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Abstract

In height coordinate ocean models, natural conservation of tracers (temperature, salinity or any passive

tracer) requires that the thickness of the surface cell varies with the free-surface displacement, leading to a

non-linear free-surface formulation (NLFS). However, NLFS does not guarantee exact conservation unless

special care is taken in the implementation, and in particular the time stepping scheme, as pointed out by

Griffies et al. (Monthly Weather Rev. 129 (2001) 1081).

This paper presents a general method to implement a NLFS in a conservative way, using an implicit free

surface formulation. Details are provided for two tracer time stepping schemes, both second order in time

and space: a two time-level scheme, such as Lax–Wendroff scheme, guarantees exact tracer conservation; a

three time-level scheme such as the Adams–Bashforth II requires further adaptations to achieve exact local
conservation and accurate global conservation preventing long term drift of the model tracer content. No

compromise is required between local and global conservation since the method accurately conserves any

tracer. In addition to the commonly used backward time stepping, the implicit free surface formulation

also offers the option of a Crank–Nickelson time stepping which conserves the energy.

The methods are tested in idealized experiments designed to emphasize problems of tracer and energy

conservation. The tests show the ability of the NLFS method to conserve tracers, in contrast to the linear

free-surface formulation. At test of energy conservation reveals that free-surface backward time-stepping

strongly damps the solution. In contrast, Crank–Nickelson time stepping exactly conserves energy in the

pure linear case and confirms the NLFS improvement relative to the linear free-surface when momentum
advection is included.
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1. Introduction

Ocean general circulation models built in height coordinates have almost universally adopted a
free-surface formulation over the rigid-lid method (see e.g., Killworth et al., 1991; Dukowicz and
Smith, 1994; Griffies et al., 2000). This is because a free surface is dynamically more accurate but
also because the free-surface equations prove to be more efficient than solving the costly elliptic
equation required when using a rigid-lid.

There are various ways of solving the free-surface equations. These derive from two basic
assumptions: (i) there is a separation of time-scales between the external gravity mode and in-
ternal dynamics and (ii) displacements in free-surface height are small compared to the depth of
the open ocean. The first assumption leads to two numerical approaches (a) the split-explicit free-
surface (Killworth et al., 1991) and (b) the semi-implicit free-surface (Dukowicz and Smith, 1994;
Marshall et al., 1997a). The second assumption, of small height deviations, justifies a linearization
of the free-surface height equation simplifying the solution procedure and, in particular, rendering
the implicit approach easier to implement. Whatever approach is used, conservation properties of
the model are intimately linked to the treatment of the free-surface. Without special treatment,
local and global conservation of tracers are not guaranteed. For example, using a linearized free-
surface and a flux-form representation of tracer advection, a ‘‘surface correction’’ term is required
at the surface to maintain local conservation but cannot guarantee global conservation (Griffies
et al., 2000).

Use of the unapproximated (non-linear) free-surface equation is more accurate. Griffies et al.
(2001) outlined an approach using the leap-frog time-stepping for tracers and momentum and a
split-explicit time-stepping of the unapproximated (non-linear) free-surface equation. They dis-
tinguish between two conservation issues: (1) Globally, the evolution of the volume integrated
tracer content must equal the integrated surface flux. In the special case that the surface flux
of tracer is identically zero, this global constraint implies constant global tracer content. (2)
Locally, tracer and free-surface discretization must be compatible with one another to ensure that
a homogeneous tracer remains unaffected by free-surface undulations. Griffies et al. (2001) point
out that in the presence of time filtering (required for the stability of Leap-frog time stepping
scheme), local and global tracer conservation cannot simultaneously be achieved. In the presence
of filtering of the tracer concentration only local conservation of tracers can be achieved. In
contrast, when a time filter is applied to tracer content (i.e. the product of the level thickness and
tracer concentration), global conservation is satisfied but not local. Although the drift in total
tracer content is generally small (Griffies et al., 2001), this detracts from the advantage of the non-
linear free surface formulation since its dynamical effects are also relatively small (Roullet and
Madec, 2000).

The purpose of this paper is to build on the study of Griffies et al. (2001) to derive free surface
schemes that have both local and global conservation. A non-linear free surface formulation
(NLFS) has been implemented within the MITgcm model (Marshall et al., 1997a), and is shown
to exactly conserve any tracer, both locally and globally. The original implicit surface pressure
method has been modified rather than replaced by the split-explicit method. Contrary to what has
been previously suggested (Griffies et al., 2000), the implicit method can perfectly be used without
any approximation relatively to the free surface equation. Among several other advantages, the
implicit method appears very flexible: it can be used in rigid-lid or free surface mode and is fully
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compatible with the non-hydrostatic 3-D pressure solver (Marshall et al., 1997b). In addition, a
Crank–Nickelson barotropic time stepping that combines an explicit and implicit part (one half
for each) has been implemented with only minor modifications, and provides an unconditionally
stable scheme that exactly conserves the total energy, i.e. kinetic energy (KE) plus potential energy
(PE) associated with sea surface height (SSH). In contrast, it is difficult to conserve total energy
using a split-explicit method because time averaging and/or filtering of barotropic variables is
required to stabilize the scheme resulting in damping of total energy 1.

In Section 2 a general method is presented that provides the basis of a conservative imple-
mentation of NLFS. The method is similar to that of Griffies et al. (2001) but is formulated in the
framework of the implicit free surface method and with a forward two time-level tracer scheme.
The method is designed to exactly conserve any tracer, both locally and globally. Assuming a
forward two time-level scheme for tracers avoids the difficulties in tracer conservation that Griffies
et al. (2001) encounter with leap-frog time stepping and time filtering. We go on to discuss two
implementations for two different tracer time stepping schemes: The first one is based on the Lax–
Wendroff advection scheme and offers a straightforward illustration of the general method
(Section 3). The second is the Adams–Bashforth II, a three time-level scheme (like the leap-frog
scheme), that requires further adaptations (Section 4). The methods are tested in two simple
configurations in Section 5 confirming the ability of the schemes in Sections 3 and 4, to conserve
tracers and energy. The main results are summarized in the conclusions.
2. Time stepping of the free surface equations

For simplicity, we first consider a one layer Boussinesq model. The equations for continuity
and tracer concentration T can be written:
1 V

about
2 Th

match

is incl
othþr � hv ¼ P ð1Þ
otvþ grg ¼ Gv ð2Þ
otðhT Þ þ r � ðhT vÞ ¼ PTrain ð3Þ
where h ¼ H þ g is the height of the water column, H the ocean depth, and g the SSH, v the
velocity vector, g the gravity, P the net precipitation (precipitation plus run-off minus evapora-
tion), and Train the tracer concentration associated with precipitation P . Gv contains all momen-
tum contributions (Coriolis, baroclinic pressure gradient, advection, viscosity and surface
forcing 2) except the SSH pressure force. Tracer turbulent fluxes (diffusion) and surface flux are
not considered here but can be easily added to the right hand side of (3). Note that the free surface
has not been linearized––the time varying ocean thickness h ¼ H þ g is used within the divergence
iscous terms are generally included and dissipate the total energy in a significant way. This reduces the concern

energy conservation of the non-viscous case.
e momentum flux associated with precipitation and evaporation is generally expressed as Pvrain ’ Pvsurf . This

es the lateral velocity of the rain, vrain, with the surface ocean velocity, vsurf , as discussed by Griffies et al. (2001); it

uded here in the Gv term.
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of the flow (1). Eqs. (1)–(3) are the flux form of the swallow-water equations which implicitly
contain the kinematic boundary conditions (see for e.g. Griffies et al., 2001, p. 1090).

Using the finite volume method to discretize (3) ensures a global conservation of tracer T , since
the global integral of r � ðhT vÞ vanishes with no normal flow boundary conditions. The evolution
of the global tracer content is simply equal to the integrated surface flux. Providing (1) and (3) are
discretized in the same way, both in time and space, a uniform concentration T0 will remain
constant (since Eqs. (3) and (1) differ by only a constant factor T0), and the model will conserve
any tracer locally.

To satisfy this criteria, we discretize Eqs. (1) and (3) in time using the forward scheme:
ðhnþ1 � hnÞ=Dt ¼ �r � hnvn þ Pn ð4Þ
ðhnþ1T nþ1 � hnT nÞ=Dt ¼ �r � hnT nvn þ ðPTrainÞn: ð5Þ
The stability of such a scheme relies on the choice of spatial discretization and will be addressed
later. The formulation that Griffies et al. (2001) described follows the same general idea but the
leap-frog scheme makes it slightly more complex and also requires a time filtering leading to a
compromise between local and global conservation.

The same forward time stepping applied to the gravity wave term in the momentum Eq. (2)
would be unstable unless a very small time step is used. For this reason, ocean general circulation
models (OGCM) treat the time stepping of the free-surface equations differently from the rest of
the model; for instance, the split-explicit method (Killworth et al., 1991; Griffies et al., 2001), the
filtering method (Roullet and Madec, 2000) or, as we consider here, the implicit method (Du-
kowicz and Smith, 1994; Marshall et al., 1997b). As proposed by Dukowicz and Smith (1994), a
part c (with 06 c6 1) of the surface pressure gradient in Eq. (2) and a part b (with 06 b6 1) of
the divergence of the barotropic flow in Eq. (1) are evaluated at time level nþ 1, thus:
ðvnþ1 � vnÞ=Dt ¼ Gnþ1=2
v � gr½cgnþ1 þ ð1 � cÞgn
 ð6Þ

ðgnþ1 � gnÞ=Dt ¼ bðP �r � hvÞnþ1 þ ð1 � bÞðP �r � hvÞn ð7Þ
The motivations for introducing the variable g (Eq. (7)) for the free-surface elevation in addition
to the column thickness h (Eq. (4)) is discussed later. The following choices of b and c are of
particular interest:

• ðb; cÞ ¼ ð0; 1Þ or ¼ ð1; 0Þ leads to an explicit scheme which is stable only for a small Dt that
resolves the external gravity waves.

• ðb; cÞ ¼ ð1; 1Þ corresponds to the original (Marshall et al., 1997a) implicit free surface method
with backward time stepping. It is unconditionally stable, damping the energy associated with
unresolved (fast) external modes.

• ðb; cÞ ¼ ð1=2; 1=2Þ corresponds to Crank–Nickelson time stepping that conserves the total
energy and remains stable without a limitation on time step. The energy of unresolved (fast)
modes is aliased onto slower modes.

Since Eqs. (4) and (7) are two discrete formulations of (1), g and h must not be allowed to
evolve independently. Rather than integrating (4) and (7) separately and allowing truncation error
to accumulate and cause the evolution of g and h to diverge, we impose:
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gn þ H ¼ ð1 � bÞhn þ bhnþ1 ð8Þ

in agreement with (4) and (7). Using Eqs. (4) and (8) we can replace (7) by:
gnþ1 ¼ ðhnþ1 � HÞ þ DtbðP �r � hvÞnþ1 ð9Þ
Then Eqs. (6) and (9) are combined, using (6) to substitute for vnþ1 in (9):
gnþ1 � bcDt2r � hnþ1grgnþ1 ¼ ðhnþ1 � HÞ þ bDtP nþ1 � bDtr � hnþ1v� ð10Þ
with
v� ¼ vn þ DtGnþ1=2
v � ð1 � cÞDtgrgn
and
vnþ1 ¼ v� � cDtgrgnþ1 ð11Þ

The method is the following: (a) (4) and then (5) are solved explicitly, using an appropriate stable
advection scheme for (5). (b) Gnþ1=2

v is evaluated either using the density field at time level n
(synchronous time step) or at level nþ 1 (staggered time step). (c) The implicit Eq. (10) is solved
for gnþ1 and (d) vnþ1 is derived from (11).

Having two variables g and h� H each representing the surface displacement allows a separate
time stepping of the model cell thickness h and the dynamic surface elevation g. This is essential
for ensuring exact conservation of tracers, using h in the volume and tracer transports (4 and 5),
and a stable scheme for external gravity waves when solving the free-surface Eqs. 6 and 7. Fur-
thermore, since h (instead of H þ g) appears inside the divergence of the volume transport (in the
right-hand-side of Eq. (7)) the free-surface Eq. (10) remains linear in gnþ1 and can be easily treated
implicitly. Without any approximation, this method overcomes the difficulties related to the non-
linear term inside the free-surface equation that Griffies et al. (2000) mentioned as a limitation
of the implicit method.

The non-linear free surface introduces only minor changes to the code: the divergence of the
column integrated flow is computed at the beginning of the time step to evaluate hnþ1 (4). The
NLFS formulation uses hnþ1 in several places, in particular to update the surface level thickness,
both at tracer points and at the u and v points of the C-grid. Note that since a finite volume
discretization is also used for the momentum equation, most of the tracer conservation properties
are also inherited for momentum.

To find the surface pressure, the solver matrix must be computed at each time step because it
now contains the total water column thickness (hnþ1 on the left hand side of Eq. (10)) in place of
the fixed ocean depth H in the original linearized free surface form. The conjugate gradient
preconditioner (Marshall et al., 1997a) is evaluated from the initial matrix (computed from H )
and kept unchanged, since updating the preconditioner using the updated matrix shows no sig-
nificant improvement in the convergence speed of the solver. Globally, the NLFS induces only
a marginal increase in computer time (4% of the total computer time for the simple test presented
in Section 5.2.

The effects of the Crank–Nickelson barotropic time stepping ðb ¼ c ¼ 1=2Þ on the model
efficiency is ambiguous: Compared to the backward time stepping, the global model is slightly
faster with Crank–Nickelson stepping if the same time step is used since less solver iterations are



226 J.-M. Campin et al. / Ocean Modelling 6 (2004) 221–244
necessary to reach the same precision level. However, one might be able to use a longer time step
with the backward time stepping since it damps high frequencies and could eventually increase the
model stability.
3. Implementation with the Lax–Wendroff scheme for tracers

In the previous section, a general method was set out that conserves tracers with a two time-
level scheme. However, the stability, accuracy and effective conservation of the scheme depends on
details of the discretization in space, which we now present here.

The spatial discretization uses the finite volume method that ensures global conservation of
volume and tracers (Marshall et al., 1997a). Advective terms take the form of a divergence of an
advective flux r3d � T v integrated over a finite volume hnDxDy:
�diF n
x � djF n

y � dkF n
z

Dx, Dy are the grid spacing in the corresponding x, y direction with ði; j; kÞ the space indices and
ðu; v;wÞ the velocity components in respectively the x, y, z directions. The area integrated fluxes,
Fx, Fy , Fz, are evaluated at each tracer cell interface:
Fx;iþ1=2 ¼ Dy � hiþ1=2 � uiþ1=2 � T
i
iþ1=2

Fy;jþ1=2 ¼ Dx � hjþ1=2 � vjþ1=2 � T
j
jþ1=2

Fz;kþ1=2 ¼ Dx � Dy � wkþ1=2 � T
k
kþ1=2

ð12Þ
The C-grid directly provides uiþ1=2 at the tracer cell interface. We invoke the analogue of a partial
cell (as for the bottom cell thickness, see Adcroft et al., 1997) to represent the variable surface cell
thickness. We set hniþ1=2 ¼ minðhni ; hniþ1Þ, as proposed by Griffies et al. (2001). The volume transport
Dy � hiþ1=2 � uiþ1=2 is discretized in the same way as tracer fluxes, and is used in the continuity Eq.
(4) to derive hnþ1 and the vertical velocity. The original model formulation already contains a non-
uniform cell thickness to represent partial cell thickness (Adcroft et al., 1997) so that the time
varying surface layer thickness can be added with only minor modifications and no significant
computational cost.

The tracer value at the interface, T
i
iþ1=2, is defined according to the advection scheme. Following

the previous section, we use a forward two time-level scheme. Several conservative schemes of this
kind have been recently implemented in the MITgcm (Adcroft et al., 2002). Here we will only refer
to the simplest one, the Lax–Wendroff scheme, in which T

i
iþ1=2 in Eq. (12) is given by:
T
i
iþ1=2 ¼ ðTi þ Tiþ1Þ=2 þ u � Dt

Dx
ðTi � Tiþ1Þ=2
This provides a stable second order accurate (in both time and space) advection scheme.
4. Implementation using Adams–Bashforth time stepping

The original MITgcm model (Marshall et al., 1997a) uses the Adams–Bashforth time stepping
(AB) to integrate the equations of motion forward in time. The general method outlined in
Section 2 must be adapted to work with a three time-levels scheme like the AB.
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The NLFS implementation is presented as a modification of the original, linear free-surface
model. This implementation offers several advantages such as clear backward compatibility with
the linear free-surface (linear FS) code and a flexible choice between the linear and NLFS. This
flexible switch between the two forms can even be made locally and temporary if necessary. For
example, in simulations with high vertical resolution, the free surface displacement can occa-
sionally become as large as the first level thickness but negative. A NLFS simulation would be
terminated since vanishing grid cells cannot yet be handled. Instead, a minimum thickness can be
imposed and the part of og=ot that has not been taken into account in the cell thickness variation
is treated as in the linear FS approximation. From a practical point of view, this allows one to use
the NLFS option in a safe way and with no restriction on vertical resolution near the surface.
These advantages motivate the present choice. We first present details of the original linear FS
formulation which relate to tracer conservation and then describe the NLFS implementation as a
modification of it.

In the original linear FS model, the tracer discretization is based on a second order, centered in
space advection scheme, with a second order AB:
3 A

ð�H <
advec
T nþ1 ¼ T n þ Dt
H

Gnþ1=2
AB þ DtFn

forcing ð13Þ
with
Gnþ1=2
AB ¼ ð1 þ �ABÞGn � �ABGn�1
where G contains advection (and some diffusion) terms whereas the forcing (including fresh water
flux and remaining diffusion terms) are kept outside of Adams–Bashforth. The AB parameter
�AB ¼ 1=2 ensures true second order precision in time, but for stability reasons, a slightly higher
value is generally used (e.g. �AB ¼ 0:6 for the test cases presented in the next section).

Using the same simplified notation of Section 2 (single layer), the general form of the G term is:
G ¼ �r � ðHT vÞ with a centered in space expression ðT i

iþ1=2 ¼ ðTi þ Tiþ1Þ=2Þ for the flux (12) (see
Section 3 for more details). However, with the linear FS, because the surface level thickness is kept
constant while the SSH is moving, a ‘‘surface correction’’ 3 is added in the flux form formulation.
This surface correction corresponds to the tracer flux associated with the top vertical velocity
ws � T1 where T1 is the tracer concentration of the uppermost level and ws is defined as the con-
vergence of the vertically integrated volume transport: wn

s ¼ �r � Hvn. The full expression for G
then becomes:
Gn ¼ �r � HT nvn � wn
sT

n
1 ð14Þ
The ‘‘surface correction’’ guarantees local conservation, but breaks global conservation sinceR R
A
wsT1dA is generally non-zero (although

R R
A
wsdA ¼ 0). On the one hand, the fast adjust-

ment of the SSH (e.g., after a convective adjustment) combined with high background tracer
concentration (e.g., around 35 psu for the salinity, or around 300 K for the absolute temperature)
can generate serious local problems if the ‘‘surface correction’’ is not included, since the departure
n alternative interpretation of the linearized free-surface approximation is to consider the model domain

z < 0Þ as a truncation of the full one ð�H < z < gÞ so that the surface correction appears naturally as the

tive flux of tracer through the open boundary at z ¼ 0.
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from the local conservation rule is precisely the correction term wsT1. On the other hand, the
mismatch in the global tracer content associated with this surface correction is generally small and
given by:
4 N
VDT ¼ VT
nþ1 �VT

n ¼ �Dt
Z Z

A

½ð1 þ �ABÞðwsT1Þn � �ABðwsT1Þn�1
dA
where A, V are the ocean area and volume respectively and T is the global mean tracer con-
centration.

For these reasons, most linear FS models that use a finite volume tracer discretization incor-
porate such a surface correction (Marshall et al., 1997a; Roullet and Madec, 2000; Griffies et al.,
2001).

In the implementation of the NLFS, the general method presented in Section 2 is adapted to
deal with the original AB scheme. Using (4) and defining 4 wn

s ¼ �r � hnvn, Eq. (5) is equivalent to:
T nþ1 ¼ T n þ Dt
hnþ1

½�r � hnT nvn � wn
sT

n
1 þ PnðTrain � T1Þn
 ð15Þ
Eq. (15) is close to the original (linear FS) AB formulation ((13) and (14)) and allows us to
introduce the AB time stepping as follows:
T nþ1 ¼ T n þ Dt
hnþ1

½Gnþ1=2
AB þ PnðTrain � T1Þn

and
Gn ¼ �r � hnT nvn � wn
sT

n
1 ð16Þ
with
Gnþ1=2
AB ¼ ð1 þ �ABÞGn � �ABGn�1:
Using Eq. (4), this yields:
ðhnþ1T nþ1 � hnT nÞ=Dt ¼ �ð1 þ �ABÞr � ðhT vÞn þ �ABr � ðhT vÞn�1 þ ðPTrainÞn

� �AB½ðwsT1Þn � ðwsT1Þn�1
 ð17Þ

This formulation has several advantages:

1. The same formulation can be used with both AB and forward two time-level (e.g., Lax–Wendr-
off) time stepping: one recovers (15) by simply replacing Gnþ1=2

AB in (16) by Gn computed with
Lax–Wendroff fluxes (12). This returns the fully conservative scheme described in Section 2
since (5) is equivalent to (17) with �AB ¼ 0. This formulation is also close enough to the original
formulation to involve only slight modifications in the code and to allow a switch back to the
linear FS option.

2. It is clear from (16) that the surface-level expansion/contraction term ðwsT1Þ inside the ‘‘Gn’’
term ensures a precise local conservation, just as the surface correction does in the linear FS
case. The reasons that motivate adding this surface level expansion term in Gn for the non-lin-
ote that ws is not the vertical velocity at the surface. This later quantity is given by: wz¼g ¼ ws þ vz¼g � rg.
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ear case are similar to those given for the surface correction in the linear FS case. Since SSH
can exhibit fast variations, with the possibility of sign changes from one time step to the next,
the amplitude of the local surface term (i.e. the last term in Eq. (17)) can be of the same order
as the surface correction ðwsT1Þn in the linear FS formulation. It therefore needs to be included
in the tracer Eqs. (16) and (17).

3. This formulation does not exactly conserve the global tracer content between time-steps, since
the contribution of the surface level expansion term does not integrate to zero:
ðVT Þnþ1 � ðVT Þn ¼ ��AB

Z Z
A

½ðwsT1Þn � ðwsT1Þn�1
dA 6¼ 0:

However, this equation can be rearranged so that the global quantity

ðVT
�Þnþ1 ¼

Z Z
A

½ðhT Þnþ1 þ �ABDtðwsT1Þn
dA ð18Þ

appears to be exactly conserved. Furthermore, this ‘‘modified’’ global tracer contentVT
�

is a good
approximation to the total tracer content VT since �ABDt

R R
wsT1 dA is generally very small.

Therefore, the exact conservation of VT
�

guarantees that the model tracer content cannot drift.
4. For the purpose of checking tracer conservation, inaccuracy in local conservation is relatively

difficult to isolate whereas global conservation is easily diagnosed. Since our formulation ex-
actly satisfies local conservation, we can evaluate the error in global conservation and provide
estimates of the accuracy of the method. This is done in the next section.
5. Illustrative examples of property conservation

This section illustrates how the NLFS formulation previously described improves the conser-
vation of various quantities, such as volume, temperature, salinity with time varying fresh water
forcing, and finally energy. Since NLFS effects are generally relatively small in the global ocean
and difficult to isolate, here we consider only ideal tests with very simple geometry and concen-
trate on free surface effects. A steady state problem like the Goldsbrough–Stommel circulation
described by Huang (1993) is not a selective test to address tracer conservation regarding the time
stepping. For this reason, we prefer to include a strong time dependency in the test experiment
presented here. This is achieved by imposing a strong time dependent forcing or posing an initial
adjustment problem.

The first test case is an ocean wind driven gyre circulation similar to the problem described
analytically by Stommel (1948). The ocean depth is relatively shallow (H ¼ 400 m) to emphasize
NLFS effects which scale like g=H . There are four vertical levels each of 100 m. The domain is 59�
wide in longitude and extends from the Equator to 59 �N on a spherical 1� 1� grid. The hori-
zontal and vertical viscosity are 400 and 10�2 m2/s respectively, and the same values are used for
diffusivity. The time step is set to Dt ¼ 20 min. The initial state is at rest, horizontally uniform and
thermally stratified h ¼ 20, 16, 12, 8 [�C]. Salinity is initially uniform (S0 ¼ 33 psu) and has no
influence on density which is assumed to be only function of the potential temperature h:
q ¼ q0ð1 � ahÞ with a ¼ 2 10�4 �C�1. A constant zonal wind stress is applied sx ¼ s0 sinðpu=LuÞ
with s0 ¼ 0:1 Nm�2, u the latitude and Lu the domain latitudinal extension (59�).

In addition, a relatively strong fresh water forcing (E � P ) is added in the South-West corner
that peaks at 1.5 m/day and linearly decreases toward the East and toward the North:
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R0 ¼ ½16 � u � k
 � 0:1 m/day (k;u in� and R0 P 0), with a simple diurnal cycle: E � P ¼
R0 sinð2pt=1dayÞ. It can be treated as a real fresh water flux (‘‘Real FW’’) ðþ ¼ out off the oceanÞ
with the NLFS or converted to an equivalent salt flux (‘‘Salt Flx’’): FlxS ¼ Sc � ðE � P Þ=Dz1 (here
Sc ¼ 35 psu) without direct effects on the SSH. In the case of the linear free surface, a ‘‘virtual
fresh water’’ (‘‘Virtual FW’’) formulation can be defined, where E � P directly affects the SSH (as
in real fresh water input) but needs to be converted to an equivalent salt flux to have an impact on
the salinity, since the thickness of the first layer is kept fixed (and consequently also the ocean
volume V). Table 1 provides a summary of these different options.

The fast variations of E � P allow one to check salt conservation when using various time
stepping schemes; in the absence of thermal forcing, this simple case provides a good test of global
and local conservation of h during the initial adjustment of the SSH under the wind forcing. Note
that the dilution effect on salinity is present in all experiments (with real FW, virtual FW or salt
Flx) but is decoupled from the dynamics since oq=oS ¼ 0. The fresh water impact on the dynamics
is limited to the direct effect on SSH and is only present when real FW or ‘‘virtual’’ FW is applied
(Table 2, exp. 0, 5, 6, 9 and 10).
5.1. Volume conservation

The model exactly conserves volume in all cases, whether linear or NLFS, and whether
backward ðb ¼ c ¼ 1Þ or Crank–Nickelson ðb ¼ c ¼ 1=2Þ time stepping of the free-surface
equations.

With no real fresh water input, the average SSH remains equal to zero during a five days
simulation with a deviation of less that 2 10�16 m, the level of computer precision. During the
same period, the SSH range (maximum–minimum) increases to 0.3 m. In the original formulation,
volume conservation is less precise: after five days, the average SSH is )7 10�16 m (Fig. 1a) but it
drifts between )2 and )3 10�12 m over 10 years (Fig. 1b). With the new implementation, the
mean SSH remains zero with the same accuracy (few 10�16 m) over 10 years using equivalent
options (backward time stepping and linear free-surface). The explicit integration of the conti-
nuity equation (see details in Appendix A) prevents truncation and solver errors from accumu-
lating. From here on we only consider the new formulation that exactly conserves the volume.

Several experiments of five day duration have been conducted with various combinations of
options, to test the robustness of the tracer conservation. The evolution of the global mean, the
lowest and highest values of the SSH is plotted in Fig. 2a–c respectively, and correspond to four
experiments (Table 2, exp. 3, 4, 5 and 6) that use different options: the free surface time stepping is
Table 1

Free surface formulation and fresh water treatment

Free surface equation Salinity equation Label

otg þr � ðH þ gÞv ¼ P otðhSÞ þ r � hSv ¼ 0 NL FS Real FW

otg þr � ðH þ gÞv ¼ 0 otðhSÞ þ r � hSv ¼ �P � Sc NL FS Salt flux

otg þr � Hv ¼ 0 otðHSÞ þ r � HSv ¼ �P � Sc Lin FS Salt fux

otg þr � Hv ¼ P otðHSÞ þ r � HSv ¼ �P � S Lin FS Virtual FW



Table 2

Accuracy of the global conservation of heat and salt using various combination of options relative to the free surface

treatment and the tracer advection scheme.

Experiment number and options Global mean deviation

N Linear/Non Flux FS stepping Advection Dh (�C) DS (psu)

0 Lin FS Virtual FW Back LW 5 10�7 7 10�6

1 Lin FS Salt Flx Back LW 2 10�7 2 10�7

2 Lin FS Salt Flx CrNi LW 2 10�7 4 10�7

3 NL FS Salt Flx Back LW 0 1 10�12

4 NL FS Salt Flx CrNi LW 0 1 10�12

5 NL FS Real FW Back LW 0 2 10�12

6 NL FS Real FW CrNi LW 0 2 10�12

7 Lin FS Salt Flx Back AB 2 10�7 2 10�7

8 NL FS Salt Flx Back AB 3 10�9 6 10�9

9 NL FS Real FW Back AB 2 10�8 9 10�8

10 NL FS Real FW CrNi AB 3 10�8 1 10�7
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either implicit (exp. 3 and 5) or Crank–Nickelson (exp. 4 and 6); the fresh water forcing is either
real FW (exp. 5 and 6) or converted to salt flux (exp. 3 and 4).

In our experiments, the dynamical behavior of the SSH is not sensitive to the tracer advection
scheme or whether the free surface is linear or non-linear and so only four experiments among the
11 listed in Table 2 are shown in Fig. 2, all 4 using NLFS with Lax–Wendroff advection scheme.

The global mean SSH exactly match the integrated fresh water input or remains flat when salt
flux is used. Under wind stress forcing, the SSH slowly builds up low and high large scale surface
pressure patterns (Fig. b, c, exp. 3 and 4). Superimposed on this slow tendency, strong, local real
fresh water forcing (exp. 5 and 6) generates local excursions of SSH that are of the same mag-
nitude (around 0.3 m) as the wind driven adjustment after five days. Using a Crank–Nickelson
time stepping produces slightly higher SSH standard deviation (in space) and larger SSH ex-
cursions than the implicit scheme. This is related to the damping properties of the backward time
stepping procedure and will be discussed in sub-section (c).

5.2. Tracer conservation

Tracer conservation is expressed differently according to the boundary condition used for
E � P : with real fresh water input, the ocean volume V changes but the total salt content VS
remains constant. The total heat content can change because the water input enters or leaves the
surface with temperature hrain that is usually equal to the local surface temperature. Here, for
simplicity, we set hrain ¼ 14 �C which also corresponds to the global mean initial temperature
ensuring that global mean temperature is conserved. When salt flux or ‘‘virtual fresh water’’ flux
are used, the volume is constant and the global mean temperature is also unchanged. In this case,
the global mean salinity follows the time and space integrated salt flux:
SFxSðtÞ ¼ S0 þ
Sc
V

Z t

0

Z Z
A

ðE
�

� PÞdA
�

dt
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The degree of conservation is expressed in both cases in terms of global mean temperature de-
viation: Dh ¼ h � h0 and equivalent mean salinity deviation: DS ¼ SV=V0 � Sref corresponding
to the global salt content minus the theoretical value Sref ¼ S0 or Sref ¼ SFxSðtÞ.

The range of variations (maximum DT minus minimum DT ) of temperature and salinity are
gathered in Table 2. The computer precision is such that the accuracy of integrated quantities,
for example the mean salinity, cannot be better than 10�12.
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The first set of experiments (exp. 0–6) uses the forward Lax–Wendroff scheme and confirms the
exact conservation of heat and salt of the NLFS implementation, with or without real fresh water
input. By contrast, the LinFS formulation exhibits small deviations (�10�7) for both temperature
and salinity (Fig. 3a,b). These are associated with the integrated ‘‘surface correction’’ term �wsTs
(see Section 4). The area integrated surface correction is relatively small but can accumulate in
time and may produce a significant drift, as in experiment 0 (Fig. 3c) in which the mean salinity
decreases by 7 10 �6 psu in five days, corresponding to 0.5 10�3 psu/yr.

The reason for the large drift in exp.0 is the presence of the strong diurnal cycle of E � P that
directly affects the SSH (‘‘virtual fresh water’’ flux), whereas the other LinFS experiments use only
salt flux. During the first half of the day, E � P > 0 is applied to the SSH and adjustment of the
barotropic flow results in convergent motion, positive ws and a large negative surface correction
�wsS1, since S1 is locally larger than the mean salinity due to E � P effects. When E � P reverses
during the second half of the day, the surface correction becomes positive but smaller than the
amplitude of the negative peak, since advection and diffusion processes have already eroded the
salinity maxima. While ws is globally balanced at each time step and locally balanced over a one
day period, the two half-day contributions of the surface correction term do not balance
ð�wsS1Þ� þ ð�wsS1Þþ < 0, and the net integral effect over one diurnal cycle is clearly negative,
resulting in a negative drift of the mean salinity (Fig. 3c).

The second set of experiments (exp. 7, 8, 9 and 10) uses the three time-level Adams–Bashforth
advection scheme, and yields non-exact global conservation (Table 2). The conservation is better
with the NLFS formulation than with the linear free surface, especially when the comparison is
restricted to identical E � P forcing experiments, (exp. 8 versus 7). Note that exp. 9 can also be
compared to exp. 0 since this later experiment has been repeated using the AB scheme and yields
the same salinity and temperature drift as exp. 0.

The NLFS conservation is not only more accurate than the linear one, but also improved
qualitatively: the tracer deviation does not drift with NLFS but tends to remain around the zero
line. This is specially true in experiment 9 (or 10) which incorporates real fresh water input and
exhibits relatively high temperature and salinity deviations compared to other NLFS simulations
(Table 2). However the deviation always returns to almost zero at the end of each day (Fig. 3a,b).
This is in agreement with the ‘‘error cancellation’’ idea developed in Section 4, which prevents any
significant drift to develop. This can be differently expressed as the exact conservation of the
‘‘modified’’ global mean temperature h

�
and salinity S

�
defined according to Eq. (18). In order to

precisely check this property, the surface integral of the surface level expansion term: SeðT Þ ¼
Dt=V

R R
A
ðwsT1ÞdA is computed for temperature ðT ¼ hÞ and salinity ðT ¼ SÞ and the modified

global mean tracer concentration derived thus, T
� ¼ T þ �ABSeðT Þ. Fig. 4 plots the evolution of

the temperature deviation Dh, the surface level expansion term SeðhÞ and the modified mean
temperature deviation Dh� (Fig. 4a) for exp. 8 (equivalent salt flux forcing), and similarly for the
salinity DS, SeðSÞ and DS� (Fig. 4b) for exp. 10 (real FW forcing). The SSH variations are only due
to wind forcing in exp. 8, and are much weaker than in exp. 10 in which real fresh water is added.
Therefore the magnitude of the surface level expansion term is also much weaker in exp. 8 (�10�9)
than in exp. 10 (�10�7) and has no diurnal cycle. Despite those differences, in both experiments
the global mean deviation is exactly canceled when the surface level expansion term is added with
the Adams–Bashforth factor �AB, resulting in perfect conservation of the modified global mean
temperature in exp. 8 and salinity in exp. 10. The agreement is perfect in all the Adams–Bashforth
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NLFS experiments (7, 8, 9 and 10), for both temperature and salinity, within 2 10�12 (�C or psu
respectively).

From a practical point of view, the exact conservation of T
�

implies that the global mean tracer
concentration is conserved, whatever the length of simulation, to within a factor �ABSeðT Þ, that is
small enough for all practical use of the model. Here in exp. 10, this terms remains smaller than
10�7 psu, and given the strong and rapidly varying fresh water forcing, this is probably close to an
upper bound.
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5.3. Energy conservation

Energy budget analysis can be quiet difficult to carry out in a realistic global ocean model:
energy is involved in all ocean processes and altered by numerical details. Therefore, for the
purpose of checking the energy conservation of the barotropic dynamics, the model is set up in a
very simple configuration. With no forcing and initially at rest, the homogeneous, one layer ocean
model adjusts to an initial bump in SSH centered on the equator. The shape of the initial bump is
given by gt¼0 ¼ Dh0 � ½1 � cosðp � ð1 � rÞÞ
=2 with r the normalized radial distance from the center

of the bump: r ¼ minð1;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=RbumpÞ; the radius of the bump is Rbump ¼ 30� and the maxi-

mum height at the center is Dh0 ¼ 100 m. The spherical grid resolution is 2.8125� 2.8125� and
the ocean depth is uniform (H ¼ 1 km) and without continents. For simplicity, only non-rotating
cases are considered here and the Coriolis parameter is set to zero. 5 The time step Dt ¼ 450 s is
small enough to resolve external gravity waves at the equator. The small grid spacing near the
poles does not limit the time step since both backward or Crank–Nickelson time stepping are
unconditionally stable. This is an advantage compared to explicit methods that require a very
small time step to satisfy the stability criteria near the poles.

Five different simulations illustrate the evolution of model energy (Figs. 5 and 6). The first
experiment (‘‘Back_Lin’’) uses the free surface backward time stepping in a pure linear case, i.e,
linear free surface with no momentum advection. The remaining four use Crank–Nickelson time
stepping, either with the same linear formulation (standard experiment, ‘‘CrNi Lin’’), adding only
momentum advection (‘‘CN Ln + Adv’’), adding only NLFS effects (‘‘CN NonLin’’) or adding
both (‘‘CN NL + Adv’’). For momentum advection, the Adams–Bashforth time stepping is used
and for this test �AB is set to 1/2.

The adjustment problem is symmetric with respect to the center of the initial bump so that
taking a section across this center provides a good view of a global field. The SSH along the
equator is represented in Fig. 5 at time 0, 1.5, 3, 4.5 and 4.72 days of simulation, in the five ex-
periments. In addition, the evolution of global quantities such as the maximum range of SSH
(highest point minus lowest point values), the volume mean KE and PE and the mean total energy
(PE + KE) is represented in Fig. 6. The volume mean PE and KE are expressed both in m2/s2 and
computed as follows:
5 Th

analyt

discre

conser

free-su
PE ¼ 1

V

Z Z
A

1=2gg2dA and KE ¼ 1

V

Z Z
A

h1=2ðu2 þ v2ÞdA
When the linear free surface approximation is made, the time dependent ocean thickness h is kept
constant and set equal to H in the KE expression.

The standard experiment (‘‘CrNi_Lin’’) is free of non-linear effects and therefore easier to
interpret. The initial SSH anomaly generates gravity waves that propagate in a radial direction
e simplicity of the non-rotating, purely linear test (detailed in the body of the text) allows one to find an

ical solution using spherical harmonics to verify model results. This also avoids complications concerning the

tization of the Coriolis term on a C-grid, a delicate issue which can have significant impact on energy

vation. Such aspects, although important, go beyond the scope of this paper where we prefer to concentrate on

rface effects only.
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from the source (Long 0.E) and converge to the symmetric point relative to the sphere center, at
180.E on the equator, before coming back to the source point at time t ¼ Tcycle ’ 4:71 days. Tcycle is
defined as the time of the first maximum and minimum of, respectively, the mean potential and
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KE, and can be considered as the time period required for the energy to travel around the sphere.
Tcycle is slightly longer than the period T0 of non-dispersive plane waves in a cyclic channel:
T0 ¼ 2pRE=

ffiffiffiffiffiffiffi
gH

p
¼ 4:68d ¼ 112:25h with RE ¼ 6370 km the Earth radius. This is due to the dis-

persive nature of gravity waves on the sphere (Panchev, 1985, p. 179) and also explains the reverse
sign of the SSH anomaly after 1 cycle ðt ¼ TcycleÞ. The numerical dispersion that mainly affects
poorly resolved wave lengths and frequencies is relatively small here, since the shape of the bump
is well preserved after one cycle in the pure linear case (Fig. 5d, CrNi_Lin).

Adding momentum advection or relaxing the Linear FS approximation does not change the
general behavior of wave propagation but increases the dispersion and results in significant phase
differences; this appears clearly on Fig. 5 after 4.5 days of integration. On the contrary, use of
backward time stepping ðexp ¼ Back LinÞ has only minor phase effects but strongly reduces the
amplitude of the SSH anomaly, up to 50% of its initial value after one cycle.

Use of backward time stepping is the largest source of differences in energy evolution (Fig. 6b–
d) and maximum range of SSH (Fig. 6a). The damping of fast modes with backward time stepping
is responsible for a large decrease in the total energy (more that 50% after four days) (Fig. 6d) and
a reduction of the wave amplitude by roughly the same factor. By contrast, non-linear effects
on the phase and the shape of the SSH anomalies also modify the evolution of the SSH range
but have only a weak influence on the energetics of the system.

The conservation of the total energy is exact in the standard case (no advection of momentum
and linear free surface). The departure from the initial value is less that 10�13 m2/s2 during the
whole simulation (five days), at the level of machine precision. Without momentum advection, the
NLFS formulation does not conserve the total energy, as shown on Fig. 6d. The departure from
the initial value is 0.02 m2/s2 (<5% of the total) after five days. This property has been noted
before (see e.g., Roullet and Madec, 2000; Griffies et al., 2001) and is related to the coupling of
momentum advection and free surface displacement in the KE budget, which can no longer be
considered separately, in contrast to the linear FS case. This motivates the inclusion of mo-
mentum advection terms in the NLFS experiment CN NL + Adv and, for comparison, the linear
FS experiment CN Ln + Adv.

Energy conservation is less simple in the presence of momentum advection terms than tracer
conservation. Given the objective of this paper, our priority is tracer conservation. Nevertheless,
use of the NLFS significantly improves energy conservation; the total energy drifts by less than
1.9 10�3 m2/s2 in the NLFS case CN NL + Adv but exceeds 0.02 m2/s2 in the linear FS exper-
iment CN Ln + Adv.

The poor energy conservation of the linear FS case is related to the ‘‘surface correction’’ term,
�ws:v in the momentum equation that is designed to conserve locally the momentum, whereas
global conservation of energy required only half of it. In the NLFS case, a significant improve-
ment in energy evolution can be expected by simply changing the definition of the cell thickness to
h
i
, h

j
at U,V points; as mentioned by Roullet and Madec (2000), in order to conserve energy an

area weighted mean value between the two neighbors must be used h
i ¼ ðAihi þAiþ1hiþ1Þ=2A

i

instead of the minimum of the two, to ensure that the time variation of h
i

corresponds to ws
iDt.

With momentum advection and including those two modifications (half of the surface cor-

rection in CN Ln + Adv and modified h
i
, h

j
in CN NL + Adv, hereafter referenced as

CN NL� + Adv, the energy conservation is still not exact, due to the use of Adams–Bashforth for
momentum advection. However, the departure from the initial PE remains very small during the
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whole simulation (five days); less than 5 10�5 m2/s2 and 5.3 10�5 m2/s2 in the linear and NLFS
experiments respectively. Such small differences are impossible to distinguish from the zero line on
Fig. 6d.

In order to assess the magnitude of the total energy drift, the NLFS experiment with modified
h
i
, h

j
CN NL� + Adv has been repeated with a small horizontal viscosity Ah ¼ 1000 m2/s, about

two order of magnitude smaller than the one currently used in OGCM at the same resolution. The
result is a reduction of the total energy of 2.1 10�4 m2/s2 after five days, more than four times
larger than without horizontal viscosity.

To summarize, apart from the backward time stepping experiment which strongly damps the
transient energy, all the Crank–Nickelson tests preserve energy relatively well, but only the pure
linear case (linear FS without momentum advection) ensures an exact conservation. When mo-
mentum advection is included, the NLFS improves the conservation relatively to the linear FS
case, especially when h

i
, h

j
are defined in an appropriate manner. Then the residual drift becomes

very small, much smaller than the effect of a small horizontal viscosity. This can be unambigu-
ously attributed to the time stepping of momentum advection, since the discretization in space
conserves the energy (Adcroft et al., 1997). These results appear to be robust regarding the choice
of the time step: using half the time step (225 s) strongly reduces the energy drift of the modified
NLFS experiment CN NL� + Adv by a factor of 6 whereas backward time stepping still results
in large energy loss, only 30% smaller than with the standard time step (450 s).
6. Conclusions

A NLFS implementation using the implicit free surface method has been designed to conserve
tracer quantities. The conservation is exact when a forward two time-level scheme is used for
tracer advection, as in the Lax–Wendroff scheme. When using a three time-level scheme, such as
Adams–Bashforth II, the method exactly conserves a modified global tracer content T

�
that al-

ways remains very close to the global mean value T . This ensures that the model will not drift
during long simulations. The implicit free surface solver can easily accommodate various options
(rigid-lid, linear FS, NLFS, non-hydrostatic. . .) and offers an energy conserving form with a
Crank–Nickelson time stepping.

The NLFS method presented here is not radically different from previous studies (Roullet and
Madec, 2000; Griffies et al., 2001), but is applied in a different time stepping context. While
Griffies et al. (2001) experience some difficulties in ensuring tracer conservation with the leap-frog
scheme and time filtering, the time stepping schemes considered here offer the same level of
precision (both second order in time and space) and also satisfy tracer conservation.

A simple test illustrates that the NLFS formulation conserves tracers, both locally and globally,
and naturally implements fresh water flux. This constitutes an improvement compared to the
linear FS formulation. NLFS effects are generally small in full depth ocean models with coarse
resolution and slowly varying forcing, but since conservation is easier to implement and more
accurate in the presence of NLFS, we prefer it in all calculations.

A simple wave propagation test shows that the free-surface backward time stepping scheme has
a large damping effect on the solution which swamps the differences between non-linear and linear
FS. Using Crank–Nickelson time stepping exactly conserves the energy of the pure linear model
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(linear FS without momentum advection) and allows us to identify NLFS effects on the phase
propagation of gravity waves. When momentum advection is included, energy conservation is
better with the NLFS formulation than with the linear FS form, and can be further improved with
a small modification of the grid interface thickness. However this modification does not induce
any noticeable effects on wave features.

Emphasis is often put on the role of space discretization in energy budget consistency
(Dukowicz and Smith, 1994; Adcroft et al., 1997; Roullet and Madec, 2000; Griffies et al., 2001)
but rarely on time stepping effects. Despite this, very few numerical simulations actually ex-
hibit accurate energy conservation. The simple barotropic adjustment test presented here indi-
cates that time stepping effects can be much larger than discretization in space. Therefore, we
suggest that any energy conservation analysis should consider both the time and space discreti-
zation.

Backward time stepping is commonly used for the free surface equation (Dukowicz and Smith,
1994; Wolff et al., 1997; Marshall et al., 1997b) and results in energy loss (e.g., the simple
barotropic adjustment test, Section 5.3). This requires some comments:

(a) There is no doubt that the test (5.c) presented here is over simplified. The magnitude of energy
loss is probably extreme, but is indicative of behavior in more realistic ocean models that use
the same free-surface time stepping. Note that other time stepping methods such as the split
explicit FS also damp the energy of the external mode since time averaging is used with the
methods and is not supposed to be energy conserving.

(b) According to Arakawa (1966)––and often quoted––energy conservation offers a limited ad-
vantage, mainly in terms of stability of the momentum advection discretization. To accurately
represent the evolution of the distribution of energy as a function of scale, conservation of
both energy and enstrophy are required. However, such a scheme (Arakawa, 1966) has not
yet been successfully implemented in a z-coordinate OGCM, probably because it is not easily
done. Regarding the stability objective, alternative methods exist to ensure a stable discreti-
zation of the momentum advection terms (see for e.g., Tartinville et al., 1998), as for instance
energy decreasing schemes known as Total Variance Diminishing schemes.

(c) In coarse resolution, non-eddy resolving models, the KE that the model contains is not rep-
resentative of the real ocean KE which is mainly contained in the eddy field (Stammer and
B€ooning, 1985). In this case energy conservation is perhaps not a major concern. However,
when eddying motions are permitted, low energy dissipation numerics are required in order
to carry out accurate simulations of ocean dynamics. For this purpose, a relatively accurate
energy conservation is sufficient and does not need to be exact. This justifies some recent
developments which are presented as energy conserving (Adcroft et al., 1997; Roullet and
Madec, 2000; Griffies et al., 2001), even if conservation is not exact because of the free-sur-
face time stepping.

Depending on the particular application, the damping of the fast external gravity waves can be
justified, providing it does not alter the essential features of interest. This is what happens when
the backward time stepping and more generally a non-energy conserving free-surface method is
used. In other applications, such as in the simple barotropic adjustment problem, an energy
conserving scheme for the external mode, such as the Crank–Nickelson time stepping, is crucial.
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The NLFS implementation in the MITgcm uses the implicit free surface method and allows us to
select the external mode time stepping appropriate for each modeling study.
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Appendix A

The explicit integration of the column integrated continuity Eq. (4) was not present in the
original model (Marshall et al., 1997a) and has been added for the purpose of the NLFS (see
Section 2). However, for the linearized formulation, we find it useful to retain the integration of
the linearized Eq. (4):
ðhnþ1 � hnÞ=Dt ¼ �r � Hvn þ Pn
in order to provide the SSH ðhnþ1 � HÞ on the right hand side of the linearized Eq. (10):
gnþ1 � bcDt2r � Hgrgnþ1 ¼ ðhnþ1 � HÞ þ bDtP nþ1 � bDtr � Hv� ðA:1Þ

This is slightly different from the original, backward ðb ¼ c ¼ 1Þ, linear free-surface formulation
where gn was used in place of ðhnþ1 � HÞ in (A.1). The advantage of keeping an explicit integration
of the continuity Eq. (4) is that it ensures an exact volume conservation (see 5.a for a quantitative
estimation).
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