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a b s t r a c t

We present a porous medium approach to representing topography, and a new algorithm for the objec- 
tive interpolation of topography, for use in ocean circulation models of fixed resolution. The representa- 
tion and algorithm makes use of two concepts; impermeable thin walls and porous barriers. Impermeable 
thin walls allow the representation of knife-edge sub-grid-scale barriers that block lateral flow between 
model grid cells. Porous barriers permit the sub-grid scale geometry to modulate lateral transport as a
function of elevation. We find that the porous representation and the resultin g interpolated topography 
retains key features, such as overflow sill depths, without compromising other dynamically relevant 
aspects, such as mean ocean depth for a cell. The accurate representation of the ocean depth is illustrated 
in a simple model of a tsunami that has a cross-basin travel time very much less dependent on horizontal 
resolution than when using conventional topographic interpolation and representation.

� 2013 Elsevier Ltd. All rights reserved.
1. Introductio n

One of the physical characterist ics that distinguishes the ocean 
from the atmosphere is the presence of topography that varies on
the scale of the depth of the fluid. Ocean circulation models have 
always had to contend with side-walls and coast-lines which can 
be challenging to represent faithfully from a geographic perspec- 
tive. For instance, in global ocean circulation models, the position 
of a coastline is often displaced to a model grid-line or a topo- 
graphic slope is misrepresente d due to lack of horizontal resolu- 
tion. Further, the leading order topographic variations themselves 
lead to circulation structures that either need to be resolved (e.g.
boundary currents, coastal upwelling) or lead to small-scale pro- 
cesses (unresolved) that should be parametri zed (e.g. standing ed- 
dies, mixing by breaking internal waves, etc).

Typically, and particularly at coarser horizontal resolutions (e.g.
>100 km), the model topograp hy is almost always a compromise 
between some objectivel y generate d topograp hy and a more sub- 
jective process involving some user intervention. The interventi on
is required to retain or restore geographic features of importance 
which the objective algorithm filtered. For instance, if we use 
sub-sampling or spatial averaging to objectivel y map a high-reso- 
lution topographic data set to a 1� global grid, the Isthmus of Pan- 
ama might become flooded and the Straits of Gibraltar might 
become closed, depending on the particular choice of horizontal 
ll rights reserved.
grid and algorithm. Connectivity issues that arise from these 
adjustment s of coastlines are fairly easy to recognize by eye, due 
to our familiarity with, and the availability of, maps of the world.
Less obvious to detect are sub-surface discrepancie s such as the 
depth of a sill, or the height of abyssal barriers, with which we
are less familiar and expert at recognizing by eye, and for which 
there is only imperfect data; we all recognize a map of coastlines 
but are less likely to notice a missing saddle in a 1000 meter iso- 
bath. Fortunately , observati onal oceanogr aphy has identified many 
key topographic features, with associated processes such as
hydraulic control at overflow sites (Price and Baringer, 1994 ) or
mixing in fracture zones (Ferron et al., 1998 ), that are important 
in shaping the water-masses and pathways in the ocean. These 
provide a list of features that can be checked and corrected by hu- 
man intervention. Unfortunate ly, documenting the editing of mod- 
el topography is time consuming, often overlooked, or not 
published , all of which essentially leads to non-reproduci ble 
results.

When topography generation requires user intervention we
consider the process potential ly subjective for two reasons: i) the 
decision as to how to edit the topograp hy is inherently subjective 
(one of multiple data points might be raised to block Panama but 
which is best?), and ii) the list of relevant known key topographic 
features is finitely small, probably incomplete and primarily rele- 
vant to large scale oceanogr aphy. The fractal and multi-scale nat- 
ure of topography means that there are probably many unnamed 
topograp hic features that play an important role in local dynamics 
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(e.g. Taylor caps, spill jets (Magaldi et al., 2011 )) that will go
uncorrected.

In the last decade, the horizontal resolution of bathymetry data 
has improved greatly; early global datasets were a blend of many 
alternate data sources, with irregular and sparse coverage , incon- 
sistent calibrations and many bad or contradictor y measureme nts.
Recent gravitational data (Smith and Sandwell, 1997 ) has provided 
a significantly more uniform treatment of topograp hy. The modern 
datasets have led to previously unknown features (Sandwell and 
Wessel, 2010 ) and eliminated formerly imaginary ones, e.g., a
chain of 3000 m tall sea mounts at 66�S, 24�W that disappeared 
from the ETOPO gridded datasets between the 50 and 20 products
(NGDC, 2006 ). The newer gridded data are still imperfect in two 
ways: first, the data is often modelled or objectivel y interpolated 
and may not be validated by direct measureme nts. Second, infor- 
mation is lost during the act of gridding to a particular resolution 
because the sub-grid scale variations are necessar ily not represent- 
able. In contempor ary data sets, the data might be defined (or
interpreted) to be the mean or median height of the grid cell and 
features shorter than the grid are unrecoverable. For example,
the Bosporus is closed in the Smith and Sandwell (1997) dataset
and yet we know that within a 10 by 10 cell there is channel that 
should connect the Black Sea to the Sea of Marmara.

High-resolution topographic data is typically interpreted as cell 
averages on the original grid for no reason other than that is what 
ocean models are built to use on the coarse grid.1 The direct numer- 
ical representatio n of topograph y in a model might be via some high 
order method (see the discussion on cut-cells later) but the topogra- 
phy is considered to be resolved by the grid. That is to say, from the 
cell mean data on a coarse grid, the best a model can do is fit curves 
(or by some other means) to obtain smooth er or more accurate rep- 
resentation of a resolv able boundary shape.

Here, we propose that a representat ion of sub-grid scale topog- 
raphy can modulate the resolved model transport and evolution,
even with only one degree of freedom per cell for state variables.
The method we propose is not unlike a porous media approach 
but we present it as a natural extension of the finite volume formu- 
lation introduced in Adcroft et al. (1997). To do so, we discuss two 
concepts for representing topography in ocean models: imperme- 
able thin walls and porous barriers. Thin walls allow the separation 
of topography into column data and edge data. Impermeable thin 
walls define an absolute connectiv ity of model columns on a finite
resolution grid. Porous barriers capture the statistics of sub-grid 
scale topography and represent the modulation of transport and 
evolution as a function of depth or elevation. We will use these 
two concepts to construct an objective algorithm for interpolation 
of high resolution topography onto coarse grids. The resulting 
coarse resolution model topography will be shown to accurately 
represent the key features, both sub-grid scale and resolved, perti- 
nent to the dynamics of an ocean circulation model.
2. Representa tion of topography in models 

Fig. 1a depicts a widely used low-order representat ion of topog- 
raphy in z-coordinat e2 ocean models. The topograp hy is considered 
imperme able and is implem ented by adjusting the vertical extent of
ocean model control volumes (grid cells) to match the topograp hy
and imposing no mass flux (flow) both through the rigid bottom 
and the exposed side walls of the topograph ic columns. Adcroft
et al. (1997) referred to this repres entation as partial-step topogra- 
1 Most gridded data products document the datum properly and in some data sets,
the value is the median elevation of observations in the cell, not the mean.

2 We use the term z-coordinate loosely to include most vertically Euleria n models,
namely those using geo-potential, z*, pressure, p* coordinates and the many variants 
thereof.
phy to distinguish it from the tradition al practice of adjustin g the 
topograp hy to match the model vertical grid (‘‘full step’’ topogra- 
phy). The topography is piecewise constant in the horizontal and 
thus of limited accuracy. Some improvem ent in accuracy can be
achieved by allowing piecewis e variation of topograph y within the 
cell (or between), as depicted in Fig. 1b, referred to as shaved cells 
(Adcroft et al., 1997 ). Both the partial step and shaved cell represen- 
tations of topograp hy are implemen tations of the cut-cel l method 
where a regular grid is cut by a solid body (Berger and LeVeque,
1989; Ingram et al., 2003 ). The cut-cell method has prove n beneficial
in high-resol ution z-coordina te atmospher ic models (Steppeler et al.,
2002; Yamazaki and Satomura, 2010; Lock et al., 2012 ). Layered 
models (stacked shallow water, isopycna l, and other Lagrangian gen- 
eral-coord inate models) tend to use non-linear transport methods 
(e.g.. the piecewise-p arabolic method, PPM, Colella and Woodward 
(1984)) for mass or thickn ess which implies a reconstruct ion of
topograp hy. We consider such implicit represen tations of topogra- 
phy to be in a similar class of representatio n as shaved cells but of
potential ly higher order (due to the transport scheme). However,
the data used for the reconstructi on of topography is the same 
cell-me an topograph ic data used for the step represen tations.

In Eulerian coordinate models, the cut cells method results in a
set of face areas and a volume for each cell, as illustrate d in two- 
dimensio ns in Fig. 2. A given shape of topograp hy unambiguou sly 
determines the areas and volumes but the reverse is not true: a gi- 
ven set of areas and volumes can be interpreted as derived from an
infinite set of topographic shapes with short scale variations 
(Fig. 2a). Concave topography within the cell tends to increase 
the volume and leads to more capacity or inertia for the cell: the 
concave cell has more mass and so a given mass flux will lead to
a reduced tendency relative to a convex cell with the same areas 
and mass flux. Contrarily, a convex cell has a reduced capacity 
and thus becomes more sensitive to an incremental flux. This effect 
leads to the ‘‘small cell’’ conditional numerical stability that has 
been addressed in several ways. Adcroft et al. (1997) simply ad- 
justed the topography (which changes both the areas and the vol- 
ume) to avoid cells smaller than a nominal value. Steppele r et al.
(2002) left the areas unchanged but artificially expanded the vol- 
umes to obtain the most stability. This method was called ‘‘thin 
walls’’ because by expanding the volume to the notionally full va- 
lue but leaving the areas untouched, the geometry looks like a col- 
lection of infinitesimally thin walls. While they used this concept 
to stabilize the model, we consider applying the concept as a rep- 
resentati on of topography that is actually narrow compared to the 
grid-scale, as described next.

2.1. Thin walls 

If the peaks (ridges) in the real topography happen to line up
with the model grid, the cut cell method naturally captures the 
blocking effect of those ridges (Fig. 2b). Fluid cannot laterally flow
between cells below the elevation of that ridge. This is true even 
for very narrow ridges, with scales that could otherwise not be re- 
solved. This is not to say that the model can resolve the associate d
(sub-grid scale) dynamics , but it can resolve the geometrical effect 
of the blocking. In the extreme limit, the geometri cal conseque nces 
of an infinitesimally wide, knife-edge ridge can be represented 
with the finite-volume method if the ridge lines up with the model 
grid cell edges.

Conversely, if the peaks (ridges) of the real topography occur in
the cell interior, the blocking effect is lost in the discrete represen- 
tation (Fig. 2c), unless some alteration is made. In the scenario 
shown, fluid can laterally flow into and across the cell at elevations 
below the unresolved ridge (thin horizontal dotted line). The 
reduction in volume of the cell (due to the convexity ) does not rep- 
resent the blocking effect. In order to retain the blocking effect,



Fig. 1. A schematic perspective view of four ways of representing topography at a given resolution. Each depiction shows how the topography is represented in four model 
grid columns. (a) Step topography is the most widely used representation in z-coordinate models. (b) Reconstructed topography allows for smoother variation either within 
or between cells. (c) Thin walls allows the effective topography at cell edges to be taller than the bottom of adjacent cells. (d) Porous barriers extend thin walls by modulating 
the effective width as a function of elevation.
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Fig. 2. Two dimensional schematics of the cut-cell method. In each panel, the actual topography is indicated by the striped region and from it the shaded cell volume, V, and 
face areas, Ai , (thick dashed lines) can be calculated. (a) A second topography indicated by a dotted line yields the same areas and volume, illustrating the non-unique 
determination of topography. (b) If topographic peaks line up with the cell edges, then the resulting areas accurately reflect the blocking effect of topography. (c) If the 
topographic peaks appear in the cell interior, the blocking effect of the peak is lost, even though the inertia (capacity) of the cell is correctly reduced. Fluid can flow into and 
across the cell at a lower elevation than the real peak elevation should permit (dotted line).
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either the grid edge must be moved (the unstructured grid para- 
digm) or at least one of the face areas must be adjusted. Adjust- 
ment of a face area is effectively moving the position of the 
interior ridge, much as coastlines have been snapped to model 
grids in many traditional fixed horizontal-g rid models.

Here on, we will refer to knife-edge ridges aligned with cell 
edges as impermeabl e thin walls and we will make use of thin 
walls to describe connectivity between columns later. We will also 
extensively use the process of moving interior ridges to cell edges 
when considering how to objectively interpolate topograp hy while 
retaining some appropriate ly approximat e connectivity.

Partial step and shaved cell representat ions of topography are 
designed to represent resolvable variations in topography. The thin 
walls representat ion (Fig. 1c) specifically permits unresolvabl e
(narrow relative to the horizontal grid spacing) topographic fea- 
tures in the form of knife-edge ridges. Such ridges can inhibit 
transport from one cell to another below some depth, even if the 
cells in question are generally deeper than the ridge.

A thin wall representat ion of topography , exactly as we define
here, was used in the Hamburg Large Scale Geostrophic (LSG)
Ocean Circulation Model (see Fig. 2 of Maier-Reim er and Mikolaje- 
wicz (1992)). There, the topography is defined as residing on Arak- 
awa E-grid vector points and the cell-center depth is normally the 
deepest of the edge values. Despite the potential for representing 
narrow barriers, it appears that their method has not been adopted 
by any other circulation model since LSG.

In principle, a model that can use the cut-cell method can fairly 
easily adopt thin walls. For instance, the MITGCM (Marshall et al.,
1997) uses three-dim ensional arrays to store the face areas and 
volumes of each grid cell with no hard restrictions on how they 
are set. Appropri ate initialization of these areas and volumes can 
impleme nt any of the partial step, shaved cell or thin wall repre- 
sentations of topography.

2.2. Porous barriers 

Thin walls are natural for describin g non-connectivi ty i.e. the 
condition that below a certain depth, fluid on either side of the thin 
wall should not be able to communi cate. Finding and defining such 
a deepest connectivity depth is relatively straight forward, as will 
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be described later in Section 3. Topography , however, is multi-scale 
and, inconveniently, does not occur in piecewise constant sections.
Instead, a profile of depth along a model cell grid edge contains a
spectrum of features bounded from below by the minimum con- 
nectivity and from above by some peak height, as illustrated in
Fig. 3a. A conventional model wishing to represent some gross 
measure of this profile can use only a single value for the depth 
on the edge (even if using thin walls which might use the mini- 
mum connectivity depth, for example). The challenge here is that 
the ‘‘best’’ value depends on the perspective and aims of the appli- 
cation. For instance, for barotropic dynamics or depth integrated 
tracer budgets, one might expect that the best value should be
the mean depth. However, for over-flows, the minimum depth is
a more relevant depth to choose since the sill depth of an overflow
helps determine the water-mass properties.

The porous barriers representat ion we propose here, provides a
distribution of effective width on an edge, as a function of height 
above the minimum depth of connectivity. The effective fractional 
width (of connectiv ity) is zero below the deepest connectivity 
depth, is one above the tallest feature, and can vary in some mono- 
tonic fashion between these two depths (Fig. 3c). The consequence 
is that inter-colum n transport is geometrically modulated as a
function of elevation. Fig. 4a illustrates this modulation on the 
edge of a column. Fluid below the lower surface (R) cannot pass be- 
tween the two columns shown, assuming R is at or below the min- 
imum topography . Fluid above the upper surface (G) is unimpeded 
by topograp hy if G is at or above the tallest topographic features.
Although the elevation difference between the three surfaces (G-
B and B-R) is approximat ely the same, the area, ARB, available for 
lateral transport of fluid in the layer R-B is significantly less than 
the area, ABG, available to transport fluid in layer B-G.

The vertical profile of the effective fractional width is equivalent 
to the cumulati ve pdf (probability distribution function) of depth 
on the edge (Fig. 3c), which can be found simply by sorting the 
high-resoluti on point-wise depths along the edge. The shape of
the distribution may be quite convoluted (the pdf is very non- 
Gaussian, Fig. 3b) but we will later propose using a simple three 
parameter fit. The concept is independent of the choice of curve-fit.

The individual channels depicted in Fig. 4a, and the implied 
multiple distinct pathways between columns, cannot be resolved 
or represented in the coarse model. From the perspective of the 
coarse scale columns, all that matters is their aggregate effect of
Fig. 3. (a) A schematic profile of unresolved topography, DðyÞ, along a single model grid
below which fluid is entirely blocked, the maximum is the level above which fluid is com
this can under-estimate deep connectivity. (b) The pdf of topography, PðDÞ, is bounde
effective fractional width, wðzÞ, at an elevation z, is equivalent to the cumulative pdf of
curve fit (red dashed curve) to represent the cumulative pdf (see text and A). (For interp
web version of this article.)
providing increasing effective width for transport with higher ele- 
vation. Transport between the coarse scale columns can not distin- 
guish between this aggregat ed representation of the fine-scale
multiple-ch annel topography and a single channel with the shape 
of the fine-scale pdf.

The structure depicted in Fig. 4a should not be interpreted as
providing lateral (along edge) information with which gradients 
and dynamics can be calculated . Instead, the informat ion is of a
bulk nature and for this reason we schemati cally depict the porous 
barriers as a fuzzy region above the imperme able thin walls in
Fig. 1d.

The above discussion describes the modulating effect of a por- 
ous barrier on lateral transport or fluxes. A similar ‘‘porous media’’
effect applies to the capacity or inertia of a grid cell. Fig. 4b depicts 
a single column with a porous media representat ion of sub-grid 
scale topography in the interior of the column. As discussed earlier,
topograp hic blocking of flow by interior ridges cannot be repre- 
sented by a single (or multiple) volume parameter. However, the 
geometri cal effect on capacity/ inertia of the column can be cap- 
tured: there is less volume below the lower surface (R) than be- 
tween the other surfaces, so a given volume flux divergence 
below R will lead to a more rapid change in elevation of R than 
for the other surfaces. It is not possible to faithfully represent 
sub-grid cell ridges that separate the cell into multiple bodies of
fluid since the blocking effect is lost, even though the displacemen t
of fluid can be captured . Open area for transport between columns 
in and out of a layer in Fig. 4b is strictly determined by the inter- 
section of the layer surfaces with the topography on the edges of
the cell, not the interior (depicted in Fig. 4a).
2.3. Describing porous barriers and volumes to a model 

In an Eulerian frame, a conservation law for scalar / takes the 
form

@t/þr � F ¼ 0; ð1Þ

where F is the flux of / and r� is the three-dimen sional divergence 
operator. The finite volume method integr ates the conserva tion law 
over a finite volume, V to yield 

@tðV/Þ þ diðAxFxÞ þ djðAyFyÞ þ dkðAzFzÞ ¼ 0; ð2Þ
 cell edge (also shown in Fig. 4a). The deepest (minimum) topography is the level 
pletely unimpeded by topography. Often the mean topography is used in models but 
d (zero above/below the maximum/minimum) and is very non-Gaussian. (c) The 
depths, which can be found by sorting the depth profile, Dð~yÞ. We suggest a simple 
retation of the references to color in this figure legend, the reader is referred to the 



Fig. 4. (a) A perspective schematic of an edge wall with sub-grid scale topography modulating transport across the edge between columns. When the lower surface (R) is at or
below the deepest topography, fluid below R is completely blocked. Similarly, when the upper surface (G) is at or above highest topography, transport above G is unimpeded 
by topography. Fluid between the lower (R) and middle (B) surfaces can flow through the reduced open area, ARB (magenta). Fluid between the middle (B) and upper (G)
surface has a larger area, ABG (orange), available for transport than ABR . The location and existence of individual valleys/peaks is lost in the formulation; only their aggregate 
effect is retained via an effective open width, wðzÞ (depicted in Fig. 3c). (b) A perspective schematic of how the volume of fluid in a cell can be modulated with elevation;
deeper in the water column there is less lateral area available to contain fluid. Interior ridges, that separate the fluid regions cannot be represented. Transport in/out of a layer 
within the cell is determined only by the intersection of the layer with topography on the edges (as shown in panel a).
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where / is now the mean value for the volume, the sub-scr ipts indi- 
cate directions and the di;j;k notation indicate s a simple differe nce of
normal fluxes across the volume. The volume, V, and areas, Ax;y;z,
need not be constant in time and indeed in most ocean circula tion 
models some time dependenc e is assumed .

We denote the range of topography on a cell edge or volume by
the minimum value, z ¼ D�, and the maximum value, z ¼ Dþ (ele-
vation z is positive upwards). The cumulative pdf of topography on
that edge, f ðxÞ, is linearly related to the sorted topography ,
DðxÞ ¼ D� þ ðDþ � D�Þf ðxÞ. If we know, or have a good model of,
f ðxÞ, then we can construct an equivalent pdf description of the 
fractional width of fluid as a function of elevation, wðzÞ (details
of this equivalence are given in A). On a column edge, if we denote 
the nominal element length by Do, the open width at some depth z
is DðzÞ ¼ DowðzÞ, and the area of fluid between some depth z and
the topography is then given by

AðzÞ ¼
Z z

�1
Dðz0Þdz0 ¼ Do

Z z

D�

wðz0Þdz0: ð3Þ

The area of a control volume side-face (Ax or Ay in Eq. 2) is the dif- 
ference inAðzÞ for the boundin g interface s above and below the vol- 
ume. Similarly, if the nominal areal footprint of the column is
denoted Ao, then the open vertical column area at some depth is
AðzÞ ¼ AowðzÞ, now applying wðzÞ to the column instead of the 
edges. This provides the values for Az at the top and bottom of
the cell. The volume of fluid below some depth z is then given by

VðzÞ ¼
Z z

�1
Aðz0Þdz0 ¼ Ao

Z z

D�

wðz0Þdz0: ð4Þ

There are many ways to construct f ðxÞ (or wðzÞ). Appendix A details
a three param eter curve fit but a higher order model or even the 
raw pdf could be used. However , for the purposes of the discussion 
here, we assume that the descri ption of topography will require 
only three paramete rs, the minimum, D�, the maximu m, Dþ and
the mean, D, and that those paramete rs will be available for both 
columns (cell centres) and grid edges (cell faces).
3. Objective regridding of high-res olution topography 

The regridding algorithm works by recursively coarsening four 
fine cells at a time into a single coarse cell. Data is stored for both 
the cell centres (columns) and the cell edges. This provides three 
times the degrees of freedom than would be obtained by just stor- 
ing data for cell centres. Moreover, we carry forward three param- 
eters for each center or edge (minimum, maximum and mean)
which yields a net factor of nine times the degrees of freedom com- 
pared to a more standard representat ion of topography . The source 
code has been made available in the public domain (Adcroft, 2013 ).

3.1. Fine grid generation and interpola tion 

To arrive at the intended target grid via repeated coarsening,
the source data must first be provided on the finest grid that is a
power of 2 finer than the target. To find the finest grid, we repeat- 
edly refine the target grid by factors of 2 until every cell on that 
fine grid is locally smaller than any cell of the source data in its 
vicinity. Source topograp hy is interpolated to the finest grid using 
nearest neighbor rules (i.e. a first order accurate interpolation).
This process ensures that no extreme data values (local valleys or
peaks) are lost or generate d. The geographic position and horizon- 
tal breadth might be shifted by up to half of the width of the fine
cell. We use this low-order interpolation to preserve connectivity 
of the source data, but it is only used in the initial interpolation 
to the finest grid.

3.2. Initial thin wall parameters 

Starting on the finest grid, the interpolated topograp hy has only 
cell mean values. The initial data is interpreted as piecewise flat,
again to preserve connectivity, so that the minimum, mean and 
maximum of cell and edges are all the same. Thin wall values are 
generate d to be consistent with this step topograp hy interpreta- 
tion. Thereafter, connectivity is always determined in terms of
the edge values.

3.3. Relationship between levels of refinement

At each level of recursion, the only data available are the cell 
and edge values on the immediatel y finer grid of twice the resolu- 
tion; informat ion does not skip across levels of recursion. We carry 
forward an effective minimum, an effective average and effective 
maximum . The true minimum, average and maximum are also car- 
ried forward as a trivially calculated diagnost ic but play no role in
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the algorithm. We use the true values solely for comparison in
analysis.

3.4. Diagnose coarse connectivity 

At each level of refinement, the first step is to diagnose six ‘‘con- 
nectivity’’ parameters for each coarse cell. Connectivit y is defined
in terms of the ‘‘effective minimum ’’ wall values. Each connectivity 
parameter is the value of deepest connectio n across the coarse cell 
from one side to another, in one of six directions , two directly 
across (north–south and east–west) and four across each corner 
(south-to-west, west-to-north, north-to- east and east-to-sout h).
For each of the north–south and east–west directions, there are 
eight possible paths on the fine grid that could connect the coarse 
cell to the south to the coarse cell to the north, as illustrate d in
Fig. 5 for the north–south direction. Along each possible path, the 
tallest thin wall value determines the depth of the path, and the 
deepest of all eight is assigned as the north–south connectivity 
depth. The east–west direction is handled similarly. For each of
the four diagonal directions, there are seven possible paths con- 
necting the coarse cell to the south to the coarse cell to the west,
as shown in Fig. 6 for the south-to-wes t direction. Each of the other 
three corner connections are diagnosed similarly. These six con- 
Fig. 5. The eight possible pathways of deepest north–south connectivity (grey arrows) a
deep thin walls that are all deeper than the taller (thick lines) thin walls. Each deepest pat
have multiple tall (thick) wall configurations which do not alter the deepest connectivit

Fig. 6. As for Fig. 5 but for the seven possible pathways of deepe
nectivity parameters are subsequently used as constraints to test 
whether a deeper pathway is artificially introduced during the 
coarsenin g of topographic data.
3.5. Removing tall corners 

Within each coarse grid cell, the four fine grid cells might rep- 
resent up to four separate bodies of fluid. Before coarsening the 
topograp hic data from fine to coarse grid, adjustments are made 
to the fine grid, re-arranging the internal thin walls to represent 
somethin g closer to only one body of fluid. The first re-arrange- 
ment identifies tall corners (Fig. 7a) in which the two tallest inte- 
rior thin walls (blue lines) forming corners are pushed out as
follows. The lower value of the two inner walls (blue lines) is cho- 
sen as a potential new value for the outer walls (red lines). For each 
of these outer lines the value is replaced if the outer wall would be
raised. Both of the inner tall ridge values (blue) are then assigned 
the taller of the remaining (as yet) unused inner walls. At the 
end of this adjustment, cells that underwent this adjustment will 
have three of the four inner walls with the same value. Cells that 
did not undergo adjustment must have the two tallest center edges 
aligned in a straight ridge, dealt with next.
cross a coarse grid cell (comprised of four fine grid cells). The dashed lines indicate 
hway is uniquely defined by the deepest (dashed) walls whereas some pathways can 
y.

st south-west diagonal connectivity across a coarse grid cell.



Fig. 7. Internal fine grid wall adjustments. (a) If the two tallest thin walls form a corner (four blue scenarios), they are pushed out (blue) thereby removing that body of fluid
that was disconnected from the rest of the cell. (b) If the two tallest thin walls form a straight ridge, the are folded open in the direction of tallest thin walls on either side. (c)
The two inner walls associated with the deepest corners are pushed into create a single depth cell. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)
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3.6. Removing interior ridges 

The second re-arrangemen t identifies straight ridges defined
where the lower of a straight pair is equal 3 to or higher than the 
highest of the opposing pair (Fig. 7b). The lowest value on the taller 
ridge (blue) is considered the potential new value for the outer walls.
The four outer walls on the opposite side from the deepest inner 
ridge are then assigned the potential value when it would raise that 
wall. The three tallest inner walls are assigned the deepest inner wall 
value. At the end of this adjustment all the inner walls have the same 
value. Again not all of the cells meet the criteria for adjustm ent but 
any that underwent the previous ‘‘corner push’’ adjustm ent do meet 
the criteria for the ‘‘ridge folding’’.

3.7. Expansion of deepest corner 

The only cell that will not have had interior wall adjustments 
are those with all equal wall values. This typically only happens 
for very flat topography which essentiall y means that the column 
as a whole is a large barrier. After the two fine grid adjustment s de- 
scribed, all the inner edge values are equal but there may still be
multiple bodies of water represented because the eight outer edges 
may be deeper than the four inner edges. The third fine grid adjust- 
ment selects the corner with the deepest corner transport defined
as the higher of the two outer edges on a corner. The deeper of the 
associated inner edges is considered the potential new value for 
the six outer edges opposite from the deepest corner and the value 
used if it would raise that edge element. The inner edges are all as- 
signed the same value. The result of this operation is a hollow C-
shape with inner edges all of the same value.
3 The definition includes the equality of heights in order to capture ‘‘T’’-shaped 
ridges which would otherwise need to be considered separ ately.
The net result of each of the three fine grid adjustments above is
that the edge values are ordered in some sense so that there are no
interior barriers within the coarse cell. The four fine cells consid- 
ered together are effectively representing a single body and thus 
a coarse cell can now more reasonabl y approximat e the connectiv- 
ity of the four fine cells.

3.8. Coarsening 

Thus, after adjusting the fine grid edges, we can now coarsen 
the data as follows. The minimum and maximum coarse edge val- 
ues are assigned the minimum/max imum of the two associate d
fine grid edge values. The mean edge value is calculated as a
two-dimensi onal spatial average of the four abutting cell averages.
The coarse center values use all four fine center values.

3.9. Applying coarse grid constraints 

The course grid connectivity is compared with the six connec- 
tivity parameters calculated before any fine grid adjustment s were 
made (Figs. 5 and 6). There are four degrees of freedom (minimum
value on each coarse edge) that are constrained by six deepest 
pathways . There is no way to ensure that the coarse diagonal 
and cross cell pathways equal the diagnose d fine grid pathways.
For the most part, the coarse pathways will not be deeper than 
the fine-grid pathways but for the infrequent exceptions we make 
a final adjustment to the coarse edge values to ensure no new 
deepest pathway is created. Each pathway (North–South, East–
West, South-West, South-Ea st, North-West and North-East) is
compare d independen tly and if the coarse pathway is too deep 
the higher of the two coarse edges involved is raised to make the 
pathway equal to the fine-grid pathway. This adjustment applies 
only to the minimum values and any mean and maximum edge 
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values that are inconsistent ly ordered are bounded so that the 
minimum, mean and maximum values are correctly ordered.

3.10. Bounding statistical values 

Finally, the value of the effective mean is bounded to be above 
the effective minimum value and similarly the maximum value is
bounded to be above the mean. This is needed since we have been 
moving the effective minimum around on the fine grid to approx- 
imately retain connectiv ity but not moving the other moments 
around with it.

Overall, the adjustment s we described are arbitrary but they 
were chosen to bias towards retaining deeper connections without 
opening new connectivity. The first ‘‘corner pushing’’ favors the 
larger aerial fraction of the cell, while the ‘‘ridge folding’’ and sec- 
ond ‘‘corner pushing’’ favor deeper connections .

4. Illustrative examples 

To illustrate the qualitative advantage of the thin-wall repre- 
sentation and interpolation algorithm over more conventional ap- 
proaches, such as partial-steps and spatial averaging, we consider 
several regions of oceanogr aphic importance. Fig. 8 shows the 
two regions of the Indonesian through-flow and the Denmark 
Strait-Icelan d-Faroe bank, plotting the raw 10 data (version 14.1)
from Smith and Sandwell (1997). Both these regions have topo- 
graphically constrained overflows and are of global oceanographic 
importance . Indicated in Fig. 8a is the Lombok strait which allows 
water to spill from the Java Sea into the Indian Ocean across the 
otherwise effective barrier of the southern Indonesian islands.
The Ombai and Timor channels are deeper and allow deeper water 
from the Banda Sea to reach the Indian Ocean. The Denmark Strait 
(Fig. 8b) provides the deep pathway for Denmark Strait Overflow
Water to spill into the North Atlantic via a relatively broad, but 
diagonal, channel (on this grid orientation) while Iceland-Scotland 
Overflow Water spilling through the Faroe bank channel has to
take a more circuitous route.

Fig. 9 shows the region of the Indonesian through-flow at three 
representat ive resolutions ; 1

4
�, 1

2
� and 1�. The topography shown in

the left column is calculated using a conventional spatial average 
of high-resoluti on topographic data and is the depth that a par- 
tial-step ocean model would be assigned at each resolution. Note 
the barrier formed by the southern Indonesian islands (at about 
81

2
�S) begins to disappea r even at 1

2
� resolution and is completely 
Fig. 8. Topography of (a) Indonesian through flow region and (b) Denmark strait-Icelan
different color scales for the different regions. In all geographic plots, the topography 
longitude (�E) and y-ordinate is latitude (�N).
absent on the 1� grid. The Timor (11�S, 123 �E) and Ombai (9�S,
125�E) channels become shallower with coarser resolution. In con- 
trast, the right column shows the minimum depth of connectivity 
calculated using the thin wall algorithm. The connectivity is de- 
fined by the edge values which are drawn as colored lines. Here,
at each resolution, the island-mad e barriers are retained, often col- 
lapsing to a thin wall, and the deep channels are still apparent and,
for the most part, contiguo usly connected . Aesthetic ally speaking,
the thin-wall depiction is more representative of the original 
high-resol ution data (Fig. 8a) than the spatially-average d depiction 
(left column). Other methods, such as sub-sampling or different 
statistical downscalin g, might fair better but the reduction of res- 
olution using only a single parameter at a cell center inevitably will 
not be able to depict the complexity of topograp hy as well as the 
thin-wal ls which has at least three times the data content due to
the data residing on the cell edges.

The mean and maximum values produced by the thin wall algo- 
rithm are shown in Fig. 10. These are, for the most part, the simple 
areal average/ma ximum except where the connectiv ity adjust- 
ments raised the minimum above the mean/maximu m, in which 
case the mean and maximum are bounded from below. While a
plot of the minimum value renders a recognizable depiction of
the real world, the plots of the mean and maximum values need 
more care to interpret. The mean is at least higher than the mini- 
mum values but in some cases can be positive (above sea level)
even though the edge or cell may contain ocean. The positive value 
does not imply that oceanic transport is necessarily blocked since 
‘‘blocking ’’ is solely determined by the value of the minimum 
paramete r for an edge. In the instances where the mean is above 
sea-level and the minimum is below sea-level, it means that only 
a partial section of the edge is open for transport. We have found 
it particularly difficult to visualize all three parameters (minimum,
mean and maximum) simultaneou sly for both edges and cells in a
satisfacto ry way.

A similar comparison of spatial-aver aging and the thin-walls 
algorithm is shown for the Denmark Strait-Iceland-F aroe bank re- 
gion in Fig. 11. Here the disappearance of the Faroe Islands on the 
1� grid in both depictions could be argued to be acceptable since 
they do not present a barrier to flow in any direction for a 1� wide
cell. The mid-Atlantic ridge, south-west of Iceland, depicted by
averaging gradually becomes smoother and deeper with coarsen- 
ing resolution so that it is barely visible as a barrier at 1�. In con- 
trast, the thin-wall approach retains the tall peaks and the mid- 
Atlantic ridge is identifiable as a contiguous but zigzag, ridge; the 
d-Faroe channel region from Smith and Sandwell (1997) at 10 resolution. Note the 
is positive up (zero is mean sea-level) given in units of meters, the x-ordinate is



Fig. 9. Topography of Indonesian Through Flow region at three resolutions (1
4
� - top, 1

2
� - middle, 1� - bottom) and using either the traditional spatial-averaging method (left

column) or the thin walls algorithm (right column, showing only the deepest values). Note that the cell-center minium is always at least as deep as the deepest edge value as a
result of the thin-wall regridding algorithm (Section 3).
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zigzag arises because the ridge is diagonal in orientation. The Den- 
mark strait retains deeper values at the sill (numerical values will 
be provided in the next section) and the Faroe bank channel is also 
still identifiable and contiguo us, even at 1� resolution and despite 
the circuitous path.
5. Evaluation of connectivity: sill depths 

In the two examples of Section 4, the visualization of the deep- 
est connectivity (thin-wall minimum value) clearly indicates that 
thin-walls provide a more faithful structural representat ion of
the original high-resoluti on data. We now examine how well the 
method performs numerica lly.

Fig. 12 shows the sill depths for four oceanographic ally impor- 
tant Straits: Denmark Strait, the Faroe Bank Channel, the Strait of
Gibraltar and Bab-el-Mand eb (Red Sea overflow). We considered 
four different gridded data products. ETOPO2v2 is a 20 blended
product (NGDC, 2006 ) and the oldest considered here. Smith and 
Sandwell (1997) is a nominally 10 dataset limited to latitudes be- 
tween 80�S and 80�N. ETOPO1 is a 10 product (Amante and Eakins,
2009) which blends various other products including the Smith 
and Sandwell product. Gebco 08 version 20100927 (GEBCO,
2010) is the highest resolution product considered which is a
blended 1=20 data set. In this analysis, we diagnose the sill depth 
defined to be the deepest depth that water can flow from one basin 
into another as found by a flooding algorithm. For each of the four 
sills, we show the diagnose d sill depth (cross marks) at the corre- 
sponding resolution of the gridded data. Note that the various grid- 
ded products do not agree on these sill depths. For instance, the 
Bab-el-M andeb sill is 137 m, 113 m, 126 m and 103 m deep in
GEBCO, Sandwell, ETOPO1 and ETOPO2v2 respectively. There are 
few references to the actual sill depth; paleo-sea- level studies typ- 
ically cite 137 m depth from Werner and Lange (1975) while some 



Fig. 10. As for Fig. 9 showing the thin-wall mean (left) and highest (right) values. Note that a positive (above sea-level) mean or maximum value does not imply that the thin- 
wall is necessarily closed to oceanic transport, an aspect which is determined by the deepest value (shown in right column of Fig. 9. The cell-center mean values (left) match 
those shown in the left column of Fig. 9 except where connectivity required alterations (the mean cannot be below the minimum). The map of maximum values is less 
recognizable and indicates the depths below which modulation of fluxes/inertia begins.
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physical oceanograp hic literature site 163 m depth (Pratt et al.,
1999). Highligh ting such discrepancies serves to make two points:
i) the gridded products should not be considered definitive and ii)
the actual bathymetry is often not known.

For each of the gridded products, we generate an ocean model 
topography using spatial averaging for several resolutions ranging 
from 1=10�-1� (square marks, colored according to original gridded 
product). Generally, the coarsest model sill depth is always shal- 
lower than it should be presumabl y due to the typical saddle shape 
of topography at sills. However , the error is not monotonic nor pre- 
dictable as a function of resolution. For the two shallow sills 
shown, the sill becomes completely land blocked.

In contrast, the objective regridding algorithm (Section 3) is
able to retain the exact original sill depth, using the minimum edge 
depths, at all resolutions for three of the four sills shown. The thin- 
wall Bab-el-M andeb (Red Sea overflow) sill depth does vary with 
resolution but only by 13 m which is less than the range of differ- 
ences between the original gridded products.

We conclude from these results that the thin wall interpolation 
algorithm is robust and reliable.

6. Impact of porous barriers on dynamic s: Tsunami travel time 

The sill depth analysis, presented above, focused on the deepest 
connectiv ity (minimum elevation) while here we turn our atten- 
tion to the value of the mean elevation at the edges. The particular 
distribut ion of topograp hy between the minimum and maximum 
is likely to matter most for flow structures containe d below or near 
the maximum topography . The barotropic mode, however, is most 
depende nt on the mean topography because, by definition, the 



Fig. 11. As for Fig. 9 but for topography of Denmark Strait, Iceland and Faroe Bank Channel. Notice that the Faroe-Bank overflow channel is visibly shallow, south-west of the 
Faroes, in the 1� resolution, averaging data while the thin-wall algorithm retains the high-resolution channel depth.
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mode is integrated over the full depth of the fluid. Thus, barotropic 
dynamics provide a good measure of the representat ion of the 
mean topography. Here, we consider cross-bas in travel times for 
barotropic waves, specifically tsunami.

We use a single-layer shallow water model of the great Suma- 
tra-Andaman Tsunami that travelled across the Indian Ocean on
26 December 2004. The model equations are based on those pro- 
vided in Section 3 of Harig et al. (2008) that include a bottom fric- 
tion based on Manning’s approach. We drop the lateral viscosity 
term since we found it unnecessary to obtain a solution and be- 
cause such scale selective terms can change the solution as a func- 
tion of resolution. The governing equations are:

@tv þxk� v þrK þ grgþ gn2vjvj
h4=3 ¼ 0; ð5Þ

@tgþr � ðhvÞ ¼ 0; ð6Þ
where v is the horizontal velocity vector, g is the sea-surface dis- 
placemen t from resting position, h ¼ g� D is the column thickne ss,
z ¼ DðxÞ is the position of the rigid bottom, x ¼ f þ k � r � v is the 
absolut e vorticity, K ¼ 1

2 jvj
2 is the kinetic energy density , g is the 

free-fall accelerat ion due to gravity, and n is a friction coefficient
(we use n ¼ 0:015). The model is discretize d on an Arakawa C-grid 
and stepped forward in time using a forward –backward scheme.
The absolut e vorticity (x) is upwind biased so that the vorticity 
equation, formed by taking the curl of Eq. 5, looks like a forward -
in-time , first-order upwind biased transport scheme for the scalar 
x. The kinetic energy is also upwind biased using the Godunov 
scheme. Both of these upwind schemes act so that grid-sca le oscil- 
lations in either K or x are numerica lly dissipate d rather than dis- 
persed. The momentu m equations are treated the same in all runs.
The methods are a mixture of quasi-secon d order and first order 
schemes but are robust in that they are not susceptible to extreme 
noise. The time-st ep is chosen so that the fastest deep water waves 



Fig. 12. Illustrative sill depths according to four gridded data sources (Gebco 08,
Smith and Sandwell, ETOPO1 and ETOPO2v2) and as represented on derived ocean 
model grids at various resolutions from each data source. The diagnosed sill depth 
from the original data is plotted at the resolution of the data (cross marks on the 
left) and color coded. There are four spatial averaged curves (dotted lines,square 
symbols) for each sill, color coded to match the data source. The error tendency 
with resolution is fairly independent of the data source but does differ between 
sills. There are four thin-wall curves (solid lines with dot markers) for each sill, color 
coded by data source. For the thin-wall data, three of the four sills have no variation 
with resolution. Bab-el-Mandeb (Red Sea overflow) does vary but by less than the 
variation between the original gridded data sets.
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are marginal ly stable and have approximat ely the same stability 
paramete r for all runs: Dt

ffiffiffiffiffiffi
gH

p
=Dx � 1

2.
We consider a range of resolutions from 12

0 to 1�. The bathymetry 
is based on the 1

2-min GEBCO_08 gridded data (GEBCO, 2010 ). The 
initial condition s are an approximat ion of those given in Table 1 of
Harig et al. (2008) projected onto a 1� resolution grid so that the 
initial conditions are equivalent for all resolutions considered here 
(i.e. on the 1

4
�, grid, a 1� � 1� wide block of 4� 4 ¼ 16 cells is dis- 

placed at each fault location as if it were on the 1� grid).
Although the topography enters in the friction term, the term 

that most strongly affects the solution due to the representat ion 
of topography is the volume flux in the continuity equation (hv).
The various representat ions of topograp hy we discussed lead to
the following discretizations of the zonal component:

ðhuÞppm ¼ PPMðuiþ1
2
;g� DÞ; ð7Þ

ðhuÞpcm ¼ PCMðuiþ1
2
;g� DÞ; ð8Þ

ðhuÞstep ¼ PCMðuiþ1
2
;gÞ � uiþ1

2
maxðDi;Diþ1Þ; ð9Þ

ðhuÞshaved ¼ PCMðuiþ1
2
;gÞ � uiþ1

2
�maxðDi þ

1
2

si;Diþ1 �
1
2

siþ1Þ; ð10Þ

ðhuÞporous ¼ PCMðuiþ1
2
;gÞ � uiþ1

2
Diþ1

2
; ð11Þ

where integer subscript s indicate a cell value, half-in teger sub- 
scripts indicate an edge value, si is the slope of shaved cell topogra- 
phy, the function PPMðu;hÞ is the flux using the piecewise- parabolic 
method (Colella and Woodw ard, 1984 ) and the function PCMðu;hÞ is
the piecewise-con stant method or first-order upstream metho d, gi- 
ven by

PCMðuiþ1
2
; hÞ �maxð0;uiþ1

2
Þhi þminð0; uiþ1

2
Þhiþ1: ð12Þ

See Colella and Woodwar d (1984) for details of the flux PPMðu;hÞ,
but note that PPM is not distrib utive in h due to the non-linea r lim- 
iter; i.e.

PPMðu;g� DÞ – PPMðu;gÞ � PPMðu;DÞ;
whereas

PCMðu;g� DÞ ¼ PCMðu;gÞ � PCMðu;DÞ:

For stability, all fluxes are limite d to retain non-negative thickne ss:
jðhuÞj < jPCM 1

2
Dx
Dt sgnðuÞ; h

� �
j even though it is not needed for ðhuÞPPM

and ðhuÞPCM . For schemes (9)–(11), the thickness transport is split 
into two component s, one due to a transport of (dynamic) g and
the other due to the static ocean depth, D. In deep water, the dy- 
namic component is small compared to the static component . For 
this reason we found minimal sensitivity to the use of PPM instead 
of PCM in schemes (9)–(11) (not shown ). The largest sensitivit y of
results is to the choice of discretiza tion of static topograp hy term,
which is the focus of this study. We will label the model results 
according to the treatment of the static component .

In the porous model, the edge value Diþ1
2

is the application of Eq.
3 with z ¼ 0:

Diþ1
2
¼ Að0Þ

Do
¼
Z 0

D�

wðzÞdz � Diþ1
2
: ð13Þ

The last approximat ion holds in deep water where the maximum 
topograp hy does not show above sea-level (g� Dþ > 0). Since we
are intere sted in deep water waves, we have applied this approxi- 
mation uniform ly, even in shallow regions, to keep the model sim- 
ple. The Tsunami cross-basin travel times are measured in deep 
water and so this approximat ion does not affect the results pre- 
sented here.

Fig. 13 shows the sea surface displacement after 2 h 20 min 
from the beginning of the disturbance in two models of different 
resolutions . Panel (a) is from a 20 ( 1

30�) grid model using scheme 
ðhuÞppm. This represents the most conventional class of schemes 
that we considered and at a reasonably high resolution. The far- 
travelled fast waves appear well resolved, coherent and similar in
structure to results obtained with the unstructured -model results 
of Harig et al. (2008). In the shallow-wa ter vicinity of the initial 
displacemen t region (centred at 92�E, 7�N) there is significant
noise due to interference of slow short-scale waves and the lack 
of lateral viscosity. Note that numerical dispersio n of the shortest 
scale waves is expected even though it is physically incorrect. Pa- 
nel (b) shows the solution from a 300 (1

4
�) model using scheme 

ðhuÞporous, which is a porous wall representat ion of topography .
The immedia tely obvious differences between the two solutions 
are due to the inability for the lower resolution model to represent 
the fine scale waves that are resolved in the higher resolution mod- 
el. The leading deep-water waves are broadly similar but the coar- 
ser resolution is apparent in the lack of sharpness; the wave south 
of Sri Lanka (�82� E,0� N) is approximat ely six cells wide (zero
crossing- to-zero crossing).

The objective of this study is to establish whether the porous 
walls allow the leading order effects of fine scale (true) bathymetr y
to be captured by coarser scale models. We consider the cross-ba- 
sin travel time of the leading wave front, measured in deep-wa ter 
to avoid issues with run-up, inundatio n and shock formatio n which 
would mask the deep-water wave travel time. The signal is the 
average displacement in a 1� � 1� box centred at 79� 300 E, 4� 300

N (indicated by black box in Fig. 13). Averaging over the box per- 
mits a sensible comparison between models of different resolu- 
tions. We define the arrival time as the time that the spatially 
averaged displacement reaches half the peak value (timing the po- 
sition of the peak is less accurate than timing when the signal is
changing most rapidly). Fig. 14 shows the arrival time as a function 
of spatial resolution for the various topographic representat ions 
and transport schemes considered.

The first result to note is that all the methods appear to be
broadly convergent with resolution. The convergence is for two 
reasons: the first and most familiar is due to the resolution depen- 



Fig. 13. Sea surface displacement at time 2:20 h after the initial displacements begins (a) in a 20 model using conventionally averaged topography and (b) in a 1
2
� model using 

the porous-barrier representation. The effect of resolution is obvious in the different scale of resolved waves. The 1� � 1� black square indicates the region of averaging used 
to measure the cross-basin travel times (covering 30 � 30 cells and 2 � 2 cells in the two grids shown). The color-scale range is 	 1

2 meters (red positive, blue negative).

Fig. 14. Arrival time in the 1� � 1� box, indicated in Fig. 13, as a function of spatial 
resolution for various topographic representations and transport schemes. The 
travel time is defined as the time when the displacement is half the first peak 
displacement. The schemes used are defined in Eqs. (7)–(11). For ðhuÞporous , the 
labels Line and Area denote different averaging to obtain edge value mean depths.
The bounded label indicates that the mean was adjusted to be consistent with the 
thin-wall connectivity.
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dence of spatio-temp oral truncation error in the numerically 
approximat ed equations. We did not calculate the formal conver- 
gence rates due to the mix of schemes between continuity and 
momentum equations. However , we consider the difference be- 
tween schemes ðhuÞppm (SW-PPM, black solid) and ðhuÞpcm (SW-
PCM, black dashed) to be indicative of the traditional truncation er- 
rors in a conventi onal shallow water model. These treatments of
thickness transport are considered third and first order accurate 
respectively , and thus we consider these to be third and first order 
representat ions of topograp hy, respectively . The effective depth at
a transport point (cell edge) is a function of the sign of the flow and 
can thus change dramatically from time-step to time-step in re- 
gions of large topographic variation.

In contrast to layer models, most general circulation models 
have a time-invar iant effective depth at transport points, as mod- 
elled here by schemes ðhuÞstep and ðhuÞshaved. The blue curves are 
thus labelled GCM-PLM (ðhuÞshaved) and GCM-PCM (for ðhuÞstep)
but both use the exact same topographic data as SW-PPM and 
SW-PCM . Both the GCM approach es are broadly less accurate than 
either of the SW schemes (black). The treatment of topography in
GCM-PLM is considered second-order accurate but the results ap- 
pear less accurate than the first-order SW-PCM model. Both 
GCM-PCM and SW-PCM have first-order treatments of topography 
but GCM-PCM is significantly less accurate. The differenc e here can 
directly be attributed to the static topograp hy component of the 
thickness flux: because the function PCM is distributive , the 
scheme ðhuÞpcm can be recast as

ðhuÞpcm ¼ PCMðuiþ1
2
;giÞ � PCMðuiþ1

2
;DiÞ;

which differs from scheme ðhuÞstep only in the second term (the sta- 
tic component ). Thus we might conclude that a linear treatment of
the static component is less accurate, which is broadly consisten t
with the preferred use of non-linea r limiters in scalar transpor t.
However , we will find that scheme ðhuÞporous can be the most accu- 
rate even though it also has a linear treatment of the static 
component .

The green and red lines in Fig. 14 all use the ðhuÞporous scheme
but we varied the data we used for Diþ1

2
. For the green curves we

use a linear average, calculated along the cell edge, of topography.
This value generally has no contributions from high-resol ution 
topograp hic data in the interior of the cell. However, for the dashed 
curve, we adjust the average value to be at or above the thin-wall 
minimum connectivity calculated in the previous section. The red 
curves use areal averaging, with a foot-print one half cell on either 
side of the edge, and the dashed line is similarly bounded by the 
same thin-wal l connectivity.

For the most part, all the porous schemes perform better than 
the second order GCM scheme, ðhuÞshaved. The green curves com- 
pare well with the third-order SW scheme, ðhuÞppm, at coarser res- 
olutions but tend towards the first-order GCM scheme, ðhuÞstep at
finer resolutions. This last result is to be expected at the finest res- 
olution comparable to that of the source topography data. The 
thin-wal l topography interpolation algorithm initialize s the thin- 
wall data on the finest grid using a partial step interpretation of
the raw dataset.

The most accurate model is that using the ðhuÞporous scheme with 
areal averages for the edge data. The improvem ent over using lin- 
eal average topograp hy can be understood in terms of characteris- 
tic solutions; the signal arriving at a point in space integrates the 
wave speed (ocean depth) along the characteristic path taken.
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The areal average approach is more consistent with the character- 
istic integration along a ray than the linear average which is calcu- 
lated normal to the transport direction.

The main result we wish to highlight is that, for the most part,
the ðhuÞporous schemes are less sensitive to resolution than either 
the layer model (SW) or the GCM style treatments of topography.
We consider this evidence that the porous treatment of topography 
is at least viable, and potentially a more powerful representation of
topography than has been used before.
7. Discussion 

We have presented a porous media representat ion of topogra- 
phy as an extension of the cut-cell method that has become widely 
used in fluid dynamics models and has been implemented in some 
form in several ocean circulation models. We also presente d a thin- 
wall algorithm for interpolation of high-resoluti on data onto coar- 
ser grids, to generate the data needed to implement a porous med- 
ia representation of topography in general circulation models.

We demonstrated that the thin-wall interpolation algorithm 
yields a coarse grid data set that retains overflow sill depths with- 
out compromi sing the topograp hy or barotrop ic dynamics. We did 
not evaluate the approach in a three-dimens ional general circula- 
tion model because it has not yet been implemented . We suggest 
that models that describe the topography via three-dimens ional 
arrays for face areas and cell volumes could readily adopt the por- 
ous media representat ion. We have not yet considered the conse- 
quences for the discretizatio n of terms other than the volume/ 
mass transport.

We could have presented the porous representat ion of topogra- 
phy as an application of flow through granular materials or porous 
media. Darcy’s law for flow through a porous medium introduces a
permeabilit y which essentially modifies the efficiency with which 
forces can accelerate flow. The resulting scheme might have been 
similar but understa nding how to obtain permeabilities would 
potentially be more obscure in the context of ocean circulation 
and topograp hy. The geometric interpretation we presented here,
of the sub-grid scale topography and the modulation of transport 
with elevation, leads to a natural extension of the finite-volume 
cut-cell method and also allowed us to develop the thin-wall inter- 
polation algorithm.

The thin-wall interpolation algorithm specifically had to con- 
sider pathways across quadrilateral cells. A triangular grid ap- 
proach is conceivable where each triangle is sub-divided into 
four triangles and might be simpler to develop since there could 
only be three constraints for three unknowns (edge depths). A
more general polygonal grid seems likely to be more challenging 
to develop.

The added information about topography might be useful for 
sub-grid scale parametrizations . For instance, the frictional drag 
on flow should now be aware of the range of topograp hy (as sug- 
gested by Robert Hallberg, personal communication). It is also 
likely that some new parametri zations might be needed if we are 
to permit large-scale transport via sub-grid scale features. For in- 
stance, enhanced diapycnal mixing might be needed to represent 
the mixing processes in the channels and fissures.

In some models, it is common practice to smooth topograp hy,
either for numerica l stability or to reduce noise in the solutions.
Although we have done nothing to assess the validity of this prac- 
tice, it is clearly at odds with the approach we present here. Here,
we attempted to add more reality to the topography rather than 
make it less realistic. At first glance it might appear that the more 
realistic, porous representation of topography will lead to a noisier 
solution. However , the extra degrees of freedom can introduce a
potentially smoother interaction with topograp hy since the trans- 
port is no longer abruptly shut-off at a given depth. Instead, the 
transport gradually reduces with depth as the effective width of
the sub-grid scale channels reduce. In essence, the porous repre- 
sentation appears as a smoothin g of the vertical position of the ri- 
gid boundary and thus we conjecture that it is likely to yield a
smoother solution.
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Appendix A. A three parameter curve fit

A truly general and accurate representat ion of the cumulative 
pdf, wðzÞ, might be possible but here we suggest a three parameter 
fit to the data. From the spatial minimum, D�, spatial maximum,
Dþ, and spatial mean, D, it is possible to fit a curve that can capture 
very narrow V-shaped distribution s, very broad U-shaped distribu- 
tions and a smooth range of curves in between. We describe the 
sorted topograp hy, DðxÞ, on the interval x 2 f0;Dog in terms of a
non-dimens ional curve, /ðv;mÞ such that 

DðxÞ ¼ D� þ ðDþ � D�Þ/ðv;mÞ: ðA:1Þ

Here v ¼ x=Do is the non-dimens ional distance across the element 
and m ¼ ðD� D�ÞÞ=ðDþ � D�Þ is the mean depth normalized by
the topograp hic range. The function /ðv;mÞ 2 f0;1g, must be
monot onic and exist for ðv;mÞ 2 f0;1g and have a mean given byR 1

0 /dv ¼ m. We use the functiona l form 

/ðv;mÞ ¼
va 8 m < 1

2 ;

v if m ¼ 1
2 ;

1� ð1� vÞ1=a 8 m > 1
2 ;

8><
>: ðA:2Þ

where a ¼ ð1�mÞ=m. One may verify that 
Z Do

0
DðxÞdx ¼ DoD� þ ðDþ � D�Þ

Z 1

0
/ðv;mÞ dx

dvdv

¼ Do D� þ ðDþ � D�Þmð Þ ¼ DoD:

This descri ption of the distribution DðxÞ lets us invert for the width 
of the open segment , DðzÞ ¼ DowðzÞ, as a function of depth, which is
defined in terms of the fractiona l open width, wðzÞ, and in three 
interv als:

wðzÞ ¼
0 8 z 6 D�;

wðf;mÞ 8 D� 6 z 6 Dþ;

1 8 z P Dþ:

8><
>: ðA:3Þ

wðf;mÞ is the fractional width in the middle interval and is a mono- 
tonic function in the space ðf;mÞ 2 f0;1g where f ¼ ðz� D�Þ=
ðDþ � D�Þ is a normaliz ed vertical coordinat e. v ¼ wðf;mÞ is the 
same curve as f ¼ /ðv;mÞ. Thus 

wðf;mÞ ¼
f1=a 8 m < 1

2 ;

f if m ¼ 1
2 ;

1� ð1� fÞa 8 m > 1
2 ;

8><
>: ðA:4Þ

where again a ¼ ð1�mÞ=m.
Eqs. (3) and (4) for the area and volume of fluid below some 

depth, z, both involve the integral of wðzÞ,
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Z z

�1
wðz0Þdz0 ¼

0 8 z 6 D�;

ðDþ � D�Þ
R f0

0 wðf;mÞdf 8 D� 6 z 6 Dþ;

ðz� DÞ 8 z P Dþ;

8><
>:

ðA:5Þ

where for the middle interv al

Z f0

0
wðf;mÞdf ¼

ð1�mÞf1=ð1�mÞ 8 m 6 1
2

1
2 f2 if m ¼ 1

2

f�mþmð1� fÞ1=m 8 m P 1
2 :

8>><
>>:

ðA:6Þ
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