals following the
bore but not for the initial bore formation and mixing.
The stratification changes in the deep calculations are
very similar to those seen in the shallow calculations
and hence are not shown here. These deep calculations
reinforce our interpretation of the wave breaking and
mixing as being caused by the wave reflection from the
slope.

4. Discussion: Reflection of finite-amplitude waves

Our calculations have demonstrated that the quali-
tative features of the flow such as the upslope propa-
gating bores and the quantitative measures of mixing
such as the buoyancy flux show little sensitivity to the
shape of the slope. In contrast, Gilbert and Garrett
(1989) predicted that at a locally concave critical point,

energy density was likely to be less than at a locally
convex critical point, and hence we might expect less
mixing at the concave slope. One important difference
between our calculations and the study of Gilbert and
Garrett (1989) is that our calculations are highly non-
linear. We propose that the cancellation between up- and
downslope-reflected waves predicted by Gilbert and
Garrett (1989) does not occur because the reflection
process is not symmetric about the critical point. This
hypothesis is suggested by the comparison between the
reflection at subcritical and supercritical planar slopes;
in both cases, an upslope propagating bore is generated
for finite-amplitude incoming waves. Previous analytic
studies suggest that for finite-amplitude internal waves,
a thermal front is created that propagates up the slope
with the reflected wave phase velocity (Thorpe 1992).
When the advective velocity exceeds the phase velocity,
we would expect this thermal front to develop into a
bore: a bore is an inherently nonlinear feature, typically
with Froude number Fr . 1. We therefore expect bores
to form during reflection if the Froude number of the
reflected wave is greater than 1.

The horizontal phase velocity of an internal wave is

v
(c ) 5 . (22)p h k

For specular reflection, the horizontal wavenumber of
the reflected wave (Phillips 1977) is given by

sin(b 1 u)
k 5 k , (23)R I sin(|b 2 u |)

where u is the angle of the topography to the horizontal
and b is the angle of the wave characteristic to the
horizontal [tan(b) 5 s]. The phase velocity is therefore
slowed down on reflection (for 0 , | b 2 u | , p/2),

v sin(|b 2 u |)
(c ) 5 . (24)p R k sin(b 1 u)I

From Phillips (1977) the velocity amplitude is in-
creased upon reflection:

sin(b 1 u)
(U ) 5 (U ) . (25)0 R 0 I sin(|b 2 u |)

The Froude number of the reflected wave is therefore
increased:

2
(U ) (U ) sin(b 1 u)0 R 0 IFr 5 5 . (26)R [ ](c ) (c ) sin(|b 2 u |)p R p I

We expect bores to be generated when Fr . 1, and
so we can determine a range of topographic angles uC1

, u , uC2 for which bores will be generated, where
uC1 is subcritical and uC2 is supercritical, given a par-
ticular amplitude and wavenumber of the incoming
wave,
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21/2Fr 2 1Itan(u ) 5 s andC1 21/2Fr 1 1I

21/2Fr 1 1Itan(u ) 5 s , (27)C2 21/2Fr 2 1I

where FrI 5 (U0)I/(cp)I, the Froude number of the in-
coming wave. For our particular parameters (cp)I 5 8.88
3 1022 m s21 and (U0)I 5 0.024 m s21, giving FrI 5
0.27. Since s 5 0.101 we have tan(uC1) 5 0.015 and
tan(uC2) 5 0.319. Note that Subcrit and Supercrit fall
well within these boundaries and, over most of the slope,
Convex and Concave also have slopes within this range.
The steepest slope in both Convex and Concave is dh/
dx 5 0.47, which is just outside this range, and from
the numerical computations it appears that bores are
indeed inhibited on the steepest parts of the slope.

Our calculations therefore suggest that mixing occurs
for all shapes of slope that have slopes within the range
likely to lead to FrR . 1. No cancellation between waves
reflected from above and below the critical point occurs
for the concave slope because upon reflection density
anomalies are advected up the slope as a bore, not prop-
agated as a wave. Cancellation of reflected waves
around a concave critical point might occur if the critical
point were more of a corner, between a shallow lower
slope (u , uC1), and a steep upper slope (u . uC2).

5. Conclusions

We have described a series of calculations of internal
wave reflecting from a continental slope, with a variety
of topographic slopes and shapes. In all cases we have
found mixing associated with bores moving upslope fol-
lowed by strongly sheared downflows. The mixing
erodes stratification in a broad band above the slope,
bounded by a region of increased stratification aligned
with the wave characteristic slope. This mixing region
can be associated with the region affected by the waves
reflected from the slope. Eventually a quasi–steady state
is reached, in which no further erosion of stratification
occurs, with no further deepening of the partially mixed
layer. It is important to note that our calculations are
two-dimensional. In three dimensions the mixing pro-
cesses themselves might be modified, and lateral transfer
processes such as baroclinic instability might restratify
the slope region (as in localized convection regions;
Visbeck et al. 1996). Without an understanding of the
efficiency of restratification processes, we cannot give
an estimate of the time-averaged diffusivity resulting
from the wave reflection and breaking process. Future
work will also be necessary to determine the dependence
on lx/Lh, the ratio of incoming horizontal wavelength
to slope length scale, which has been held fixed in this
study. The mixing may also be influenced by preexisting
frictional bottom boundary layers, and background
flows, not considered here.

We propose that the presence of mixing for all slope

topographies, in contrast to earlier predictions of re-
duced mixing at concave slopes is a result of the non-
linearity of the reflected wave, which leads to the bore
features, preventing a cancellation of waves reflected
from above and below the critical point. Predictions of
reflected wave Froude number seem to support this hy-
pothesis. For any amplitude of incident wave, there will
always be some range of slope angles around the critical
angle with reflected Froude number Fr . 1. An im-
portant question is whether for typical ocean parameters,
the range uC1–uC2 is a large one. If we consider the
internal tides generated at the Mid-Atlantic Ridge, St.
Laurent and Garrett (2002) predict a first-mode internal
tide with amplitude U0 5 0.0018 m s21. Using an av-
erage N 5 1023 s21 (same as the N used in our calcu-
lations) and depth H 5 4000 m, then from Eq. (22) the
Froude number of the first-mode internal tide is FrI 5
0.001. Then from Eq. (27) the range of slopes for which
FrR . 1 is 0.094 , dh/dx , 0.108, which is small. Even
for an internal wave amplitude that is an order of mag-
nitude larger, U0 5 0.02 m s21, FrI 5 0.011, and FrR

. 1 when 0.08 , dh/dx , 0.125. The calculations de-
scribed in this paper have a wider range of slopes lead-
ing to FrR . 1 because of a larger FrI, which in turn
results from the smaller depth (200 m instead of 4000
m) (hence larger m and smaller cp). As stressed earlier,
these results apply for internal waves at other frequen-
cies too, and so it may be possible for the internal wave
continuum to make as significant a contribution to the
total mixing as the tidal-band internal waves.

If our 200-m-deep scenario had stratification more
typical of the shallow coastal regions, where N ; 15
3 1023 s21 (e.g., Nash and Moum 2001), then s would
be reduced, as would Fr for a first-mode wave of the
same velocity amplitude (FrI 5 U0ps/H). Hence the
range of angles over which mixing might occur would
also be less than seen in our simulations. However,
coastal regions may also have greater wave velocities,
thereby increasing FrI. To obtain mixing over a similar
range of slopes as in these simulations, forcing would
have to be U0 . 1 m s21 for this stronger stratification.

The study of internal wave breaking at topography is
motivated by the desire to develop physically based pa-
rameterizations of tidal mixing. This study suggests that
this particular aspect of tidal mixing could be param-
eterized by applying an enhanced diffusivity in a band
above the slope whenever the slope angle falls within
the range uC1 , u , uC2, with the upper bound of the
enhanced diffusivity coinciding with the wave charac-
teristic. The Garrett–Munk spectrum could be used to
prescribe the wave amplitude as a function of frequency
and wavenumber, necessary to determine uC1 and uC2.
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