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Abstract Unresolved temperature and salinity fluctuations interact with a nonlinear seawater equation
of state to produce significant errors in the ocean model evaluation of the large‐scale density field. It is
shown that the impact of temperature fluctuations dominates the impact of salinity fluctuations and that the
error in density is, to leading order, proportional to the product of a subgrid‐scale temperature variance
and a second derivative of the equation of state. Two parameterizations are proposed to correct the
large‐scale density field: one deterministic and one stochastic. Free parameters in both parameterizations
are fit using fine‐resolutionmodel data. Both parameterizations are computationally efficient as they require
only one additional evaluation of a nonlinear equation at each grid cell. A companion paper will discuss the
climate impacts of the parameterizations proposed here.

Plain Language Summary The density of seawater is an important quantity in ocean models.
There is an error in the way ocean models calculate density, which is especially pronounced in the ocean
models used for climate forecasting. We use data from the output of a high‐resolution ocean model to
quantify this error in density and propose a correction.

1. Introduction

An important component of any ocean model is the seawater equation of state (EOS) which evaluates
density as a function of temperature, salinity, and pressure. The choice of which EOS to use is crucial to
the performance of an ocean general circulation model. Improved accuracy in the EOS, and hence the
resolved density field, has been shown to improve simulations of the Atlantic Meridional Overturning
Circulation, an important process in determining climate variability (Ma et al., 2020). A large source of error
in the resolved density field is due to the interaction of unresolved temperature and salinity fluctuations with
the nonlinear EOS. The EOS is empirically fit for water parcels in thermodynamic equilibrium
(Millero, 2010). Thus, the true large‐scale density is obtained by applying the EOS first at scales where the
assumption of local thermodynamic equilibrium holds and then averaging to the large scale. However, most
ocean models instead calculate density by applying the nonlinear EOS directly to large‐scale temperature
and salinity, where local equilibrium is generally not a valid assumption. Because of the curvature of the
EOS, this method systematically overestimates the large‐scale density. If the EOS were linear, these two
calculations would be the same since averaging operators commute with linear functions. The effect of
unresolved mesoscale fluctuations on the large‐scale horizontal density gradient has been shown to be
significant. McDougall and McIntosh (1996) estimate that temperature fluctuations of 1°C, which are
common in regions of strong temperature fronts (Figure 1), can lead to errors that are 3% of the typical mean
density gradient term. Brankart (2013) developed a method to simulate the effects of these unresolved
temperature and salinity fluctuations and found that this parameterization has a significant effect on the
large‐scale circulation of the ocean and improves the Gulf Stream pathway. Further studies have shown that
Brankart's parameterization impacts the large‐scale density field across the Gulf Stream front at both coarse
(2°) and eddy‐permitting (1/4°) resolutions (Zanna et al., 2019).

The errors incurred by ignoring the rectified effect of subgrid‐scale variability on the resolved density field
are expected to be especially pronounced in areas with significant mesoscale eddy activity. Most climate
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models use a horizontal grid spacing for their ocean component that is too coarse to resolve mesoscale eddies
(Tsujino et al., 2020). Mesoscale eddies play an important role in oceanic dynamics; they contain over half of
the ocean's kinetic energy and contribute substantially to the transport of heat, salt, and nutrients
(McWilliams, 2013). Although mesoscale eddies are typically not resolved in the current generation of cli-
mate models, their effects can be parameterized. Turbulent mesoscale eddy flows are chaotic, so comparison
of ocean model simulations to the real ocean can only be done in a statistical sense. One way to improve the
alignment between the statistics of the modeled mesoscale eddies and the statistics from observations is
through stochastic parameterizations. Stochastic parameterizations have a long history in climate models,
having been foreseen by Lorenz (1975). Stochastic parameterizations were implemented in weather models
by the European Center for Medium‐Range Weather Forecasts in 1999 with great success, leading to
increased skill in their forecasts (Buizza et al., 1999). Stochastic parameterizations also improve ensemble
spread, an important quality for data assimilation systems, and can improve patterns of low frequency varia-
bility (Berner et al., 2017).

Despite the advantages of stochastic parameterizations, ocean climate models remain largely deterministic.
The generic approach to stochastic parameterization of Buizza et al. (1999) has been explored in ocean cli-
mate models (Andrejczuk et al., 2016; Brankart et al., 2015; Juricke et al., 2017, 2018) and has generally
demonstrated a positive effect on the spread in ensembles but only minor improvements with respect to
the mean state. Other methods of adding stochastic perturbations to the resolved density field have also been
explored (e.g., Williams et al., 2016). Several recent studies have focused on developing stochastic parame-
terizations in more idealized ocean models (e.g., Berloff, 2005; Cooper & Zanna, 2015; Grooms, 2016;
Grooms & Majda, 2013, 2014; Grooms & Kleiber, 2019; Jansen & Held, 2014; Kitsios et al., 2013; Porta
Mana & Zanna, 2014), where the effects of these parameterizations can be more easily understood.

The scheme of Brankart (2013) is a stochastic parameterization of the impact of unresolved temperature and
salinity fluctuations on the evaluation of large‐scale density, used only to correct errors in the buoyancy
force. In this paper we propose a new, computationally efficient and data‐informed parameterization of
the effect of unresolved temperature and salinity fluctuations on large‐scale density. Our parameterization
requires only one additional evaluation of a nonlinear function at each grid cell, compared to a minimum
of two in Brankart's parameterization (Brankart, 2013). This parameterization can be used to correct the
hydrostatic pressure gradient force, as in Brankart (2013); it can also be used in other places where the den-
sity is required, for example, to correct computation of the isopycnal slope in the Gent‐McWilliams and Redi
parameterizations (Gent & McWilliams, 1990; Redi, 1982). In section 2 we develop our deterministic para-
meterization. In section 3 we develop our stochastic parameterization. The final form of both the determi-
nistic and the stochastic parameterizations are summarized in section 4. We conclude and provide
discussion in section 5.

2. Deterministic Parameterization
2.1. Derivation of Parameterization

Ocean models cannot resolve all spatial scales, so they typically discretize the domain into grid cells and
track volume averages of desired quantities (though there are a few models not based on volume
averages; e.g., Wang et al., 2014). Quantities of particular interest to this study are temperature, salinity,
and pressure, which are used in the calculation of seawater density. Consider a grid cell G with volume V.
Let T, S represent temperature and salinity. The volume‐averaged temperature and salinity on G are

T ¼ 1
V

Z
G
TðxÞdx; S ¼ 1

V

Z
G
SðxÞdx; (1)

where x ¼ ðx; y; zÞ is a spatial location. In the definition of potential density the pressure is a constant and
is completely unaffected by averaging. For in situ density in the Boussinesq approximation the pressure is
a linear function of depth p ¼ p0ðzÞ, so we can write the volume‐averaged pressure as

p ¼ 1
h

Z z þ h=2

z − h=2
p0ðzÞdz; (2)

where h is the thickness of the grid cell and z is the depth at the grid cell center.
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Density of a parcel of seawater in thermodynamic equilibrium is calculated through the EOS, a function of
temperature, salinity, and pressure,

ρ ¼ ρ̂ðT; S; pÞ: (3)

We use the decoration ·̂ to distinguish the density, that is, the value ρ, from the EOS, that is, the function ρ̂
that computes density. The standard ocean model calculation of density evaluates the EOS at the
volume‐averaged temperature and salinity and reference pressure,

ρm ¼ ρ̂ðT ; S; pÞ: (4)

This calculation neglects any effects from unresolved temperature, salinity, and pressure perturbations. By
contrast, the true volume‐averaged density is impacted by unresolved scales. To make this explicit, we
decompose temperature, salinity, and pressure into resolved and unresolved parts,

T ¼ T þ ΔT; S ¼ S þ ΔS; p ¼ p þ Δp; (5)

where ΔT, ΔS, and Δp are the unresolved fluctuations of temperature, salinity, and pressure. Note that in
the Boussinesq approximation Δp is a linear function of depth only. The volume‐averaged density on a
grid cell is

ρ ¼ 1
V

Z
G
ρ TðxÞ; SðxÞ; p0ðzÞð Þ dx

¼ 1
V

Z
G
ρ T þ ΔTðxÞ; S þ ΔSðxÞ; p þ ΔpðzÞ� �

dx:
(6)

Equation 6 includes the effect of unresolved temperature, salinity, and pressure perturbations, which is not
captured in the standard model calculation of density in Equation 4.

The density calculated by the ocean model, ρm, is not equal to the true average density, ρ, when the EOS is
nonlinear. Brankart (2013) showed that this error in density is substantial and that it has a significant impact
on the average large‐scale circulation of the ocean. Our goal is to correct this error through a parameteriza-
tion that is more computationally efficient and more accurate than Brankart's parameterization. That is, we
wish to find a correction ρcwhich is a function of resolved variables, is computationally inexpensive to com-
pute, and improves the calculation of average density

ρ ≈ ρm þ ρc: (7)

We develop the following parameterization for models with depth‐based vertical coordinates, for example,
z coordinates, and sufficient vertical resolution such that the vertical variations of ΔT and ΔS are much
smaller than the horizontal variations. In practice, the vertical resolutions in operational ocean models
are sufficient to ensure that subgrid‐scale fluctuations of temperature and salinity are dominated by hor-
izontal fluctuations. Thus, the volume averages we consider can be well approximated by horizontal
averages, and we proceed to consider horizontal averages rather than volume averages. Throughout the
rest of this paper, averages over the grid cell G are horizontal averages. We denote the cross‐sectional area
of a horizontal slice of the grid cell by A. Spatial locations are two‐dimensional, x ¼ ðx; yÞ, unless other-
wise stated. In a Boussinesq model, pressure is unaffected by horizontal averaging and there are no unre-
solved horizontal pressure fluctuations, Δp ¼ 0. For simplicity of presentation we express the EOS as a
function of temperature and salinity only and denote it ρ̂ðT; S; pÞ ¼ ρ̂ðT; SÞ . This enables us to use
the same correction for potential density and in situ density in a Boussinesq model. We discuss the utility
of this parameterization in isopycnal models in Appendix B. The effect of non‐Boussinesq subgrid‐scale
variations in pressure on the computation of volume‐averaged density is beyond the scope of the current
investigation.

Brankart's parameterization of the true coarse‐grained density ρ is
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ρ ≈
1
2N

∑
N

i¼1
fρ̂ T þ T′

i; S þ S′i
� �þ ρ̂ T − T′

i; S − S′i
� �g; (8)

where T ′
i and S′i are stochastic and the subscript i ¼ 1; …; N indicates N‐independent samples from a joint

distribution on T′ and S′. Brankart parameterized the joint distribution on T′ and S′ using physical argu-
ments. The resulting stochastic approximation to density had salutary effects when implemented in a
low‐resolution global ocean model (Brankart, 2013; Brankart et al., 2015), but it was never verified
whether the physical arguments that produced the parameterized joint distribution on T′ and S′ were con-
sistent with data. Rather, the resulting density correction was compared with data. Our interest here is to
construct a different but related form of parameterization that achieves the same ultimate goal of correct-
ing the computation of coarse‐grained density, taking care to ensure that the statistics of T′ and S′ are con-
sistent with data from a high‐resolution reference simulation.

To that end, it is worth beginning by recalling how the unresolved temperature and salinity fluctuations ΔT
andΔS can be related to the random variables T′ and S′. We will use this connection to diagnose the statistics
of T′ and S′ directly from a reference simulation at eddying resolution (nominal 0.1°; see section 2.2). The
connection is straightforward: Let x ′ be a random location drawn from a uniform distribution within the
coarse grid cell; then we may define T′ ¼ ΔTðx′Þ, and similarly S′ ¼ ΔSðx′Þ. The joint probability density
function on T′ and S′ is denoted ϕ(T′, S′) and is related to the spatial distribution of ΔT and ΔS as follows

ϕðT′; S′Þ ¼ 1
A

Z
G
δ ΔTðxÞ−T′; ΔSðxÞ−S′½ �dx; (9)

where δ(·) is the Dirac delta distribution, whose units in this context are one over the units of temperature
and salinity. Using this definition, the spatial integral that defines the coarse‐grained true density (6) can
now be transformed, without approximation, into an average over the jointly distributed random variables
T′ and S′

ρ ¼
Z

ρ̂ T þ T′; S þ S′
� �

ϕðT′; S′ÞdT′dS′: (10)

(The proof of this identity involves inserting 9 into 10, rearranging the order of integration, and using famil-
iar properties of the Dirac delta distribution to arrive back at the original definition (6).) Brankart's parame-
terization (8) is a Monte Carlo approximation to the integral (10). The weaknesses of the scheme are the ad
hoc specification of ϕ, and the need to evaluate the nonlinear EOS 2N times.

Following Brankart (2013), we Taylor expand ρ̂ T þ T′; S þ S′
� �

about ðT ; SÞ.

ρ̂ ðT þ T′; S þ S′Þ ¼ ρ̂ðT ; SÞþ∂T ρ̂ðT ; SÞT′ þ ∂Sρ̂ðT ; SÞS′ þ ∂2T ρ̂ðT ; SÞ
2

ðT ′Þ2

þ∂T∂Sρ̂ðT ; SÞT′S′ þ ∂2Sρ̂ðT ; SÞ
2

ðS′Þ
2

þRðT ′; S′Þ

; (11)

where RðT′; S′Þ is the Taylor remainder. Plugging the expansion in Equation 11 into the integral in 10,
recalling that the fluctuations have zero mean, and discarding higher‐order terms (i.e., the remainder)
gives

ρ ≈ ρm þ ∂2T ρ̂ðT ; SÞ
2

σ2T þ ∂T∂Sρ̂ðT ; SÞσ2TS þ
∂2Sρ̂ðT ; SÞ

2
σ2S; (12)

where σ2T is the variance of T′, σ2S is the variance of S′, and σ2TS is the cross covariance of T′ and S′.

Our parameterization of the density correction, ρc, is based on 12. We will begin by diagnosing all the terms
in 12 to verify that it is a good approximation. Next we will find that the second‐order terms involving S con-
tribute little to the overall density correction, and will focus on constructing deterministic and stochastic
parameterizations for the subgrid‐scale temperature variance, σ2T .

To lay a foundation for the diagnostic analysis, we begin by relating the second‐order statistics of T′ and S′
back to spatial integrals as follows

10.1029/2020MS002185Journal of Advances in Modeling Earth Systems
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σ2T ¼ R ðT′Þ2ϕðT′; S′ÞdT′dS′
¼ R ðT′Þ2 1

A

Z
G
δ ΔTðxÞ−T′; ΔSðxÞ−S′½ �dx

� �
dT′dS′

¼ 1
A

R
G

R ðT′Þ2δ ΔTðxÞ−T′; ΔSðxÞ−S′½ � dT′dS′dx

¼ 1
A

Z
G
ðΔTðxÞÞ2dx

(13)

and similarly

σ2S ¼
1
A

Z
G
ðΔSðxÞÞ2dx; (14)

σ2TS ¼
1
A

Z
G
ΔTðxÞΔSðxÞdx: (15)

We will use the spatial integral formulation to diagnose σ2T , σ
2
S, and σ2TS.

As noted above, the diagnostic analysis uses data from a high‐resolution reference simulation. The values of
temperature Ti and salinity Si on the grid in this simulation are in fact cell‐averaged values themselves, over
the smaller cells in the high‐resolution grid. For convenience we will assume that the values of Ti and Si pro-
duced by the reference simulation are the exact values of T and S averaged over the ith fine grid cell. This
assumption implies that we are ignoring errors in the high‐resolution reference simulation.

Let the cells i ¼ 1; …; N from the reference simulation combine to form a single coarse grid cell. LetAi be the
cross‐sectional area of the ith cell of the fine‐resolution grid, and define weights

wi ¼ Ai

∑N
j¼1Aj

: (16)

Then, under our assumption that the reference simulation is without error, we can exactly compute T and S
as follows

T ¼ ∑
N

i¼1
wiTi; S ¼ ∑

N

i¼1
wiSi: (17)

Having computed T and S, we can define

ΔTi ¼ Ti − T ; ΔSi ¼ Si − S (18)

and approximate the integrals (13–15) by

σ2T ≈ ∑
N

i¼1
wiðΔTiÞ2; σ2

S ≈ ∑
N

i¼1
wiðΔSiÞ2; σ2TS ≈ ∑

N

i¼1
wiΔTiΔSi: (19)

Similarly, we can approximate the exact cell‐averaged density as follows

ρ ≈ ∑
N

i¼1
wiρ̂ðTi; SiÞ: (20)

These are all quadrature, or numerical integration, approximations on the fine resolution grid, so the errors
in the approximation decrease as the resolution of the reference simulation improves. Succinctly, scales that
are unresolved in the reference simulation are ignored in our computation of subgrid‐scale variances and
covariances, and in our computation of the cell‐averaged density.
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A list of frequently used notation is compiled in Table 1. In the next section we describe a 0.1° model run
whose output we use in section 2.3 to further develop our parameterization.

2.2. Ocean Model Configuration

We use output from the POP2 oceanmodel run at 0.1° resolution from Johnson et al. (2016) to inform details
of our parameterization. The ocean and ice components are forced in accordance with the Coordinated
Ocean‐Ice Reference Experiments (Griffies et al., 2009) guidelines. The spin up is 15 model years and is
forced with CORE‐II normal‐year forcing. After the spin up, the model is integrated for 33 years using
CORE‐II interannually varying forcing corresponding to the years 1977–2009. The model uses z coordinates
and has 62 vertical levels. The output is saved as 5‐day averages from which we use 1 year, which is 73 snap-
shots. We coarse grain the output to (1/2)°, 1°, and 2° nominal resolutions by averaging spatially over hor-
izontal boxes of 5 × 5, 10 × 10, and 20 × 20 grid cells, respectively. The following presentation is validated at
1° resolution. Our results for coarsening scales from (1/2)° to 2° are qualitatively similar and are summarized
in Appendix A. We use the Wright EOS for all evaluations of density (Wright, 1997). We perform all calcula-
tions over 1 year and report the average of the statistics calculated at each of the 73 snapshots.

2.3. Using Model Output to Inform Parameterization

We now use the output from the 0.1° model run described in section 2.2 to develop our parameterization for
a 1° resolution model. The true cell‐averaged density ρ (Equation 6) is not the same as the model's density
ρm (Equation 4) and we wish to find a correction, ρc, which improves the calculation of large‐scale density,
ρ ≈ ρm þ ρc. In this section we use model output to further develop the approximation in 12.

We coarse grain the 0.1° model output to a nominal 1° resolution by assigning a 10 × 10 block of model grid
cells to one lower resolution grid cell. Consider one coarse resolution grid cell and the high‐resolution grid
cells i ¼ 1; …; 100 associated with it. Let Ti and Si be the values of temperature and salinity on the ith
high‐resolution grid cell. As in section 2.1, we assume that the reference simulation produces the exact
values of temperature and salinity averaged over a fine grid cell. That is, we ignore errors in the

high‐resolution reference simulation. We calculate average temperature, T , and average salinity, S , on

the coarse grid as in Equation 17 with N ¼ 100 and wi ¼ 1
100

. Note that we assume that the variation in

cross‐sectional area of the high‐resolution grid cells is small within a 1° grid cell, and hence the weights

Table 1
List of Frequently Used Notation

Notation used in both parameterizations

T Grid‐cell‐averaged temperature, diagnosed through T ¼ ∑N
i¼1wiTi.

S Grid‐cell‐averaged salinity, diagnosed through S ¼ ∑N
i¼1wiSi.

ΔTi Temperature fluctuation on the high‐resolution grid cell i, ΔTi ¼ Ti − T .
σ2T Subgrid‐scale temperature variance, diagnosed through σ2

T ≈ ∑N
i¼1wiðΔTiÞ2.

s2T Deterministic parameterization of subgrid‐scale temperature variance, s2T ¼ c · ‖δx∘∇T‖2.
ρ Grid‐cell‐averaged density, diagnosed through ρ ≈ ∑N

i¼1wiρ̂ðTi; SiÞ.
ρm Density as calculated in a standard ocean model, ρm ¼ ρ̂ðT ; SÞ.
ρc Proposed deterministic correction to density, ρc ¼

∂2T ρ̂ðT ; SÞ
2

s2T .

Notation used in the stochastic parameterization only
χ Noise field, enters into the proposed stochastic parameterization as multiplicative noise eχ.
φ AR(1) parameter
τ

Decorrelation time, related to φ through τ ¼ −δt=lnðφÞ and parameterized τ ≈ k ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δx2 þ δy2

ū2 þ v2

s
.

σ2χ Variance of field χ.
ε AR(1) innovation
θ Standardized AR(1) innovation, θ ¼ ε

σχ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φ2

p .

10.1029/2020MS002185Journal of Advances in Modeling Earth Systems
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defined in 16 simplify to wi ¼ 1
100

. The temperature and salinity fluctuations ΔTi, ΔSi are calculated as in

Equation 18.

We additionally assume that the unresolved variability at 1° resolution is dominated by resolved scales in the
0.1° reference simulation. This assumption implies that we are ignoring the impact of unresolved variability
in the 0.1° simulation on our parameterization of resolved density in 1° models. Under this assumption the
approximations of subgrid‐scale variances in 19 and cell‐averaged density in 20 incur negligible errors. Thus,
we diagnose the subgrid‐scale variances at 1° from the 0.1° reference simulation as in 19 and the true

cell‐averaged density as in 20 withN ¼ 100andwi ¼ 1
100

. The density that would be calculated by a 1° model

using sample averages is ρm ¼ ρ̂ðT ; SÞ.
Using the 0.1° model output as data, we find that the model in Equation 12 shows excellent skill, with an
average R2 value of 0.999. The R2 value of a data set [y1,… yn] and modeled, or predicted, values [ f1,… , fn]
is calculated as

R2 ¼ 1 −
SSres
SStot

; (21)

where SSres is the sum of squares of residuals and SStot is the total sum of squares,

SSres ¼ ∑
i

ðyi − f iÞ2; SStot ¼ ∑
i

ðyi − μyÞ2; μy ¼
1
n
∑
i

yi: (22)

The R2 value ranges between 0 and 1 andmeasures the proportion of variance in the data that is explained by
the model. However, R2 is sensitive to outliers and for this reason we also report a second measure of simi-
larity, pattern correlation. Pattern correlation is calculated as

∑ i yi f iffiffiffiffiffiffiffiffiffiffiffiffi
∑ i y2i

p ffiffiffiffiffiffiffiffiffiffiffiffi
∑ i f

2
i

q : (23)

The pattern correlation value ranges between−1 and 1, with a value of 1 indicating that the data [yi] and the
model [ fi] are the same, up to a positive multiplicative factor. The average pattern correlation of the three
term Taylor expansion in Equation 12 and the density correction, ρ − ρm is 0.999. Both the R2 and pattern
correlation values are calculated globally for all depths at each of 73 different snapshots. We report the aver-
age of the 73 values.

Using just the temperature term to predict the density correction is nearly as accurate as using all three
terms, with an R2 value of 0.994 and a pattern correlation of 0.999. By contrast, the R2 value when using just
the salinity term is −0.044, indicating that the salinity term by itself is a worse predictor of the density
correction than using the average density correction everywhere. The temperature term by itself is a good
predictor because it is at least an order of magnitude larger than either of the other terms (Williams
et al., 2016). Moreover, using only one term makes the parameterization more parsimonious and reduces
the computational cost. Thus the proposed correction to the resolved density field is

ρ ≈ ρm þ ∂2T ρ̂ðT ; SÞ
2

σ2T ; (24)

where σ2T is the subgrid‐scale temperature variance. Note briefly that the density is strongly sensitive to
salinity but that this sensitivity is via a linear term in the Taylor expansion, which does not have an impact
on the cell‐average, and is therefore already accurately represented by the model. Further note that the

corrected density is always positive. The derivative of the EOS ∂2T ρ̂ is everywhere negative while the var-

iance σ2T is always positive, leading to a correction that is always negative. Theoretically, this could lead to
a negative value for density, which is unphysical. In practice, ρm is on the order of 1,000 kg m−3 while the
largest correction is −0.2 kgm−3 so that the predicted density is always positive. Next we move on to para-
meterizing the subgrid‐scale temperature variance.
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2.4. Parameterization of Subgrid‐Scale Temperature Variance

We have so far used subgrid‐scale temperature variance, σ2T , that we diagnose directly from the 0.1° model
output to validate that the second‐order Taylor expansion including only the temperature term gives a very
accurate approximation to the true cell‐averaged density. In a low‐resolution model we will not have access
to the true subgrid‐scale temperature variance, thus requiring a model which is a function of resolved vari-
ables. We propose the following simple model

σ2T ≈ c · jδx∘∇T j2 : ¼ s2T ; (25)

where δx ¼ ðδx; δyÞ, δx is the zonal grid‐scale length, δy is the meridional grid‐scale length, c is a constant

to be estimated, ∘ is the Hadamard product, and ∇ is the horizontal gradient operator, so that jδx∘∇T j2 ¼

δx
∂
∂x
T

	 
2

þ δy
∂
∂y
T

	 
2

. Note that in section 2.1 we used δ(·) to refer to the Dirac delta function. Going

forward we will use δ to refer to grid‐scale lengths and step sizes only. For clarity of exposition, we intro-
duce the notation s2T which denotes the parameterized subgrid‐scale temperature variance, while σ2T
denotes the diagnosed subgrid‐scale temperature variance. Brankart proposes a stochastic parameteriza-
tion of subgrid‐scale temperature fluctuations which, much like our parameterization, relies on the gradi-
ent of large‐scale temperature. His parameterization implies a parameterization of subgrid‐scale
temperature variance which has the same form as 25, albeit with a coefficient c that varies with latitude.

There are two contributions to the subgrid variance that can be modeled: (i) that due to anomalies associated
with unresolved turbulent structures and (ii) that due to the large‐scale gradient. While the former is the
main focus of this work, the latter can be estimated by a simple expansion; Taylor expand ΔT at the center
of the grid cell, (x0, y0), and keep only the linear term

ΔT ≈ ðx − x0Þ ∂T∂x
����
x0

þ ðy − y0Þ
∂T
∂y

����
y0

: (26)

Then approximate σ2T by an integral

σ2T ≈
1
δx

Z x0 þ δx=2

x0 − δx=2
x′ − x0ð Þ ∂

∂x
T

	 
2

dx′þ 1
δy

Z y0 þ δy=2

y0 − δy=2
y′ − y0ð Þ ∂

∂y
T

	 
2

dy′

¼ 1
12

δx
∂
∂x
T

	 
2

þ δy
∂
∂y
T

	 
2
" #

: (27)

This is the samemodel as that in Equation 25, with c ¼ 1=12and accounts for the subgrid variance due to the
large‐scale gradient. We expect the amplitude of unresolved turbulent anomalies to be related to the local
large‐scale gradients which suggests that c will likely be larger than 1/12 where unresolved turbulence con-
tributes to the subgrid variance. We diagnose c below and find c> 1/12 for all resolutions considered, and
that the form of the model is still appropriate as long as a different value of c is used at each resolution.

The discrete approximations to the derivative operators in the relation (25) require careful attention. We

compute σ2T at the center of the grid, so we also want to compute jδx∘∇T j2 at the center of the grid. We

use a centered difference scheme so that jδx∘∇T j2 is calculated as

1
2
Tðx þ δx; yÞ−T ðx − δx; yÞ� �	 
2

þ 1
2
T ðx; yþ δyÞ−T ðx; y − δyÞ� �	 
2

: (28)

We could use a forward or backward difference instead of a centered difference, but we found that this
adversely affected the quality of our parameterization. Interestingly, the formulation in Equation 28 depends

only on the volume‐averaged temperature T at neighboring locations, not on the grid‐scale length. Also note
that the difference between the predicted value of c ¼ 1=12 above and the diagnosed value below could be

partly due to errors in approximating ∇T by a finite difference scheme.
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We estimate the coefficient c in the relation (25) from 0.1° model output iteratively. First we use ordinary
least squares (OLS) regression, where we regress over all grid cells for a given snapshot. We then take the
average of the 73 estimates for c and find c ¼ 0:25. Next we re‐estimate c byminimizing Huber's loss function

(Equation 29) evaluated at the residuals, aðcÞ ¼ σ2
T − c · jδx∘∇T j2 , and summed over all grid cells in one

snapshot.

LbðaÞ ¼
1
2
a2 forjaj ≤ b

b jaj−1
2
b

	 

otherwise:

8>><
>>: (29)

We use Huber's loss function because it is less sensitive to outliers than the squared loss function used in
ordinary least squares (Huber & Ronchetti, 2009). When we use OLS to estimate c at each depth indepen-
dently, we find that c varies greatly over depth. Upon inspection of the data we hypothesize that this is
due to a few large outliers. When we re‐estimate c over all depths independently using Huber's loss, we find
a consistent estimate of c across all depths. For this reason, we feel confident in using Huber's loss to estimate
c for all depths simultaneously.

Huber's loss function has a free parameter b which dictates the threshold between quadratic and linear loss.
This parameter is commonly calculated as the top percentile of errors which are considered outliers. We
choose b to be the 90th percentile of the OLS residuals. With this choice of b we estimate c ¼ 0:20, which

is an average of the values for c calculated at each of 73 different snapshots. When c ¼ 0:20, s2T ¼ c · jδx∘∇
T j2 is an acceptable model forσ2T, with anR2 ¼ 0:569and a pattern correlation of 0.783, as shown in Figure 1.
In the next section we discuss the deterministic parameterization of the impact of subgrid‐scale variability on
large‐scale density that is associated with this parameterization of subgrid‐scale temperature variance.

2.5. Summary of Deterministic Parameterization

In section 2.3 we show that the impact of subgrid‐scale temperature fluctuations on the evaluation of
large‐scale density is proportional to the product of the subgrid‐scale temperature variance and the second

Figure 1. Subgrid‐scale temperature variance as obtained through coarse graining from 0.1° to 1°, σ2T (top left panel), and
from the parameterization s2T (bottom left panel). Data in the left panels are from the surface model layer of a sample

snapshot. The color scale is a log scale from cmocean (Thyng et al., 2016) and units are ∘Cð Þ2. We set the modeled
temperature variance to 0 near the boundaries to avoid complications with the calculation of the horizontal gradient.
These boundaries are shown in white in the bottom panel. The model represents the spatial structure well overall
with a pattern correlation of 0.783. We propose a parameterization of subgrid‐scale temperature variance with the

form σ2T ∝ δx∘∇T
�� ��2. The right panel shows a two‐dimensional histogram of the proposed model in log space. On the y

axis is log10 σ2
T

� �
, on the x axis is log10 δx∘∇T

�� ��2� 
. The data in the right panel are from all depths of a sample snapshot.

Darker colors show higher proportions of the data. Most of the data fall along the dashed red line representing our
deterministic model. We propose to model the spread about the line stochastically in section 3.
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derivative of the EOS with respect to temperature (24). In section 2.4 we propose a parameterization of
subgrid‐scale temperature variance that is proportional to the product of the grid‐scale length and the
resolved temperature gradient, squared. Together this establishes our deterministic parameterization of
the impact of subgrid‐scale temperature fluctuations on the evaluation of large‐scale density,

ρc ¼
∂2T ρ̂ T ; S
� �
2

s2T ; (30)

where s2T ¼ c · δx∘∇T
�� ��2 with c ¼ 0:20 for 1° resolution models. Our parameterization, ρc, which is

calculated using sample averages from 0.1° model output is an acceptable model for ρ − ρm with R2 ¼ 0:
546 and a pattern correlation of 0.779. Using our model of subgrid‐scale temperature variance, rather than
the diagnosed subgrid‐scale temperature variance leads to decreased R2 and pattern correlation values.

Figure 2. Density correction as obtained through coarse graining from 0.1° to 1°, ρ − ρm (top panel), and through the
parameterization ρc (middle panel). Data are shown from the surface model layer of a sample snapshot. The color
scale is a log scale for the top two panels. The difference between the upper two panels, that is, ρ − ρm − ρc is shown
in the bottom panel on a linear color scale. All color scales are generated with cmocean (Thyng et al., 2016).
The units are kg m−3 across all panels. We set the modeled density correction to zero near the boundaries. The largest

errors in the density correction are in the Gulf Stream and Kuroshio Current and are at most 0.02 kgm−3.
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This is a result of the variability in the subgrid‐scale variance shown in Figure 1. We compare the diag-
nosed density correction to our parameterization in Figure 2 and see very close alignment between the
two fields.

We close this section with a few remarks about the deterministic parameterization. Our parameterization
requires just one extra evaluation of a nonlinear function, the second derivative of the EOS with respect
to temperature. Brankart's parameterization, given in Equation 8, requires at least two evaluations of a non-
linear EOS, and more evaluations are needed for added accuracy. Thus, our parameterization has the poten-
tial to significantly increase the computational efficiency of accounting for the impact of subgrid‐scale
variability on large‐scale density.

The results presented in this section are diagnosed from a z coordinatemodel coarsened to a nominal 1° reso-
lution. However, the results generalize to other resolutions and vertical coordinates. We reevaluate the
results presented in this section at resolutions ranging from (1/2)° to 2° and find qualitatively similar results.
The estimated constant of proportionality c varies between 0.1 and 0.25. Appendix A summarizes our find-
ings at different resolutions.

We find also that this parameterization is a good fit to the density correction in isopycnal models. The mag-
nitude of the impact of temperature fluctuations on resolved density is a factor of two smaller in isopycnal
models than in z‐coordinate models because temperature fluctuations along isopycnal layers are smaller
than along surface of constant depth. The estimate of the constant of proportionality is slightly larger but still
within the range estimated for a z coordinate model. Further discussion of this parameterization in a isopyc-
nal model is in Appendix B.

In future studies we wish to use our parameterization to correct the calculation of the hydrostatic pressure
gradient force and of the isopycnal slope in the Gent‐McWilliams and Redi parameterizations of tracer trans-
port. These calculations use the large‐scale horizontal density gradient. The results in this section show that
our parameterization corrects the evaluation of large‐scale density. However, we desire a parameterization
that corrects the calculation of the horizontal gradient of density. We propose ∇dρc, where ∇d is a discrete
horizontal operator, as a parameterization of this error. In Appendix C we show that the fit of our parame-
terization is not as good, though still passable, at the level of the gradient.

Finally, Figure 1 shows that while s2T provides a reasonable fit to σ2T , there is a significant amount of varia-
bility which is unaccounted for in the deterministic parameterization. Some of this variability could presum-
ably be reduced with a better model of σ2

T , but some of the subgrid‐scale temperature variance is likely an
inherently unpredictable result of turbulent subgrid‐scale variability. One idea is to model this part stochas-
tically, as we do in the following section.

3. Stochastic Parameterization

The main limitation of the correction to density presented above is our parameterization of subgrid‐scale
temperature variance. We should not expect to be able to perfectly parameterize subgrid‐scale temperature
variance as it is inherently an unresolved quantity, affected by turbulent and unpredictable fluctuations at
the mesoscale. Instead, we aim to replicate its statistical properties: mean, variance, and spatiotemporal cor-
relation structure.

In this section we build on our deterministic meanmodel (Equation 30) and propose the following stochastic
parameterization of subgrid‐scale temperature variance

σ2
Tðx; y; z; tÞ ≈ e χðx; y; z; tÞ · s2Tðx; y; z; tÞ: (31)

The quantity χ(x, y, z, t) is a random variable indexed over both space and time. Stochasticity has
been introduced in a multiplicative and exponential form for two reasons: (i) the right panel of Figure 1 sug-
gests that the random errors in the deterministic model are in fact a multiplicative exponential and (ii) multi-
plication by an exponential is a simple way to maintain a positive parameterization of subgrid‐scale
temperature variance. In section 3.1 we show that χ(x, y, z, t) can be approximated by a depth‐independent
field χ(x, y, t). In section 3.2 we show that χ(x, y, t) is approximately normally distributed with constant mean
and variance. This vastly simplifies our model as it requires us to further estimate only the spatiotemporal
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correlation structure of χ(x, y, t). We discuss the correlation through
time (t) in section 3.3 and the correlation through horizontal space
(x, y) in section 3.4. In section 4 we substitute our stochastic parame-
terization of subgrid‐scale temperature variance into the model for
the correction to density given in Equation 24 and discuss the result-
ing stochastic parameterization.

3.1. Depth Structure

We exploit the vertical structure already present in our deterministic
model and approximate χ(x, y, z, t) by a field χ(x, y, t) that is indepen-
dent of depth. We observe that the diagnosed subgrid‐scale tempera-
ture variance has a depth structure that is similar to the depth
structure of our deterministic model. This observation is motivated
by the comparison of leading empirical orthogonal functions (EOF)
and validated through the calculation of the percent of variance
explained by a depth‐independent noise term.

Figure 3 shows the leading EOFs of the diagnosed and modeled
subgrid‐scale temperature variance for two random samples of
horizontal locations. Within each sample, the leading EOF of the
diagnosed subgrid‐scale temperature variance resembles the leading
EOF of our deterministic model, with notable similarities in the

behavior near the surface and at depths greater than 1,000m. There is a discrepancy in the behaviors around
500m. Nonetheless, this approximation explains, on average, 75% of the variance in our deterministic
model.

The EOFs shown in Figure 3 are calculated globally for one snapshot. Both the diagnosed and modeled
subgrid‐scale temperature variance fields approach 0 at depths greater than 2,000m, as shown in
Figure 3. Hence, we include only the horizontal locations where the ocean depth is 2,000 m or greater and
consider only the top 2,000 m, 46 out of 62 vertical levels. To speed up calculations, we calculate the EOFs
over a random sample of 2,000 horizontal locations between 60°S and 60°N. Outside of these latitudes
subgrid‐scale temperature variances are small as are lateral temperature gradients. Thus, the deterministic
parameterization is near zero and the impact of multiplicative noise is small. Results are similar across sev-

Figure 4. Left: Empirical probability density function of the percent of variance explained when the vertical structure of
the stochastic parameterization is taken to be the same as the vertical structure of our deterministic parameterization
of subgrid‐scale temperature variance. The peak at 95% indicates that at a random horizontal location the most
probable amount of variance explained by a depth‐independent noise field is 95%. Right: The probability ( y axis) that at a
random horizontal location a depth‐independent noise field explains at least a given percent of the variance (x axis).
For example, at a random horizontal location there is a 90% chance that a depth‐independent noise field explains at least
40% of the variance and a 50% chance that it explains at least 80% of the variance. Data are taken from a temporal
snapshot at locations between 60°S and 60°N, where the water column is at least 2,000m deep and the depth‐averaged
subgrid‐scale temperature variance is at least 10−4(°C)2.

Figure 3. Leading EOFs of diagnosed (solid line) and modeled (dashed line)
subgrid‐scale temperature variance for two ensembles each of which consists
of 2,000 randomly selected horizontal locations. The leading EOFs for Ensemble
1 are shown in blue, Ensemble 2 in red. Within each ensemble, the leading EOFs
for diagnosed and modeled subgrid‐scale temperature variance have a similar
shape.
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eral samples. The leading EOF of the diagnosed subgrid‐scale temperature variance,σ2T, explains close to 80%
of the variance over depth. Similarly, the leading EOF of our deterministic model, s2T , also explains close to
80% of the variance.

The comparison of leading EOFs motivates our decision to use the vertical structure inherent in our deter-
ministic parameterization as the vertical structure for our stochastic parameterization, that is, to use a
depth‐independent multiplicative noise. We quantify the strength of this approximation by calculating the
percent of variance explained by a depth‐independent noise field and find that it explains, on average,
75% of the variance, as shown in Figure 4.

The choice to use our deterministic model as the vertical structure for the unresolved subgrid‐scale tempera-
ture variance leads to the following simplified model,

σ2Tðx; y; z; tÞ ≈ eχðx; y; tÞ · s2Tðx; y; z; tÞ: (32)

In the following section we discuss how we diagnose the field χ(x, y, t) and some interesting properties of this
field.

3.2. Diagnosing the Noise Field

Consider a single snapshot at time t and let χðx; yÞ ¼ χðx; y; tÞ. Our proposed multiplicative field is indepen-
dent of depth, so at each horizontal location (x, y) we multiply the entire column by a single multiplicative
factor e χ(x, y). That is,

σ 2
Tðx; yÞ: ¼

σ2Tðx; y; z ¼ z1Þ
σ2Tðx; y; z ¼ z2Þ

⋮
σ2Tðx; y; z ¼ zNÞ

2
66664

3
77775 ≈ e χðx; yÞ ·

s2Tðx; y; z ¼ z1Þ
s2Tðx; y; z ¼ z2Þ

⋮
s2Tðx; y; z ¼ zNÞ

2
66664

3
77775: ¼ e χðx; yÞ · s2Tðx; yÞ: (33)

We use boldface to indicate that the quantities σ2
Tðx; yÞ and s2Tðx; yÞ are vectors. We denote the depth of the

ith grid cell in a column by zi. In our diagnosis using the 0.1° model data,N ¼ 46 out of a possible 62 vertical
levels because we consider only the top 2,000 m.

At each horizontal location (x, y) we diagnose the optimal factor e χ(x, y) by projecting the unresolved

subgrid‐scale temperature variance, σ2
Tðx; yÞ, onto our resolved mean model, s2Tðx; yÞ. This projection is

defined as

eχðx; yÞ ¼ σ2
Tðx; yÞ; s2Tðx; yÞ

� �
s2Tðx; yÞ
�� ��2 ; (34)

where

⟨a; b⟩ ¼ ∑N
i¼1aibihi
∑N

i¼1hi
; (35)

hi is grid cell thickness, and ‖a‖2 ¼ ⟨a; a⟩.

Next we see that the mean of e χ(x, y) is close to 1, so that the mean of our stochastic parameterization is close
to the mean of our deterministic parameterization. Recall that our deterministic model has the formσ2T ¼ s2T
þ η where the error term, η, is small. We fit our model at the level of individual data points. Nonetheless,
when we consider the entire column, σ2

T ¼ s2T þ η, we see that each entry in the column η is small, and

hence conclude that the vector η is also small when compared to the deterministic model ?2T . Substituting
this into Equation 34 gives

10.1029/2020MS002185Journal of Advances in Modeling Earth Systems

STANLEY ET AL. 13 of 21

 19422466, 2020, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020M

S002185, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



e χðx; yÞ ¼ s2Tðx; yÞþηðx; yÞ; s2Tðx; yÞ
� �

s2Tðx; yÞ
�� ��2

¼ s2Tðx; yÞ; s2Tðx; yÞ
� �

s2Tðx; yÞ
�� ��2 þ ηðx; yÞ; s2Tðx; yÞ

� �
s2Tðx; yÞ
�� ��2

¼ 1þ ηðx; yÞ; s2Tðx; yÞ
� �

s2Tðx; yÞ
�� ��2 :

(36)

Since η is small compared to the deterministic model, the second term on the right hand side of Equation 36
is also small. Thus the mean of the field eχ(x, y) is approximately 1 everywhere.

The quantity χ that we wish to provide a stochastic model for can be estimated from the data as follows

χðx; yÞ ¼ ln
σ2
Tðx; yÞ; s2Tðx; yÞ

� �
s2Tðx; yÞ2

 !
: (37)

We diagnose the field χ (x, y, t) at each horizontal location (x, y) on the coarse‐grained 1° grid over one year of
model output, which is 73 snapshots (as described in section 2.2). We include only the horizontal locations
where the ocean depth is 2,000m or greater and considered only the top 2,000m, 46 out of 62 vertical levels.
We consider data with latitudes between 60°S and 60°N. We calculate sample mean and variance at each
spatial location (x, y) by time‐averaging over the year of model data.

The sample mean of the diagnosed field χ (x, y, t) is 0.10 and the sample variance is σ2χ ¼ 0:39. In our stochas-

tic model we choose to use a mean of 0 for simplicity because the sample mean is small compared to the sam-
ple standard deviation, and as we see in Equation 36 the mean of eχ is approximately 1. Importantly,
although there is some spatial variability in the distribution of χ, neither the mean nor the variance display
any large‐scale spatial structure. Additionally, we find that χ (x, y, t) is approximately normally distributed so
that the multiplicative noise e χ (x, y, t) is log‐normally distributed. We validate normality of χ through Q‐Q
plots and histograms, shown in Figure 5. The assumption of normality is very good for the left tail of the dis-
tribution. The right tail follows a normal distribution out to 1.5 standard deviations after which it diverges. In
choosing to model this field with a mean zero normal distribution, we underpredict the large positive values.
An improved representation might be achieved using an alternative distribution like the “stochastically gen-
erated skewed” distribution of Penland and Sardeshmukh (2012). In the next section we discuss the tem-
poral correlation of this diagnosed field χ (x, y, t).

3.3. Temporal Correlation

We choose to model the temporal correlation of the diagnosed field χ (x, y, t) (Equation 37) with an AR(1)
time series model at each spatial location (x, y). That is,

Figure 5. Left: Empirical probability density function (solid blue) of the diagnosed field χ(x, y) and proposed normal
distribution (dashed red). Right: Q‐Q plot comparing quantiles of χ to quantiles of a standard normal. Where the blue
crosses lie along the red line, the assumption of normality is reasonable. The left tail follows a normal distribution.
The right tail follows a normal distribution out to 1.5 standard deviations.
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χðx; y; tÞ ¼ φðx; y; tÞχðx; y; t − δtÞþεðx; y; tÞ; (38)

where the AR(1) coefficient φ and the innovation, or error, ε are allowed to vary over space. In practice, we
model φ(x, y, t) as a function of instantaneous resolved surface velocity. However, for the purposes of diag-
nosing φ(x, y, t), we assume that it varies slowly in time so that one spatial field φ(x, y) with no time depen-
dence is a reasonable model for φ(x, y, t) over the year of model data we consider. We use maximum
likelihood estimation to diagnose the time‐independent AR(1) field φ(x, y) at each (x, y) location. The
AR(1) parameter φ(x, y) is related to a decorrelation time τ(x, y) in the following way

φðx; yÞ ¼ e−δt=τðx; yÞ; (39)

where δt is the time interval over which the output is saved, here 5 days. We now consider the diagnosed
field of decorrelation time τ. Rearranging Equation 39 gives

τðx; yÞ ¼ −δt
ln φðx; yÞð Þ: (40)

We now seek a parameterization of the decorrelation time of subgrid‐scale temperature variance. The unre-
solved temperature fluctuations ΔT which comprise σ2T are carried by the mean flow. We expect that the

inherently subgrid‐scale quantityσ2Twill decorrelate over a time period comparable to the time it takes a fluc-
tuation ΔT to be carried through the grid cell. This time is precisely the transit time, which is approximated
by grid cell length divided by speed, ‖δx‖/‖u‖, whereu ¼ ðu; vÞ is velocity. We investigate two values of ‖u‖:
(i) integrated over depth and (ii) at the surface and find that both are good predictors of decorrelation time.
We choose to work with resolved ‖u‖ at the surface going forward for computational ease, and because the
resolved velocity is primarily responsible for sweeping perturbations ΔT through a coarse grid cell. In our
actual parameterization, the AR(1) parameter φ(x, y, t) is a function of instantaneous resolved surface velo-
city, ‖u‖. For the purposes of diagnosing φ we model a single spatial field φ(x, y) for the whole year of model

Figure 6. Decorrelation time in days as diagnosed through Equation 40 (top) and modeled through Equation 41
(bottom). The color scale is on a log scale and is generated with cmocean (Thyng et al., 2016). Spatial locations with
less than 2,000m depth are not considered and are shown in white. The overall large‐scale spatial structure of the
diagnosed decorrelation time (top) resembles that of the modeled decorrelation time (bottom) with a pattern correlation
of 0.80 after discarding outliers where the diagnosed decorrelation time is greater than 500 days.
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data. For this reason, we fit our model using ‖u‖ averaged over one year. We time average ū2ðx; y; tÞþv2
ðx; y; tÞ over a year where ūðx; y; tÞ is the zonal surface velocity on the coarse‐grained 1° grid at the
horizontal location (x, y) and time t and vðx; y; tÞ is the analogous quantity for the meridional surface

velocity. We denote the time averaged energies by ū2ðx; yÞþv2ðx; yÞ, dropping the time variable t.

We propose amodel for decorrelation time τ, which we diagnose through Equation 40, of the following form,

τðx; yÞ ≈ k ·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δx2 þ δy2

ū2ðx; yÞþv2ðx; yÞ

s
; (41)

where δx and δy are the zonal and meridional grid‐scale lengths, respectively. Using the diagnosed decorr-
elation time τ, we estimate the coefficient k by calculating the sample geometric mean of

τðx; yÞ ·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δx2 þ δy2

ū2ðx; yÞþv2ðx; yÞ

s !−1

; (42)

which gives k ¼ 3:7. This value varies slightly across different coarse‐grained resolutions: At (1/2)° we esti-
mate k ¼ 2:3, and at 2° we estimate k ¼ 2:7. The overall large‐scale structure of the modeled values of τ
resemble the spatial patterns seen in the diagnosed values of τ, as shown in Figure 6.

Solving for the AR(1) coefficient by substituting Equation 41 into Equation 39 gives

φðx; yÞ ≈ exp −
δt
k
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ū2ðx; yÞþv2ðx; yÞ

δx2 þ δy2

s" #
: (43)

As the AR(1) coefficient varies in space, so does the theoretical process variance. At a given horizontal loca-
tion (x, y) the variance of the AR(1) process in Equation 38 is

σ2χ ¼
σ2εðx; yÞ

1 − φðx; yÞ2; (44)

where σ2χ is the variance of the noise field χ(x, y, t) and σ2εðx; yÞ is the variance of the innovations at the loca-

tion (x, y). The field χ(x, y, t) is approximately homoskedastic, meaning the variance is approximately con-
stant across space and time. We estimate the variance to be σ2χ ¼ 0:39. In order to satisfy Equation 44, we

must have that the variance σ2ε of the AR(1) innovation ε also varies, and we set σ2εðx; yÞ ¼ σ2χ 1 − φðx; yÞ2� �
.

In the next section we consider the spatial correlation of the scaled innovations, with unit variance, given by

Figure 7. Histogram of the sample spatial correlations for east‐west (left) and north‐south (right) nearest neighbors.
Dark red indicates high density, while light pink indicates low density. Color scale created with cmocean (Thyng
et al., 2016) and shows number of samples in each bin. Nearly all of the sample correlations are between ‐0.1 and 0.1. The
field θ is nearly uncorrelated in space.
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θðx; y; tÞ ¼ εðx; y; tÞ
σεðx; yÞ

¼ εðx; y; tÞ
σχ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φðx; yÞ2

q : (45)

3.4. Horizontal Spatial Correlation

We diagnose the scaled innovations θ(x, y, t) with modeled AR(1) coefficient from Equations 38, 43, and 45.
We calculate nearest neighbor correlations for the 20 nearest east‐west neighbors as the time average of the
product θ(x, y, t)θ(x+ n · δx, y, t) wheren ¼ ±1; 2; …; 20. We calculate north‐south nearest neighbor correla-
tions analogously. We are building this model for an inherently subgrid‐scale quantity and thus expect cor-
relations across grid cells to be small. As expected, the sample correlations, shown in Figure 7, are negligible.

We proceed with a model that is uncorrelated in space. The resulting stochastic parameterization and the
preceding deterministic parameterization are summarized in the following section.

4. Summary of Deterministic and Stochastic Parameterizations

Summarizing the previous section, our full stochastic model for subgrid‐scale temperature variance is

σ2Tðx; y; z; tÞ ≈ eχðx; y; tÞ · s2Tðx; y; z; tÞ; (46)

where the time correlation of χ(x, y, t) is given by the following AR(1) process

χðx; y; tÞ ¼ φðx; y; tÞχðx; y; t − δtÞþσχ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − φðx; y; tÞ2

q
θðx; y; tÞ (47)

and the AR(1) parameter φ(x, y, t) is a function of the instantaneous resolved surface velocity,

φðx; y; tÞ ¼ exp −
δt
k
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ū2ðx; y; tÞþv2ðx; y; tÞ

δx2 þ δy2

s" #
; (48)

where k ¼ 3:7 at 1°, k ¼ 2:3 at (1/2)°, and k ¼ 2:7 at 2°. The innovations θ(x, y, t) are independent and iden-
tically distributed standard Gaussian white noise in space and time. From our diagnosed field we estimate
σ2χ ¼ 0:39. Finally, we substitute this stochastic model for subgrid‐scale temperature variance into our

model for the density correction, which yields

ρðx; y; z; tÞ ≈ ρmðx; y; z; tÞþeχðx; y; tÞ ·
s2Tðx; y; z; tÞ

2
· ∂2T ρ̂ðTðx; y; z; tÞ; Sðx; y; z; tÞÞ: (49)

The deterministic parameterization is given by Equation 49 with χ set to 0. The constant of proportionality c
used in the parameterization of subgrid‐scale temperature variance, s2T defined in Equation 25, is estimated
from model data to be c ¼ 0:20 for nominal 1° resolution models. Estimates of c for other resolutions are
shown in Figure A1.

Because the multiplicative noise has a lognormal distribution the mean of the stochastic model is not equal
to the deterministic model. Instead, the median of the stochastic model is equal to the deterministic model,

while the mean of the stochastic model is larger than the deterministic model by a factor of exp σ2χ=2
h i

, or

about 21.5%. The mode of the stochastic model is smaller than the deterministic model by a factor of exp

−σ2χ
h i

, or about 32.3%. The stochastic model frequently predicts smaller density corrections than the deter-

ministic model, and occasionally predicts density errors much larger than the deterministic model.

5. Summary and Conclusions

In this paper we analyze the impact of unresolved temperature and salinity fluctuations on the evaluation of
cell‐averaged density. The standard model calculation of cell‐averaged density applies the nonlinear EOS to
cell‐averaged temperature and salinity. This is not the same as the true cell‐averaged density, which is cal-
culated by applying the EOS locally and then averaging over a grid cell. We parameterize this difference with
a spatially averaged second‐order Taylor expansion of the EOS about cell‐averaged temperature and salinity.
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The linear terms average to 0, which leaves the three second‐order terms. The EOS is nearly linear in salinity,
so the second derivatives involving salinity are small. We use model data to show that the corresponding
second‐order salinity and the temperature salinity cross term are negligible compared to the temperature
term. This simplifies our parameterization to one term, the subgrid‐scale temperature variance times the sec-
ond derivative of the EOS with respect to temperature. We propose a deterministic parameterization of
subgrid‐scale temperature variance that is proportional to the grid cell length times the resolved horizontal
temperature gradient, squared. Using model data, we estimate the coefficient of proportionality and show
that this value changes only slightly, between 0.1 and 0.25, over a range of model resolutions (Figure A1).
This parameter may need to be tuned in future studies because lateral density gradients in 1° models are
expected to be smaller than those we diagnosed from coarse graining the 0.1° model. Although the determi-
nistic parameterization of subgrid‐scale temperature variance is fit to model data, there is quite a bit of unex-
plained variability.

We propose a multiplicative stochastic parameterization which replicates the statistical properties of
subgrid‐scale temperature variance. We diagnose the noise field and find that it is largely depth independent.
It suffices to model a two‐dimensional noise field, which we diagnose by projecting the subgrid‐scale tem-
perature variance onto our deterministic parameterization. We find that the field is approximately
log‐normally distributed, implying that the mean of the stochastic noise is somewhat larger than the deter-
ministic model due to the rare occurrence of large multiplicative factors. For the temporal correlation we use
an AR(1) process with a coefficient that is a function of resolved surface velocity with innovations that are
uncorrelated in horizontal space. Our deterministic and stochastic parameterizations are both data informed
because we use model output to estimate free parameters. Throughout this work we make the assumption
that the scale separation between the model data we use and the coarse‐grained resolution is sufficient to
provide reliable statistics of unresolved scales on the coarse model grid. Moreover, while the parameters
we estimate in this paper change very little over the snapshots we consider, it is always possible that the para-
meters may shift in a changing climate. Both of our parameterizations are computationally efficient because
they require only one additional evaluation of a nonlinear function, compared to two or more in other para-
meterizations of this effect. This work demonstrates a density correction which provides a good fit to static
fields. However, this does not guarantee an improvement in the dynamical model, a requirement for the
adoption of any new parameterization.

An upcoming paper will report the impact of each version of our parameterization on large‐scale circulation
in MOM6 when used to correct: (1) the hydrostatic pressure gradient force, as in Brankart (2013); and (2)
computation of the isopycnal slope in the Gent‐McWilliams and Redi parameterizations (Gent &
McWilliams, 1990; Redi, 1982). Based on previous experience with the Brankart parameterization we expect
an improvement in the path of the Gulf Stream, and an increase in ensemble spread for ensemble forecasts
and data assimilation (Brankart, 2013; Brankart et al., 2015; Zanna et al., 2019). Brankart's parameterization
only had a stochastic version, so it is not clear how many of the improvements were due to the mean and
howmuch were due to the stochasticity. However, we speculate that many of the improvements to the mean
circulation come from the mean density correction. Indeed, the curvature of the EOS is negative in all phy-
sically relevant regimes. As a result, ignoring the effect of unresolved temperature and salinity fluctuations
on large‐scale density leads to a systematic overestimation of the density in eddy energetic regions such as
the Gulf Stream. We contend that one of the main effects of Brankart's parameterization is to improve the
mean density used in the model's hydrostatic equation, steering currents, such as the Gulf Stream, in more
realistic pathways. When interpreted like that, Brankart's parameterization, and by extension the new para-
meterization proposed in this manuscript, can be seen as variations of the semiprognostic method from
Greatbatch et al. (2004). The difference is that the semiprognostic method relies on a convex combination
of the model density and an input density usually derived from climatological hydrographic data to compute
a correction term to the horizontal momentum equations, while we and Brankart (2013) parameterize the
impact of unresolved temperature and salinity fluctuations on the evaluation of the density to infer their cor-
rection terms to the horizontal momentum equations. The semiprognostic method has been used in many
ocean models and across a large range of resolutions. It has been shown to consistently reduce the model
systematic error and, for example, improve the representation of the Gulf Stream/North Atlantic Current
systems. This gives us confidence in the ability of our parameterization to improve the simulated average
large‐scale circulation of the ocean.
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Appendix A: Comparing Different Model Resolutions
Our results are qualitatively similar at (1/2)° and 2° resolutions. The
deterministic parameterization, ρc, in 30 is still a good model for ρ −

ρm with R2 ¼ 0:592 and pattern correlation 0.812 at (1/2)°, and R2 ¼ 0:

490 and pattern correlation 0.752 at 2° (compare to R2 ¼ 0:546, pattern
correlation 0.779 at 1°). The value we estimate for c in Equation 30
changes from c ¼ 0:14 at (1/2)° to c ¼ 0:24 at 2°. Together with our esti-
mate c ¼ 0:20 at 1°, we see that the change in this parameter is small over
the range of resolutions considered. To implement this parameterization
in a model with a resolution between (1/2)° and 2°, we recommend inter-
polating between the values for c presented in Figure A1. Beyond this
range of resolutions we do not claim to know what the appropriate value
is for this parameter. At resolutions finer than (1/2)° the resolution of our
0.1° simulation data is not sufficient to accurately estimate the
subgrid‐scale variances.

Low‐resolution models underpredict gradients, in particular they under-
predict the temperature gradient used in this parameterization. To coun-

teract this bias one could scale the entire parameterization by a factor q> 1. However, scaling by q does not
give the “correct” parameterization. It merely compensates for other model errors.

Appendix B: Deterministic Parameterization in Isopycnal Coordinate Models
Our parameterization is developed for z coordinate models. However, we find that our parameterization is
also a good model for the density correction in isopycnal models. To assess our parameterization in an iso-
pycnal setting, we remap the z coordinate model output described in section 2.2 to isopycnal layers. We use a
reference pressurep ¼ 0bar in all calculations of density because we are interested in the upper ocean where
horizontal gradients, and hence the error in density, are comparatively large. We consider 15 isopycnal
layers evenly spaced from ρ ¼ 1025 to ρ ¼ 1027:8 kg/m3. We find that errors in density are close to a factor
of 2 smaller when averaging along isopycnals instead of along constant depths. This may be due to the fact
that mixing of temperature acts primarily along isopycnals, which leads to smaller along isopycnal
subgrid‐scale temperature variance than along z levels. We also find that our parameterization using only

the diagnosed subgrid‐scale temperature variance is still a goodmodel for the density correction, withR2 ¼ 0
:993 and pattern correlation 0.999 when we coarse grain from 0.1° to 1°. We estimate c for the isopycnal data
and find c ¼ 0:24 at 1°, which implies that the reduction in subgrid‐scale temperature variance along isopyc-
nals is accounted for in our parameterization by the reduction in the mean gradient of temperature along
isopycnals, rather than by a large change in the coefficient c. Using the modeled subgrid‐scale temperature

variance gives a deterministic model for the density correction with R2 ¼ 0:49 and pattern correlation 0.74.
Both the value of the coefficient used in the parameterization and the fit of the model are similar in z coor-
dinate and isopycnal models. We expect there to be less need for this kind of parameterization in isopycnal
models compared to geopotential models.

Appendix C: Parameterization of Errors in the Horizontal Density Gradient
We plan to use our parameterized density correction in the calculation of the pressure gradient force and the
Gent‐McWilliams and Redi parameterizations of tracer transport. The large‐scale horizontal density gradi-
ent is used in both of these equations. We have thus far parameterized the error in density as a result of
the nonlinearities in the EOS. However, because density enters into the equations at hand as a horizontal
gradient, we desire instead a parameterization of the error in the horizontal gradient of density.

We propose ∇dρc, where ∇d is a discrete horizontal gradient operator, as a model for the correction to the

horizontal density gradient. This model is significantly worse, with R2 ¼ 0:36 and pattern correlation 0.61

for the zonal component, and R2 ¼ 0:41 and pattern correlation 0.67 for the meridional component, than

our model for the correction to large‐scale density, which has R2 ¼ 0:55 and pattern correlation 0.78.

At the level of density, we find that the temperature term alone is an excellent predictor of the density cor-

rection, withR2 ¼ 0:994when using the diagnosed subgrid‐scale temperature variance, andR2 ¼ 0:55when

Figure A1. The estimated coefficient c used in the parameterization of
subgrid‐scale temperature variance over a range of resolutions.
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using the modeled subgrid‐scale temperature variance. One possibility is that the terms involving salinity in
the Taylor expansion (12), while not significant at the level of density, become significant when differenced
at the level of the density gradient. However, as in the correction to density, we find that a finite difference
of the temperature term alone with the diagnosed subgrid‐scale temperature variance is an excellent

model of the correction to the horizontal gradient of density, with R2 ¼ 0:993. Thus, we conclude that the
inclusion of salinity terms is not necessary. An improvement to the parameterization of subgrid‐scale
temperature variance is likely to make a bigger impact on the correction to the horizontal gradient of density
than the inclusion of subgrid‐scale salinity fluctuations.

To see why our model with parameterized subgrid‐scale variance performs worse at the level of the gradient,
we compare the errors present in each model. We parameterize the density correction through ρc given in
Equation 30. Our parameterization is not perfect, so there is some nonzero error η associated with our para-
meterization. That is,

ρ ¼ ρm þ ρc þ η: (C1)

We now compare the error η1 in the parameterized density correction to the error in our parameterized cor-
rection to the gradient of density.

Apply the discrete horizontal gradient to both sides of Equation C1 to find

∇dρ ¼ ∇dρm þ ∇dρc þ∇dη: (C2)

The true discrete large‐scale horizontal gradient of density is ∇dρ. The horizontal density gradient calculated
by the model is ∇dρm. Note that some ocean models use thermal expansion and haline contraction coeffi-
cients to calculate the horizontal gradient of density. Our results do not change when we calculate the hor-
izontal density gradient this way, rather than through the finite difference, ∇dρm.

Comparing Equation C2 to Equation C1, we see that the total error at the level of the gradient is ∇dη, com-
pared to η at the level of density. The operator ∇d is bounded because it is discrete. Nonetheless, ∇dη can be
significantly larger than η when η is dominated by small scales, which explains the substantially decreased
R2 value.

Data Availability Statement

Data and scripts used in this article are available online (at https://doi.org/10.5281/zenodo.4019845).

References
Andrejczuk, M., Cooper, F. C., Juricke, S., Palmer, T. N., Weisheimer, A., & Zanna, L. (2016). Oceanic stochastic parameterizations in a

seasonal forecast system. Monthly Weather Review, 144(5), 1867–1875.
Berloff, P. S. (2005). Random‐forcing model of the mesoscale oceanic eddies. Journal of Fluid Mechanics, 529, 71–95.
Berner, J., Achatz, U., Batté, L., Bengtsson, L., de la Cámara, A., Christensen, H. M., et al. (2017). Stochastic parameterization: Toward a

new view of weather and climate models. Bulletin of the American Meteorological Society, 98(3), 565–588. https://doi.org/10.1175/BAMS‐
D‐15‐00268.1

Brankart, J.‐M. (2013). Impact of uncertainties in the horizontal density gradient upon low resolution global ocean modelling. Ocean
Modelling, 66, 64–76.

Brankart, J.‐M., Candille, G., Garnier, F., Calone, C., Melet, A., Bouttier, P.‐A., et al. (2015). A generic approach to explicit simulation of
uncertainty in the NEMO ocean model. Geoscientific Model Development, 8(5), 1285–1297.

Buizza, R., Milleer, M., & Palmer, T. N. (1999). Stochastic representation of model uncertainties in the ECMWF ensemble prediction sys-
tem. Quarterly Journal of the Royal Meteorological Society, 125(560), 2887–2908.

Cooper, F. C., & Zanna, L. (2015). Optimisation of an idealised ocean model, stochastic parameterisation of sub‐grid eddies. Ocean
Modelling, 88, 38–53.

Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155.
Greatbatch, R. J., Sheng, J., Eden, C., Tang, L., Zhai, X., & Zhao, J. (2004). The semi‐prognostic method. Continental Shelf Research, 24(18),

2149–2165. https://doi.org/10.1016/j.csr.2004.07.009
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., et al. (2009). Coordinated ocean‐ice reference

experiments (COREs). Ocean Modelling, 26(1–2), 1–46.
Grooms, I. (2016). A Gaussian‐product stochastic Gent‐McWilliams parameterization. Ocean Modelling, 106, 27–43.
Grooms, I., & Kleiber, W. (2019). Diagnosing, modeling, and testing a multiplicative stochastic Gent‐McWilliams parameterization. Ocean

Modelling, 133, 1–10.
Grooms, I., & Majda, A. J. (2013). Efficient stochastic superparameterization for geophysical turbulence. Proceedings of the National

Academy of Sciences of the United States of America, 110, 4464–4469. https://doi.org/10.1073/pnas.1302548110

10.1029/2020MS002185Journal of Advances in Modeling Earth Systems

STANLEY ET AL. 20 of 21

Acknowledgments
The authors are thankful to three
anonymous reviewers and Editor
Stephen Griffies for their constructive
comments which greatly improved this
paper. We are grateful to F. Bryan for
providing us with the output of the
simulations from Johnson et al. (2016),
and for interpolating to isopycnal
coordinates in Appendix B; and to R. J.
Small and one of the reviewers for
pointing out that the lateral
temperature gradients in a 1° model are
smaller than those obtained from
coarse graining a 0.1° to 1°. Z. S. is
supported by NSF OCE 1736708 and
NSF DGE 1650115. I. G. and W. K. are
supported by NSF OCE 1736708. This
material is based upon work supported
by the National Center for Atmospheric
Research (NCAR), which is a major
facility sponsored by the National
Science Foundation under Cooperative
Agreement 1852977.

 19422466, 2020, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020M

S002185, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.5281/zenodo.4019845
https://doi.org/10.1175/BAMS-D-15-00268.1
https://doi.org/10.1175/BAMS-D-15-00268.1
https://doi.org/10.1016/j.csr.2004.07.009
https://doi.org/10.1073/pnas.1302548110


Grooms, I., & Majda, A. J. (2014). Stochastic superparameterization in quasigeostrophic turbulence. Journal of Computational Physics, 271,
1–444. https://doi.org/10.1016/j.jcp.2013.09.020

Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics (2nd ed.). Hoboken, NJ: Wiley.
Jansen, M. F., & Held, I. M. (2014). Parameterizing subgrid‐scale eddy effects using energetically consistent backscatter. Ocean Modelling,

80, 36–48.
Johnson, B. K., Bryan, F. O., Grodsky, S. A., & Carton, J. A. (2016). Climatological annual cycle of the salinity budgets of the subtropical

maxima. Journal of Physical Oceanography, 46(10), 2981–2994. https://doi.org/10.1175/JPO‐D‐15‐0202.1
Juricke, S., MacLeod, D., Weisheimer, A., Zanna, L., & Palmer, T. N. (2018). Seasonal to annual ocean forecasting skill and the role of model

and observational uncertainty. Quarterly Journal of the Royal Meteorological Society, 144(715), 1947–1964.
Juricke, S., Palmer, T. N., & Zanna, L. (2017). Stochastic subgrid‐scale ocean mixing: Impacts on low‐frequency variability. Journal of

Climate, 30(13), 4997–5019.
Kitsios, V., Frederiksen, J. S., & Zidikheri, M. J. (2013). Scaling laws for parameterisations of subgrid eddy–eddy interactions in simulations

of oceanic circulations. Ocean Modelling, 68, 88–105.
Lorenz, E. N. (1975). Climatic predictability. WMO The Phys. Basis of Climate and Climate Modelling p 132‐136(SEE N 76‐19675 10‐47).
Ma, L., Wang, B., & Zhang, X. (2020). Impact of seawater equation of state on the simulation of Atlantic Meridional Overturning

Circulation. Climate Dynamics, 54(1–2), 1161–1178.
McDougall, T. J., & McIntosh, P. C. (1996). The temporal‐residual‐mean velocity. Part I: Derivation and the scalar conservation equations.

Journal of Physical Oceanography, 26(12), 2653–2665.
McWilliams, J. C. (2013). The nature and consequences of oceanic eddies, Ocean modeling in an eddying regime (pp. 5–15). American

Geophysical Union (AGU). https://doi.org/10.1029/177GM03
Millero, F. (2010). History of the equation of state of seawater. Oceanography, 23(3), 18–33. https://doi.org/10.5670/oceanog.2010.21
Penland, C.,&Sardeshmukh, P.D. (2012). Alternative interpretations of power‐lawdistributions found innature.Chaos:An Interdisciplinary

Journal of Nonlinear Science, 22(2), 023119.
Porta Mana, P., & Zanna, L. (2014). Toward a stochastic parameterization of ocean mesoscale eddies. Ocean Modelling, 79, 1–20.
Redi, M. H. (1982). Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanography, 12(10), 1154–1158.
Thyng, K., Greene, C., Hetland, R., Zimmerle, H., & DiMarco, S. (2016). True colors of oceanography: Guidelines for effective and accurate

colormap selection. Oceanography, 29(3), 9–13. https://doi.org/10.5670/oceanog.2016.66
Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., et al. (2020). Evaluation of global ocean sea‐ice

model simulations based on the experimental protocols of the Ocean Model Intercomparison Project Phase 2 (OMIP‐2). Geoscientific
Model Development Discussions, 2020, 1–86. https://doi.org/10.5194/gmd‐2019‐363

Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., et al. (2014). The finite element sea Ice‐Ocean model
(FESOM) v. 1.4: Formulation of an ocean general circulation model. Geoscientific Model Development, 7(2), 663–693.

Williams, P. D., Howe, N. J., Gregory, J. M., Smith, R. S., & Joshi, M. M. (2016). Improved climate simulations through a stochastic para-
meterization of ocean eddies. Journal of Climate, 29, 8763–8781.

Wright, D. G. (1997). An equation of state for use in ocean models: Eckart's formula revisited. Journal of Atmospheric and Oceanic
Technology, 14(3), 735–740.

Zanna, L., Brankart, J. M., Huber, M., Leroux, S., Penduff, T., & Williams, P. D. (2019). Uncertainty and scale interactions in ocean
ensembles: From seasonal forecasts to multidecadal climate predictions. Quarterly Journal of the Royal Meteorological Society, 145,
160–175.

10.1029/2020MS002185Journal of Advances in Modeling Earth Systems

STANLEY ET AL. 21 of 21

 19422466, 2020, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2020M

S002185, W
iley O

nline L
ibrary on [16/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.jcp.2013.09.020
https://doi.org/10.1175/JPO-D-15-0202.1
https://doi.org/10.1029/177GM03
https://doi.org/10.5670/oceanog.2010.21
https://doi.org/10.5670/oceanog.2016.66
https://doi.org/10.5194/gmd-2019-363


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <FEFF30b030e930d530a330c330af30b330f330c630f330c4306e590963db306b5bfe3059308b002000490053004f00206a196e96898f683c306e0020005000440046002f0058002d00310061003a00320030003000310020306b6e9662e03057305f002000410064006f0062006500200050004400460020658766f830924f5c62103059308b305f3081306b4f7f75283057307e30593002005000440046002f0058002d0031006100206e9662e0306e00200050004400460020658766f84f5c6210306b306430443066306f3001004100630072006f006200610074002030e630fc30b630ac30a430c9309253c2716730573066304f30603055304430023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200034002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




