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ABSTRACT

Coastlines in numerical ocean models are oriented at various finite angles to the model grid.
The true coastline is usually replaced by a piecewise-constant approximation in which the model
coastline is everywhere aligned with the model grid. Here we study the consequences of the
piecewise-constant approximation in an idealised shallow-water ocean model. By rotating the
numerical grid at various finite angles to the physical coastlines, we are able to isolate the
impact of piecewise-linear boundaries on the model circulation. We demonstrate that piecewise-
constant coastlines exert a spurious form stress on model boundary currents, dependent on
both the implementation of the slip boundary condition and the form of the viscous stress
tensor. In particular, when free-slip boundary conditions are applied, the character of the
circulation can be reduced to no-slip in the presence of a piecewise-constant boundary. The
spurious form stress can be avoided in a free-slip limit if the viscous stress tensor is written in
terms of vorticity and divergence.

1. Introduction ‘‘hyper-slip’’ and ‘’super-slip’’ conditions have also

been proposed to enable advection of vorticity
The choice of lateral boundary condition in a along coastlines. An excellent review of these

numerical ocean model has a profound influence various boundary conditions, and their impact on
on the separation and recirculation of boundary the large-scale circulation, is given by Pedlosky
currents, such as the Gulf Stream, and on the (1996).
transport of water masses through gaps, such as Irrespective of the chosen boundary condition,
the Indonesian through-flow. While the appro- ocean general circulation models (OGCMs) need
priate boundary condition for a continuum fluid also to accommodate irregular coastlines which
is ‘‘no-slip’’ (for example, Richardson, 1973), it is are oriented at finite angles to the model grid. In
less clear that no-slip is appropriate for a finite- a typical finite difference model, such coastlines
resolution ocean model in which a boundary are generally replaced by a piecewise-constant
current is barely resolved by the numerical grid. approximation in which the model boundary is
Alternative slippery boundary conditions have everywhere parallel to the model grid (Fig. 1).
been advocated in which the tangential component While the piecewise-constant treatment greatly
of the boundary velocity remains finite. The ‘‘free- simplifies numerical implementation of the solid-
slip’’ condition is the most wide-spread, in which wall boundary condition, the implications for the
the tangential shear at the boundary vanishes; slippery character of model coastlines are less

clear. For example, where the coastline is oriented

* Corresponding author. at 45° to the model grid, one is effectively setting
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Fig. 1. A schematic diagram illustrating how observed
coastlines are replaced by piecewise-constant approxi-
mations in numerical models. The thick solid line is the
true coastline, the thin solid line is the approximated

Fig. 2. The model domain is restricted to square region,model coastline, and the dashed lines indicate the grid
dimensions 2000 km×2000 km, masked out from acells.
rotated model grid. The physical coordinates (x̃, ỹ) are
distance from the rotated model coordinates (x, y). The

both components of the fluid velocity, u and v, to model coastlines assume a piecewise-constant appear-
zero within one grid point of each other, even ance as shown.
where a slippery boundary condition is prescribed.

The aims of this contribution are:

rotate the numerical grid at various finite angles$ to demonstrate that piecewise-constant coast-
to the model coastlines, as sketched schematicallylines exert a spurious drag on model boundary
in Fig. 2. Any differences between solutions atcurrents; and
different angles of rotation can thus be attributed$ to investigate the sensitivity of this spurious
to the piecewise-constant nature of the approxi-drag to the implementation of the slip boundary
mated model coastline (we assume that effectscondition and formulation of the viscous
associated with anisotropy of the numericalstress tensor.
grid are not significant). The wind-stress, t=

In Section 2, we describe the strategy and −t0 cos(pỹ/L ) ĩ, and Coriolis parameter, f=
formulation of our numerical experiments. In

f0+bỹ are specified as functions of the physical
Section 3, we present solutions in which the lateral

coordinates (x̃, ỹ), distinct from the rotated model
boundary condition is implemented using ‘‘ghost

coordinates (x, y) aligned along the numerical grid.
points’’ lying outside the model domain. In

The basin is bounded by solid walls at x̃=0, L
Section 4, we present solutions in which the

and ỹ=0, L .
boundary condition is instead applied directly to

the stress tensor, and we also investigate sensitivity
2.2. Discretised equationsof our results to different formulations of the stress

tensor. In Section 5, the implications of our results
The discretised shallow-water equations are

for numerical ocean models are discussed further.
written:

∂
t
u−( f+f)yv:xy+∂

x
B=

t(x)

r0h
:x
−ru+nV2u, (1)2. Numerical model

2.1. General approach ∂
t
v− ( f+f)xu:xy+∂

y
B=

t(y)

r0h
:y
−rv+nV2v, (2)

Our approach is to consider the wind-driven
circulation in a square ocean basin in which we ∂

t
h+∂

x
(h:xu)+∂

y
(h:yv)=0. (3)
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Here, (u, v) is the fluid velocity, h is the thickness An alternative implementation of the boundary
conditions applied directly to the viscous stressof the shallow-water layer, f=∂

x
v−∂

y
u is the

relative vorticity, B=g∞h+1
2
(u:x2+v:y2 ) is the tensor will be described subsequently in Section 4.

Bernoulli potential, g∞ is the reduced gravity, r0 is
a reference density, r is the coefficient of linear
friction, and n is the coefficient of lateral eddy 2.4. Numerical details
viscosity. The model variables are staggered in the

The model parameters used for all experimentsform of an Arakawa C-grid. The numerical
are: L =2000 km, f0=0.7×10−4 s−1, b=discretisation of the momentum equations is that
2×10−11 m−1 s−1, n=500 m2 s−1, r=10−7 s−1,of Bleck and Boudra (1986); the discrete equations
r0=103 kg m−3, g∞=0.02 m s−2 and t0=conserve mass but not energy, and give qradratic
0.2 N m−2. The initial layer thickness is h0=conservation of enstrophy. The discretisation is
500 m.nominally second-order accurate in space: the

The grid-spacing is Dx=Dy=25 km, equiva-grid-spacing is constant and all interpolations and
lent to ~1/4° resolution at midlatitudes. Thediscrete measurements of gradients in the interior
nominal deformation radius, L

r
=Eg∞h0/f0#of the ocean are centred.

45 km, is resolved by the grid, and the wave

resolution parameter, 2L
r
/Dx~3.6, ensures the

2.3. Boundary conditions
discrete inertia-gravity waves are properly dispers-
ive. The Munk boundary layer scale,The solid boundaries are placed such that
(n/b)1/3~30 km, is barely resolved (in keeping withnorth-south sections of coastline fall on u-points,
the majority of present-day OGCMs). The thirdand east-west sections fall on v-points. The solid
order Adams-Bashforth (III) time-steppingwall boundary condition of no normal flow is
scheme is used with a time-step of Dt=0.25 h. Alltherefore naturally imposed.
experiments are integrated for 10 years from aA second boundary condition is required to
state of rest, after which time each is convergingevaluate the lateral friction and the vorticity at
towards either a steady state or a statistically-the boundaries. The two alternatives considered
steady limit cycle.here are:

$ no-slip where the tangential flow is zero on the
boundary;

$ free-slip where the tangential shear vanishes on
3. Results

the boundary but the tangential flows remains
finite.

3.1. Solutions on a non-rotated grid
The free-slip boundary condition is synonymous

First we consider the solutions obtained on a
with the ‘’stress-free’’ boundary condition in which

non-rotated grid that is parallel to the model
the tangential stress is set to zero. In the solutions

coastlines. The structure of the gyre is singularly
presented in Section 3, the boundary conditions

sensitive to the choice of no-slip or free-slip lateral
are implemented using ‘‘ghost points’’ lying a half

boundary condition (Blandford, 1971). Fig. 3 illus-
grid point outside the model domain. Along a

trates this point by showing snapshots of the fluid
no-slip boundary, the velocity at the ghost point

depth, h, after ten years of integration with
is set equal and opposite to the interior value,

(a) no-slip boundary conditions, and (b) free-slip
whereas along a free-slip boundary, the ghost

boundary conditions. Here, the boundary condi-
velocity is set equal to the interior value:

tions are implemented using the method of ghost

points described above. In each case the solutions
are converging towards a steady state.

no-slip: v:x=0 (north-south boundary)

u:y=0 (east-west boundary)

free-slip: ∂
x
v=0 (north-south boundary)

∂
y
u=0 (east-west boundary)

(4) The ‘‘no-slip ‘’ solution (Fig. 3a) is characterised
by a Sverdrup interior, an inertial boundary cur-
rent along the western margin of the basin, and a

standing eddy in the north-west corner of theThis convenient approach is widely used in numer-
ical models (for example, Bleck et al., 1992). basin. A standing Rossby wave is superimposed
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Fig. 3. Instantaneous layer thickness, h (m), after 10 years with (a) no-slip and (b) free-slip boundary conditions on
a non-rotated grid. The contours are streamlines for the geostrophic flow.

on the Sverdrup interior and decays away from appearance. Fig. 4 shows the layer thickness, h,
after 10 years of integration using both no-slipthe western boundary. The transport of the recir-

culating gyre is approximately 35 Sv. ( left panels) and free-slip (right panels) boundary

conditions, on grids rotated at 5° (top row), 10°The ‘‘free-slip’’ solution (Fig. 3b) is also com-
posed of a Sverdrup interior and an inertial bound- (middle row) and 45° (bottom row) relative to the

coastlines.ary current along the western margin, but now

with an extended inertial recirculation sub-gyre For small angles of rotation, the no-slip solu-
tions ( left panels) are broadly consistent with theacross the northern margin of the basin. The latter

enhances the gyre transport to 70 Sv, considerably control simulation in Fig. 3a. The characteristic

tight recirculating sub-gyre in the northwestin excess of the 30 Sv predicted by Sverdrup
balance (Sverdrup, 1947). Observations indicate corner is retained along with the standing Rossby

wave decaying away from the western boundarythat the transport of the Gulf Stream increases

from 30 Sv off the coast of Florida (Niiler and current. At 45° rotation, however, the inertial
boundary current separates prematurely from theRichardson, 1973) to 85 Sv at Cape Hatteras

(Worthington and Kawai, 1972), broadly consist- western boundary (bottom left panel ), and the

recirculating eddy in intensified. The separationent with the free-slip solution. The eastward-
flowing jet, representing the separated Gulf point is not steady, but settles into a limit cycle,

migrating approximately 100 km up and downStream, penetrates approximately 1700 km along

the northern edge of the gyre. the coastline.
In contrast, the free-slip solutions are funda-The above solutions are characteristic of the

classical ‘‘no-slip’’ (Bryan, 1963) and ‘‘free-slip’’ mentally altered for all angles of rotation, even as

small as 5°. In each case, including negative angles(Veronis, 1966) circulations, and serve as the ‘‘con-
trol experiments’’ against which we now compare of rotation (not shown), the circulation assumes

the character of the classical no-slip limit. Thusresults obtained on rotated model grids.

the introduction of piecewise-constant coastlines
appears to represent a singular perturbation on

3.2. Solutions on rotated grids
the structure of the free-slip solution in these
experiments.The above experiments are repeated under

identical conditions except that the model grid is On the grid rotated at 45°, the free-slip and

no-slip solutions are exactly identical which clearlyrotated at three finite angles to the coastlines,
which therefore assume a piecewise-constant contradicts the use of different boundary condi-

Tellus 50A (1998), 1



-  99

Fig. 4. Instantaneous layer thickness, h (m), after 10 years on grids rotated at 5°, 10°, and 45°, and boundary
conditions implemented using ghost points.
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3.3. A thought experiment

To obtain a quantitative estimate of the error
incurred on the rotated grid, consider the ideal
scenario of an initial semi-infinite current with a

uniform northward velocity ṽ=E2U, adjacent to
a western boundary. If the layer thickness, h, can
be considered constant at leading order, then the

net viscous deceleration of the current per unit
length of coastline (measured in the ỹ direction) is
simply

D=
P
ỹ
P2

0
r0nV2 ṽ dx̃ dỹ

P
ỹ

dỹ

. (5)

We identify D as the ‘‘net viscous stress’’ acting
on the current, incorporating both a tangential
(shear) stress and normal (form) stress.

On the non-rotated grid (Fig. 5a), the only
contribution is from the v+ velocity points adja-
cent to the coastline, giving

no-slip: D=−2E2r0nU/Dx,

free-slip: D=0.
(6)

On the grid rotated at 45° (Fig. 5b), we must
consider the viscosity at both the u+ and v+
velocity points where nV2u=−2nU/(Dx)2, nV2v=
−2nU/(Dx)2 respectively. Projecting onto the ỹ
axis then gives,

D=−2r0nU/Dx, (7)
Fig. 5. A schematic showing a distribution of velocity

identical for both no-slip and free-slip boundary
points adjacent to a north-south boundary on (a) and

conditions.unrotated grid, and (b) a grid rotated at 45°. On the
The net viscous stress is therefore underesti-non-rotated grid, the ghost point is used to solve the v

mated by a factor E2 along the no-slip boundarymomentum equation at the point marked v+. On the
rotated grid,however, no ghost point is used. rotated at 45°, consistent with the enhanced gyre

transport observed in the numerical solution
(Fig. 4). Along the free-slip boundary, the viscous

stress is finite whereas it should be zero, again
tions in each. To understand this behaviour, con-

consistent with the numerical results.
sider the numerical integration of the v momentum

eq. (2), adjacent to a western boundary. On a non-

rotated grid (Fig. 5a), the ghost points are used to 4. Boundary conditions applied to stress
evaluate both the lateral friction term, −nV2v, tensor
half a grid-point inside the boundary, and the

vorticity, f, at the boundary. On the rotated grid The results of Section 3 indicate that spurious
(Fig. 5b), however, one is able to evaluate both frictional stresses are exerted along piecewise-
terms without using ghost points. No viscous constant boundaries where the boundary condi-
boundary condition is therefore used along the tions are implemented using ghost points. We now

investigate the possibility that these problemspiecewise-constant coastline oriented at 45°.
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might be avoided by applying the no-slip/free-slip the same dissipation in the continuous momentum
equations; that is, expanding the divergence of theboundary condition directly to the viscous stress

tensor to ensure the correct boundary stress. tensor, the actual dissipation is VΩF=nV2u in

each case. However, at the discrete level the three
forms can possess different properties adjacent to

4.1. Stress tensor formulations
model coastlines.

First, we rewrite the lateral friction term in the
momentum equations, (1) and (2), as the diver-

4.2. Implementation of boundary conditions
gence of stresses,

The normal stresses (Fux and Fvy ) can be evalu-
ated adjacent to boundaries without additional

nV2u�∂
x
Fux+∂

y
Fuy,

nV2v�∂
x
Fvx+∂

y
Fvy, boundary conditions. However the tangential

stresses fall on the boundary and must be specifiedwhere
through a boundary condition. On free-slip

boundaries, we reinterpret ‘‘free-slip’’ to mean
F=AFux Fuy

Fvx FvyB ‘‘stress-free’’ and set the tangential stress to zero:

is the viscous stress tensor.* Following Batchelor free-slip: Fvx=0 (north-south boundary)

Fuy=0 (east-west boundary).(1967), we refer to Fux and Fvy as ‘‘normal’’
stresses, and Fuy and Fvx as ‘‘tangential’’ stresses. (11)
Three forms of F are considered here:

On no-slip boundaries, the velocity shear is made
$ the conventional form, proportional to the interior tangential flow:

Fconv=An∂
x
u n∂

y
u

n∂
x
v n∂

y
vB , (8)

no-slip: ∂
x
v=−2v+/Dx

(north-south boundary)

∂
y
u=−2u+/Dy

(east-west boundary),

$ the symmetric form,

(12)Fsym=An(∂
x
u−∂

y
v) n(∂

y
u+∂

x
v)

n(∂
y
u+∂

x
v) −n(∂

x
u−∂

y
v)B , (9)

where u+, v+ refer to the tangential velocity
$ and the vorticity-divergence form, components a distance Dx/2 inside the boundary.

These components of velocity shear are then used
F
f,D

=An(∂
x
u+∂

y
v) −n(∂

x
v−∂

y
u)

n(∂
x
v−∂

y
u) n(∂

x
u+∂

y
v) B . (10) to evaluate the tangential stress on the boundary

which will depend on the particular form of stress
tensor. On a non-rotated grid, the above lead toThe conventional form (8) is the most widely used
the same tangential stress as in the previousin ocean models. However, compelling arguments
section, irrespective of the form of stress tensor.in favour of the symmetric form (9) have been
Note that the no-slip boundary condition essen-given by Shchepetkin and O’Brien (1996), the
tially involves a side-difference which is only O(Dx)essential points being that the Reynolds stress
accurate (Shchepetkin and O’Brien, 1996). For thetensor is symmetric (u∞v∞=v∞u∞ ) and that a non-
free-slip boundary condition, however, the state-zero antisymmetric component leads to non-con-
ment of zero tangential stress on the boundary isservation of angular momentum (Batchelor, 1967;
exact and does not incur a loss of accuracy.Panton, 1996). The vorticity-divergence form (10)

The discretised model also requires the vorticityis antisymmetric (for example, Madec et al., 1991)
on the boundary to evaluate the nonlinear termsbut is useful in allowing selective dissipation of
in the momentum equations. On a no-slip bound-gravity-waves through different viscosities acting
ary the velocity shears are specified in the lateralon vorticity and divergence.
boundary conditions (12) from which the vorticityAll three forms of the stress tensor give rise to
follows directly. On a free-slip boundary, we set

the relative vorticity to zero, consistent with the* Note that F must be multiplied by the density r0 to
give a force per unit area. experiments presented in Section 3 (here we are
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implicitly neglecting any vorticity associated with 4.4. T hought experiment

curvature of the boundary).
To explain these results we return to the thought

experiment of Subsection 3.3 in which we consider
a uniform northward current, ṽ=E2U, adjacent
to a western boundary on a grid rotated at 45°.

4.3. Numerical results As in Subsection 3.3, we define the ‘‘net viscous
stress’’ as the net viscous deceleration of the

For all three forms of stress tensor, the solutions
current per unit length of coastline (measured in

obtained on a non-rotated grid are identical to
the y: direction),

those obtained previously using ghost points

(Fig. 3). We now present solutions after 10 years

of integration on grids rotated at 10°, 30° and 45°.
D=

P
ỹ
P2

0
r0 (VΩF )Ω j̃ dx̃ dỹ

P
ỹ

dỹ

. (13)Solutions obtained using the oonventional form

of stress tensor are shown in Fig. 6 for no-slip ( left

panels) and free-slip (right panels) boundary condi-
First consider the no-slip limit. The tangentialtions. The no-slip solutions are similar to those

and shear stresses are everywhere zero except atobtained using ghost points; in particular there is
the points on and adjacent to the boundary (indi-a tendency for premature boundary current sep-
cated by the symbol + on Fig. 9). Below we listaration at large angles of rotation. However, the
the two active components of the stress tensorfree-slip solutions differ markedly from those
acting on the v momentum equation (similar termsobtained using ghost points. The solution on the
act on the u momentum equation), and the net10° grid is of classical free-slip character. The gyre
viscous stress:

contains an extended inertial recirculation along

its northern margin, although its penetration is

somewhat reduced from that on the non-rotated

grid. On the 30° grid, the penetration of the

subgyre is much reduced, and on the 45° grid the

Fux+ Fvy+ D

conventional:

2nU/Dx −nU/Dx −3r0nU/Dx,

symmetric:

0 −2nU/Dx −2r0nU/Dx,

f−D:

4nU/Dx 0 −4r0nU/Dx.

(14)solution is closer to the classical no-slip limit. In

contrast to Fig. 4, the 45° no-slip and free-slip

circulations are no longer identical.

Solutions obtained using the symmetric stress

tensor are shown in Fig. 7. The behaviour of the
For comparison, recall that D=−2E2r0nU/Dxno-slip solutions is very much as for the conven-
on a non-rotated grid. Thus we see that the net

tional stress tensor; the boundary current separ-
viscous stress is underestimated using the symmet-

ates progressively further south as the angle of
ric form of the stress tensor, overestimated using

rotation is increased. The free-slip solutions are
the vorticity-divergence form, and is slightly

more affected by the rotation of the grid than in
underestimated using the conventional form. The

the case of the conventional stress tensor. net viscous stress is due to a different combination
Finally, solutions obtained using the vorticity- of normal and tangential stresses in each case.

divergence (f−D) form of the stress tensor are Now consider the free-slip limit in which we
shown in Fig. 8. Again, the no-slip solutions find:
exhibit a tendency towards early separation at

large angles of rotation. However, the free-slip

solutions are far less affected by the rotation of

the grid. The penetration of the inertial recircula-

tion is diminished with increasing angle and

Fvx+ Fvy+ D

conventional:

0 −nU/Dx −r0nU/Dx,

symmetric:

0 −2nU/Dx −2r0nU/Dx,

f−D:

0 0 0.

(15)
the strength of the subgyre is increased beyond

that obtained in the non-rotated solutions.

Nevertheless, the solution is of classical free-slip

character for all three angles of rotation.
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Fig. 6. Instantaneous layer thickness, h (m), after 10 years, from integrations with the conventional form of the
viscous stress tensor.
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Fig. 7. Instantaneous layer thickness, h (m), after 10 years, from integrations using the symmetric form of the viscous
stress tensor.
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Fig. 8. Instantaneous layer thickness, h (m), after 10 years, from integrations using the vorticity-divergence form of
the viscous stress tensor.
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vorticity-divergence form of viscous stress
tensor avoids this spurious form drag.

We have focussed in this paper exclusively on
experiments in which the width of the no-slip

sublayer is comparable to the horizontal grid
spacing (as in the case in the majority of OGCM
studies reported in the literature). However our

conclusion that peicewise-constant coastlines exert
a spurious form drag on model boundary currents
appears to hold even where the boundary layer is

resolved by several grid points. Fig. 10 shows
results obtained on a grid rotated at 45° where
the grid spacing has been reduced to Dx=6.25 kmFig. 9. Schematic diagram showing the placement of the
(four times finer resolution than used throughouttangential and normal stresses, Fvx+ and Fvy+, adjacent
the paper); no-slip and free-slip solutions areto the coastline on a grid rotated at 45°. Also shown are

the velocity values for the thought experiment described shown in the left and right columns respectively.
in the text. The no-slip solutions are virtually identical for all

three forms of stress tensor and the boundary

current no longer separates prematurely. HoweverHere, the net viscous stress should be zero, but
this is only the case with the vorticity-divergence with free-slip boundary conditions applied, the

conventional and symmetric tensor solutions areform of the stress tensor. The tangential stresses

are correctly zero in each case. However, the devoid of a large-amplitude penetrative inertial
recirculation—even at this resolution, the spuriousappearance of finite normal stresses indicates that

a spurious form drag is being exerted on the form drag along the piecewise-constant coastlines

appears to modify the character of a free-slipcurrent by the roughness of the piecewise-constant
boundary. This spurious form drag is avoided solution towards the classical no-slip limit. Only

the vorticity-divergence tensor solution, in whichonly if one employs the vorticity-divergence form

of the stress tensor. the spurious stresses are eliminated, shows the
correct behaviour*.

We have also performed a number of additional

experiments exploring sensitivity to the frictional5. Discussion
coefficients, the surface wind stress and domain
size; in particular, we have explored a number ofOur analysis and numerical results suggest the

following points. alternative finite-difference formulations including
an energy-conserving version of the C-grid model

$ Piecewise-constant coastlines exert a spurious
and also a B-grid discretisation. In all instances,

stress on model boundary currents, dependent
we obtain similar results to those reported in

on both the choice and implementation of the
detail here.

lateral boundary condition.
A notorious failing of OGCMs is their inability

$ Where the boundary condition is implemented
to correctly model the separation of boundary

using ghost points, the boundary stress is
currents, such as the Gulf Stream. A pervasive

underestimated along a no-slip coastline, and
is finite along a free-slip coastline. Further, the
viscous boundary condition is not used on a * Recent work by Verron and Blayo (1996) suggests

that if the eddy viscosity is also reduced to approximatelypiecewise-coastline oriented at 45° to the
50 m2 s−1 and the no-slip sublayer is properly resolved,model grid.
then the no-slip solution converges towards the classical

$ Even where the boundary condition is applied
free-slip limit. Thus in the limit of both high resolution

directly to the tangential boundary stress, the
and very low viscosity, while we would expect spurious

numerical roughness inherent in the piecewise- form stresses along piecewise-constant coastlines to
constant approximation nevertheless exerts a remain, their impact on the structure of the circulation

is likely to be reduced.spurious form drag on the fluid. Use of the
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Fig. 10. Instantaneous layer thickness, h (m), after 10 years, on a grid rotated at 45° with quadruple spatial resolution
(Dx=6.25 km).
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feature of many of such models is the presence of current away from the coast and thus possibly
shield it from the difficulties at the boundary.a large-amplitude standing eddy adjacent to the
Nevertheless, we believe that ocean modellers needseparation point (see, e.g., Dengg et al., 1996).
to reconsider the treatment of coastlines inFree-slip boundary conditions in principle allow
OGCMs. Several promising approaches have beenfor a more penetrative separated boundary current
suggested, including finite elements (for example,devoid of such an eddy. However our results show
Myers and Weaver, 1995) and shaved cellsthat even when the free-slip boundary condition
(Adcroft et al., 1997); these should be fully investi-is used, the circulation can be reduced to a no-slip
gated. The ultimate goal should be to develop ancharacter in the vicinity of piecewise-constant
ocean model in which the circulation is insensitivecoastlines. Our results suggest that the behaviour
to the orientation of the numerical grid.of free-slip solutions might be improved if the

stress tensor is formulated in terms of vorticity

and divergence. While the vorticity-divergence 6. Acknowledgements
form leads to non-conservation of angular

momentum (Batchelor, 1967), there seems little The comments of two anonymous reviewers
purpose in using an angular momentum-conserv- have resulted in a significantly improved manu-
ing symmetric tensor if spurious form stresses are script. We are grateful for financial support from
subsequently generated at the coastlines. the UK Natural Environment Research Council,

The impact of piecewise coastlines may be GR3/10157, the University of Reading Research
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