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1. IntroductIon

the purpose of this chapter is to formulate the equations of 
ocean models and to outline solution methods. Global ocean 
climate models, including those representing mesoscale 
eddies, are traditionally based on the hydrostatic primitive 
equations. We nonetheless discuss extensions to the more 
fundamental non-hydrostatic equations, which are used in 
certain fine resolution process studies, such as for convec-
tion and mixing, and increasingly for coastal and regional 
modeling. the target audience for this chapter includes stu-
dents and researchers interested in fundamental physical and 
numerical aspects of ocean models. We thus aim to present a 
reasonably concise yet thorough accounting of the rational-
ization required to pose the problem of ocean modeling. We 
take a first principles perspective to allow readers with little 
background in ocean fluid mechanics to follow the full de-
velopment. this goal necessitates starting from the basics as 
we develop the model equations and methods. For this pur-
pose, much material was culled from various research papers 
and textbooks, such as Gill [1982], Pedlosky [1987], Lion 
et al. [1992], Marshall et al. [1997], Haidvogel and Beck-

mann [1999], Griffies et al. [2000a], Griffies [2004, 2005], 
Vallis [2006], Higdon [2006], and Müller [2006].

Our presentation focuses on developing the fluid mechan-
ics of the ocean and weaves into this discussion elements 
appropriate for the formulation of ocean models. We begin 
with a discussion of ocean fluid kinematics in Section 2 
where we introduce mass conservation as well as the notions 
of dia-surface transport. Section 3 then focuses on tracer 
budgets, which follow quite naturally from mass budgets, 
only with the introduction of possible nontrivial fluxes of 
tracer which occur in the absence of mass fluxes. Section 4  
introduces a dynamical description that arises from the use 
of Newton’s Second Law of Motion applied to continu-
ous fluid parcels. Section 5 presents the equation of state 
for density and discusses the material evolution of density. 
Section 6 derives some energetic properties of the equations 
of motion, with energetics providing a guiding principle for 
developing certain numerical solution methods. Section 7 
introduces notions of non-equilibrium thermodynamics, a 
subject which forms the basis for establishing budgets of 
heat within the ocean. Section 8 linearizes the dynamical 
equations to deduce various linear modes of motion funda-
mental to ocean dynamics. these motions also have direct 
relevance to the development of methods used to solve the 
ocean equations. they furthermore motivate certain approx-
imations or filters used to simplify the supported dynamical 
modes, with certain approximations described in Section 9. 
Section 10 presents an overview of vertical coordinates. The 
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and the density changes according to the convergence

     d
dt

(ln r) = −∇ · v.  (3)

Hence, parcel volume increases when moving through a di-
verging velocity field, while the density decreases.

The mass budget, given equivalently by equations (1)–(3), 
describes fluid motion from the perspective of a moving fluid 
parcel. This perspective provides a Lagrangian description 
of fluid motion. The complementary Eulerian perspective 
measures fluid properties from a fixed-space frame. Time 
tendencies in the two reference frames are related by the co-
ordinate transformation

    
d
dt

= ¶t + v · ∇,  (4)

where ¶
t 
 measures Eulerian time tendencies from a fixed-

space point. the advection term v×Ñ reveals the fundamen-
tally nonlinear character of fluid dynamics, with the parcel’s 
velocity v = dx/dt measuring the time changes of its position.1 
Use of relation (4) converts the Lagrangian statement of mass 
conservation given by equation (1) to the Eulerian form

    r, t + ∇ · (r v) = 0.  (5)

this equation is termed the mass continuity equation. note 
that we introduced a comma as shorthand for the partial time 
derivative taken at a fixed point in space

    r, t = ¶ r/¶ t.  (6)

We use an analogous notation for other partial derivatives.2 
A useful relation used throughout this chapter follows by 
combining the material time derivative in equation (4) with 
mass continuity in equation (5) to render 

    r
dY
dt

= (r Y),t + ∇ · (r vY),  (7)

where Y is any scalar field.
It is common in fluid mechanics to move between the La-

grangian and Eulerian descriptions, as they offer useful com-
plementary insights. certain ocean models likewise exploit 
the advantages of these two descriptions. For example, the 
vertical coordinate in isopycnal models moves with the mo-
tions of an adiabatic fluid parcel. It is therefore a Lagrangian 
vertical coordinate. In contrast, geopotential vertical coordi-
nate models retain a fixed vertical position as determined by 
the static depth of a grid cell, and so this is an Eulerian verti-
cal coordinate. Horizontal coordinates in most ocean models 
remain fixed in space, and so are Eulerian.

choice of vertical coordinate is fundamental to the numerical 
algorithms of an ocean model. Section 11 presents a general 
discussion of solution methods used for numerical models 
of the ocean. Section 12 closes this chapter with a brief sum-
mary and discussion of certain features of ocean modeling 
that present a barrier between what is desired theoretically 
and what is realizable in practice.

2. KINEMaTIcS

Kinematics is the study of intrinsic properties of motion 
without concern for dynamical laws. Fluid kinematics is con-
cerned with establishing constraints on fluid motion due to 
interactions with geometrical boundaries of the domain, such 
as the land–sea, ice–sea, and air–sea boundaries of an ocean 
basin. A fundamental element of kinematics is the set of co-
ordinates used to describe motion. For fluid motion, we are 
led to notions of generalized vertical coordinates, which are 
a critical element in theoretical and numerical models of the 
ocean. although not strictly a kinematic issue, fluid kinemat-
ics also concerns itself with establishing the balances of mass 
for infinitesimal fluid parcels, as well as for finite regions.

It is convenient and conventional to formulate the mechan-
ics of a continuous fluid by focusing on infinitesimal mass 
conserving parcels [e.g., Batchelor, 1967]. choosing to do 
so allows many notions from classical particle mechanics to 
transfer over to continuum mechanics of fluids, especially 
when describing fluid motion from a Lagrangian perspec-
tive. Mass conservation is also a fundamental property of 
the ocean, with the mass of the ocean changing only through 
boundary input.

2.1. Parcel Kinematics

consider an infinitesimal parcel of seawater contained in a 
volume dV = dx dy dz with a mass dM = rdV, where r is the 
in situ mass density of the parcel and x = (x, y, z) is the car-
tesian coordinate of the parcel with respect to an arbitrary 
origin. conservation of mass for this parcel implies that dM 
is materially constant, i.e., d/dt (dM) = 0. For convenience, 
we write mass conservation as

    
d
dt

ln (dM) = 0. (1)

Mass conservation is realized as the parcel volume and den-
sity change in complementary manners where the volume 
of a fluid parcel changes according to the divergence of the 
velocity field

     d
dt

ln (dV ) = ∇ · v,  (2)
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2.2. Dia-Surface Transport

In providing a mechanistic description of ocean budgets, it 
is often useful to measure the material or momentum transfer 
through a surface. this transport is termed the dia-surface  
transport. We are particularly interested in the transport 
through three surfaces, with the following general discus-
sion relevant for each.

The first surface is the ocean free surface. Here, water and 
tracer penetrate this surface through precipitation, evapora-
tion, river runoff (when applied as an upper ocean bound-
ary condition), and sea ice melt. Momentum exchange arises 
from stresses between the ocean and atmosphere or ice. the 
ocean free surface can be represented mathematically by the 
identity z - h (x, y, t) = 0. For mathematical expediency, we 
assume that the surface height h is smooth and contains no 
overturns at the scales of interest. that is, we assume that 
breaking surface waves are filtered or averaged.

Second, we may describe the solid Earth lower boundary 
mathematically by using the time-independent expression 
z + H (x, y,) = 0. It is typically assumed that there is no fluid 
mass transport through the solid Earth. However, in the case 
of geothermal heating, we may consider an exchange of heat 
between the ocean and the solid Earth. Momentum exchange 
through the action of stresses occur between the solid Earth 
and ocean fluid.

third, within the ocean interior, transport across surfaces 
of constant generalized vertical coordinate s = s(x, y, z, t)  
constitutes the dia-surface transport affecting budgets of 
mass, tracer, and momentum within layers bounded by two 
generalized vertical coordinate surfaces. A canonical exam-
ple is provided by isopycnal layers formed by surfaces of 
constant potential density, as used in isopycnal ocean mod-
els as well as theoretical descriptions of adiabatic ocean 
dynamics. A surface of constant generalized vertical coor-
dinate can be successfully used to partition the vertical so 
long as the transformation between the generalized vertical 
coordinate and the geopotential is invertible. the Jacobian 
of transformation is given by z,s, which must then be single 
signed for useful vertical coordinates. this constraint means 
that we do not allow the surfaces to overturn, which is the 
same assumption made about the ocean surface z = h (x, y, t). 
this restriction places a limitation on the ability of isopyc-
nal models to describe non-hydrostatic processes, such as 
overturning, common in Kelvin–Helmholz billows or verti-
cal convection. We refer to the Jacobian z,s as the specific 
thickness, with this name motivated by noting that the verti-
cal thickness of a layer of coordinate thickness ds is given by 
dz = z,s ds.

to develop the mathematical description of dia-surface 
fluid transport, we note that at an arbitrary point on a surface 

Figure 1. Surfaces of constant generalized vertical coordinate liv-
ing interior to the ocean. An upward normal direction n̂ is indicated 
on one of the surfaces. Also shown is the orientation of the velocity 
of a fluid parcel v and the velocity v(ref) of a reference point living 
on the surface.

of constant generalized vertical coordinate (see Figure 1), 
the rate at which fluid moves in the direction normal to the 
surface is given by

  rate of flow in direction n̂ = v · n̂.  (8)

In this equation, n̂ = Ñs |Ñs |-1 is the surface unit normal di-
rection. If we are working with the free surface, then the 
unit normal takes the form n̂ = Ñ(z - h)/ |Ñ(z - h) |, whereas at 
the solid Earth bottom, n̂ = -Ñ(z + H )/ |Ñ(z + H ) |. Introducing 
the material time derivative ds/dt = s,t +  v×Ñs to equation (8) 
leads to the equivalent expression

    v · n̂ = |∇s|−1(d/dt − ¶t)s.  (9)

That is, the normal component to the velocity of a fluid par-
cel is proportional to the difference between the material 
time derivative of the surface and its partial time derivative.

As the surface is generally moving (except the solid Earth 
lower boundary), the net flux of seawater penetrating the 
surface is obtained by subtracting the velocity of the surface  
v(ref) in the n̂ direction from the velocity component v×n̂  of 
the fluid parcels 

   

rate of relative normal flow
across surface = n̂ · (v − v(ref)).

 (10)

the velocity v(ref  ) = u(ref  ) + w (ref  ) ẑ is that of a reference point 
fixed on the surface. correspondingly, the material time de-
rivative of the surface, taken with respect to the reference ve-
locity, vanishes: d(ref  ) s/dt = 0. this result allows us to write 
the reference vertical velocity component w(ref  ) = dz(ref  )/dt as 
w(ref  ) = - z,s (¶t + u(ref  ) ×Ñz )s, thus rendering 
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  n̂ · v(ref ) = −s,t |∇s|−1.  (11)
Hence, the normal component to the velocity of the surface 
vanishes when the surface is static, as may be expected. 
When interpreting the dia-surface velocity component be-
low, we find it useful to note that relation (11) leads to 

  z,s∇s · v(ref) = z,t .  (12)

to reach this result, we used the identity s,t z,s  = - z,t, with z,t the 
time tendency for the depth of a particular constant s surface.

Using expression (11) in equation (10) for the net flux of 
seawater crossing the surface leads to 

  n̂ · (v − v(ref)) = |∇s|−1 ds/dt.  (13)

the material time derivative of the generalized surface thus 
vanishes if and only if no water parcels cross it. this is a 
very important result that is used throughout ocean theory 
and modeling. It provides an expression for the volume of 
seawater crossing a generalized surface, per time, per area. 
The area normalizing the volume flux is that area dA(n̂ ) of 
an infinitesimal patch on the surface of constant generalized 
vertical coordinate with outward unit normal n̂ . this area 
can generally be written dA(n̂ )  = | z,s Ñs | dA, where dA = dxdy  
is the area of the surface projected onto the horizontal plane 
formed by surfaces of constant depth. Hence, the volume 
per time of fluid passing through the generalized surface n̂ ×  
(v - v(ref )) dA(n̂ ) is equivalent to | z,s |(ds/dt)dA. this result mo-
tivates us to introduce the dia-surface velocity component 

    w(s) = z,s
ds
dt

,  (14)

which measures the volume of fluid passing through the sur-
face, per unit horizontal area, per unit time. that is, 

(15)w(s) ≡ n̂ · (v − v(ref))dA(n̂)

dA

=
(volume/time)fluid through surface

horizontal area of surface
. (16)

the dia-surface velocity component can be written in the 
following equivalent forms

 

w(s) = z,s ds/dt

= z,s∇s · (v − v(ref))

= (ẑ −∇sz) · v − z, t

= w − (¶t + u · ∇s)z  (17-20)

where Ñsz = - z ,sÑ z s is the slope of the s surface projected 
onto the horizontal directions, and the penultimate step 
follows from the identity (12). When the surface is static, 
then the dia-surface velocity component reduces to w(s) =  
w - u×Ñ s 

z. If the surface is flat, then the dia-surface velocity 
component measures the flux of fluid moving vertically rela-
tive to the motion of the generalized surface. Finally, if the 
surface is flat and static, the dia-surface velocity component 
becomes the vertical velocity component w = dz/dt used in 
geopotential coordinate models.

The expression (14) for w(s) brings the material time de-
rivative (4) into the following equivalent forms

(21)

(22)

 

d
dt

=
�

¶
¶ t

�

z
+ u · ∇z + w

�
¶
¶ t

�

=
�

¶
¶ t

�

s
+ u · ∇s +

ds
dt

�
¶
¶ s

�

=
�

¶
¶ t

�

s
+ u · ∇s + w(s)

�
¶
¶ z

�
,
 

(23)

where ¶s = z,s ¶z provides a relationship between the verti-
cal coordinate partial derivatives. note that the subscripts in 
these expressions denote variables held fixed for the partial 
derivatives. We highlight the special case of no fluid parcels 
crossing the generalized surface. this occurs in the case of 
adiabatic flows with s = r being an isopycnal coordinate. For 
adiabatic flow, the material time derivative in equation (23) 
only has a horizontal two-dimensional advective component 

 u × Ñr. this result should not be interpreted to mean that the 
velocity of a fluid parcel in an adiabatic flow is strictly hori-
zontal. Indeed, it generally is not, as the form given by equa-
tion (21) makes clear. rather, it means that the advective 
transport of fluid properties occurs along surfaces of con-
stant r, and such transport is measured by the convergence 
of horizontal advective fluxes as measured along surfaces of 
constant r.

2.3. Kinematic Boundary Conditions

the discussion so far of dia-surface transport focused on a 
surface with a constant generalized vertical coordinate within 
the ocean interior. these results can also be applied to the 
ocean free surface (Figure 2) and solid Earth lower bound-
ary to derive kinematic boundary conditions. For the lower 
boundary, again assuming no material transport through the 
boundary, we have the trivial result

  w(s) = 0 at s = sbot,  (24)
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which is equivalent to the no-normal-flow boundary condi-
tion v × n̂ = 0.

At the ocean surface, mass transport arises from the pas-
sage of water across the penetrable free surface. We define 
this transport as 

   
(mass/time) through surface = Qη

w dAη ,
   (25)

with Q hw the mass flux through the ocean surface, normalized 
by the area element dAh on the surface. We next exploit the 
assumption that the surface interface of ocean models has 
no overturns, in which case we can introduce the horizontal 
area dA to rewrite the mass flux as 

  (mass/time) through surface ≡ Qw dA.   (26)

Qw is the mass flux used in ocean models, with some models 
defining 

     Qw = rw qw  (27)

where rw is the density of the water crossing the ocean sur-
face, and qw is the fresh water flux (with units of velocity).3

to develop the surface kinematic boundary condition 
(Figure 2), we note that the free surface, defined at z - h(x, 
y, t) = 0, materially evolves according to the flux of mass 
crossing it so that 

 
r

�
d(z − h)

dt

�
= −rw qw at z = h .

 
(28)

the identity dz/dt = z,s ds/dt leads to the kinematic boundary 
condition in generalized vertical coordinates 

  
r z,s

�
d(s − stop)

dt

�
= −rw qw at s = stop,

 
(29)

where stop = s(x, y, z = h,t ) is the value of the generalized 
vertical coordinate at the ocean surface.

these material statements of the kinematic boundary con-
dition can also be derived by considering the mass budget 
over either an infinitesimal region near the upper ocean sur-
face, or the budget over a full column of water extending 
from a static ocean bottom at z = - H (x, y) to a dynamic 
ocean surface at z = h(x, y, t ). We present the column mass 
budget approach because it has application for later consid-
erations. The total mass per horizontal area of fluid inside 
the column is given by the integral ò  h-H rd z. conservation 
of mass for this column implies that mass changes in time 
through imbalances in fluxes crossing the ocean free surface 
and convergence of advective mass transport through the 
vertical sides of the column.4 these considerations lead to 
the balance

   ∂t

� � η

−H
dzρ

�
+∇ · Uρ = qw ρw,  (30)

where 

  Uρ =
� η

−H
dzρ u  (31)

is a shorthand notation for the vertically integrated horizon-
tal momentum per volume. now, to derive the surface kine-
matic boundary condition, perform the derivative operations 
on the integrals in the mass budget expressed in equation 
(30), use the no-flux lower boundary condition, and use the 
Eulerian mass conservation relation (5) to render 

r (¶t + u · ∇)h = rw qw + r w at z = h .      (32)

this is an Eulerian version of the material kinematic bound-
ary condition of equation (28).

3. TracEr bUdGET

the tracer concentration C is defined to be the mass of 
tracer per mass of seawater for material tracers such as salt or 
biogeochemical tracers. Hence, the total tracer mass within a 
finite region of seawater is given by the integral ò CrdV. the 

Figure 2. Schematic of the ocean’s upper surface with a smoothed 
undulating surface at z = h (x, y, t) and outward normal direction 

 n̂ h. undulations of the surface height are on the order of a few me-
ters due to tidal fluctuations in the open ocean and order 10–20m 
in certain embayments (e.g., bay of Fundy in Nova Scotia). When 
imposing the weight of sea ice onto the ocean surface, the surface 
height can be depressed even further, on the order of 5–10m, with 
larger values possible in some cases. It is important for simulations 
to employ numerical schemes facilitating such wide surface height 
undulations.
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material evolution of tracer mass within a Lagrangian parcel 
of mass conserving fluid is given by

  r
dC
dt

= −∇ · J + rS,  (33)

where S is a tracer source that cannot be written as the conver-
gence of a flux. There are many biogeochemical tracers that 
have a non-trivial S. The tracer flux J arises from subgrid- 
scale (SGS) transport of tracer occurring in the absence of 
mass transport. Such transport consists of SGS diffusion 
and advection. Use of the identity (7) allows us to bring the 
Lagrangian parcel tracer budget (33) into the following Eu-
lerian flux form

 (r C), t + ∇ · (r vC + r F) = r S,  (34)

where J = rF introduces the tracer concentration flux F, with 
dimensions velocity ´ tracer concentration.

as the tracer flux J and tracer source S are not associated 
with mass transport or mass sources, they both vanish when 
the tracer concentration is uniform, in which case the tracer 
budget of equation (34) reduces to the mass budget of equation 
(5). This compatibility relation between mass and tracer budg-
ets follows trivially from the definition of tracer concentration. 
It forms an important guiding principle that a numerical algo-
rithm must maintain in order for the simulation to conserve 
tracer. not all ocean models satisfy this constraint, in which 
case they suffer from local or global tracer non-conservation 
[Griffies et al., 2001; Campin et al., 2004; White et al., 2007].

In a manner analogous to the definition of a dia-surface 
velocity component in Section 2.2, it is useful to identify 
the amount of tracer transported through a surface from the 
effects of SGS processes as follows: 

 (SGS tracer mass through surface)
time

= dA(n̂) n̂ · J.   (35)

For this purpose, we are led to introduce the dia-surface SGS 
tracer flux 

(36)

(37)

    

J(s) ≡ dA(n̂) n̂ · J

dA

= z,s∇s · J

= (ẑ −∇sz) · J,  (38)

where Ñs  z is the slope vector for the generalized surface in-
troduced following equation (20). In words, J (s) is the tracer 
mass per time per horizontal area penetrating surfaces of 
constant generalized vertical coordinate by processes that 

are unresolved by the dia-surface velocity component w (s). At 
the ocean boundaries, J (s) embodies the transport of tracer into 
the ocean from other components of the climate system.

4. LINEar MOMENTUM bUdGET

The linear momentum of a fluid parcel is given by vrdV. 
Through Newton’s Second Law of Motion, momentum 
changes in time due to the influence of forces acting on the 
parcel. There are two external (or body) forces and two in-
ternal (or contact) forces acting on a fluid parcel that concern 
ocean modelers. body forces act throughout the fluid media, 
with gravitational and coriolis forces of concern.5 contact 
forces act on the volume of a continuous media by acting on 
the boundaries of the media. Pressure and friction are the two 
contact forces of concern here. Through the Green–Gauss 
theorem of vector calculus, the contact forces are transformed 
into body forces, which provides a means to formulate the 
equations of motion for an infinitesimal fluid parcel.

4.1. Gravitational Force and Spherical Geometry

the effective gravitational force is noncentral due to the 
Earth’s rotation and due to inhomogeneities in the Earth’s 
mass distribution. Hence, if the Earth were an ideal fluid, 
matter would flow from the poles toward the equator, thus 
ensuring that the Earth’s surface would everywhere be per-
pendicular to the effective gravitational acceleration,  g. 
Indeed, the Earth does exhibit a slight equatorial bulge. 
However, inhomogeneities in the Earth’s composition and 
surface loading by continents, glaciers, and seawater make 
its shape differ from the ideal case. For purposes of global 
ocean modeling, we ignore the inhomogeneities, but we do 
not ignore the equatorial bulge.

Veronis [1973], Phillips [1973], and Gill [1982] discuss 
how the Earth’s geometry can be well approximated by an 
oblate spheroid, with the equatorial radius larger than the 
polar due to centrifugal effects. With this geometry, surfaces 
of constant geopotential are represented by surfaces with 
a constant oblate spheroid radial coordinate [page 662 of 
Morse and Feshbach, 1953]. However, the oblate spheroidal 
metric functions, which determine how to measure distances 
between points on the spheroid, are less convenient to use 
than the more familiar spherical metric functions. to pro-
vide a simpler form of the equations of motion on the Earth, 
Veronis [1973] and Gill [1982] (see in particular page 91 of 
Gill) indicate that it is possible, within a high level of accu-
racy, to maintain the best of both situations. that is, surfaces 
of constant r are interpreted as best fit oblate spheroidal geo-
potentials, yet the metric functions used to measure distance 
between points in the surface are approximated as spheri-
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cal. As the metric functions determine the geometry of the 
surface, and hence the form of the equations of motion, the 
equations are exactly those which result when using spheri-
cal coordinates on a sphere. Hence, throughout this chapter, 
the geometry of the Earth is spherical, yet the radial position 
r represents a surface of constant geopotential, which is ap-
proximated by an oblate spheroid.

In summary, the gravitational field most convenient for 
ocean modeling is an effective gravitational field, which 
incorporates the effects from the centrifugal force. the ef-
fective gravitational field is conservative so that the gravita-
tional acceleration of a fluid parcel can be represented as the 
gradient of a scalar, 

  g = −∇F,  (39)

with F the geopotential. As (rdV )F is the gravitational po-
tential energy of a parcel, F is also the gravitational poten-
tial energy per mass. In most ocean modeling applications, 
the local vertical direction is denoted by z, with z = 0 the 
surface of a resting ocean, in which case 

  F ≈ gz,  (40)

with g » 9.8m s-2 the acceleration due to gravity, which is 
generally assumed constant for ocean climate modeling. this 
assumption is not fundamental and can be readily jettisoned, 
as indeed is important for accurate ocean tide calculations.

4.2. Coriolis Force

ocean models generally are written in the reference frame 
of an observer at a fixed lateral position on the rotating Earth. 
this moving reference frame then leads to a coriolis force  
per mass, which is written [Marion and Thornton, 1988; Gill,  
1982]

  Fc = −2W ∧ v.  (41)

the Earth’s rotational vector W points outward through the 
north pole, with the Earth’s rotation counterclockwise if 
looking down onto the north pole.

the Earth’s angular velocity is comprised of two main 
contributions: the spin of the Earth about its axis and the 
orbit of the Earth about the Sun. Other astronomical mo-
tions can be neglected for ocean modeling. therefore, in the 
course of a single period of 24 h, or 24 ́  3600 = 86400 s, the 
Earth experiences an angular rotation of (2p + 2p / 365.24) 
radians, in which case the angular velocity of the Earth is 
approximated by

  

W =
�

2p + 2p/365.24
86400s

�

=
� p

43082

�
s−1

= 7.2921× 10−5s−1.

 

(42)

For the purposes of ocean modeling, this angular velocity 
can be assumed constant in time.

4.3. Stresses From Pressure and Friction

When parcels exchange momentum with other parcels 
and/or boundaries, this exchange can be represented by the 
components of a symmetric stress tensor whose elements 
have units of a force per area. there are two types of stress 
of concern for ocean fluid dynamics: diagonal stresses as-
sociated with pressure p and stresses associated with friction 
organized into the components of a symmetric and trace-
free frictional stress tensor t. the frictional stress tensor is 
also known as the deviatoric stress tensor [e.g., Aris, 1962; 
Batchelor, 1967] because it represents deviations from the 
static case when stress is due solely to pressure.

the contact force from friction and pressure acting on the 
boundaries of a fluid region can generally be written

    Fstress =
�

(t · n̂ − p n̂)dA (n̂).  (43)

the surface integral is taken over the bounding surface of 
the domain whose outward normal is n̂ . Pressure acts on 
a surface in the direction opposite to the outward normal, 
and so always acts in a compressive manner (Figure 3). de-
viatoric stresses create more general forces on the surface, 
which can have compressive, expansive, and/or shearing 
characteristics. It is notable that the mechanical pressure 
considered here is the same as the pressure used for equilib-
rium and non-equlibrium thermodynamical considerations 
(Section 7).

The Green–Gauss theorem of vector calculus can be used 
to convert the area integral in equation (43) to a volume in-
tegral so that 

  Fstress =
�

∇ · (t − I p)dV,  (44)

where I is the identity tensor. this is a fundamental result 
of practical relevance in the formulation of pressure forces 
in ocean models. that is, one may choose to formulate the 
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pressure force as the gradient of pressure integrated over the 
volume of the cell, as in equation (44), or as the accumula-
tion of pressure forces acting on the boundary of the cell, 
as in equation (43). both formulations are equivalent in the 
continuum. However, certain discrete formulations break 
the symmetry. For example, the finite difference approach of 
Bryan [1969a] uses an energetically consistent formulation 
of the pressure gradient, yet the energy-consistent method 
is not equivalent to a contact force formulation. In contrast, 
Lin [1997] proposes to use a finite volume formulation [e.g., 
chapter 6 of Hirsch, 1988] in which the contact force formu-
lation (written as a closed contour integral) is constructed to 
be equivalent to a finite volume formulation of the pressure 
gradient.

The frictional stresses in a fluid arise from strains acting in 
the horizontal and vertical directions which, through the as-
sumptions of a Newtonian fluid, are directly proportional to 
stress. the proportionality is in the form of a viscous tensor. 

The stress tensor is symmetric, reflecting the inability of in-
ternal stresses to impart a net angular momentum on a fluid.

anticipating the kinetic energy discussion in Section 6.1,  
we note that stresses arising from molecular viscosity dis-
sipate kinetic energy. this result places a constraint on 
the form of the viscous tensor, and it motivates the name 
frictional stress tensor, as friction generally dissipates me-
chanical energy. to illustrate this property mathematically, 
consider friction arising from molecular viscosity to be rep-
resented in a Laplacian form and assume a planar geometry 
to simplify the tensor analysis. In this case, the inner product 
of velocity and the friction vector, which appears in the ki-
netic energy budget [equation (67)], can be written

 v · ∇ · t = vm (g vm,n),n
= ∇ · (g ∇K) − g v,m · v,m.

 
(45)

In this equation, a comma represents a partial derivative, and 
repeated indices are summed over their range from 1,2,3. The 
strength of the Laplacian friction operator is scaled by the non-
negative number g, which is the molecular dynamic viscosity 
for water. typical values are around g » 10 -3  kg m -1  s -1 [Gill, 
1982]. More commonly considered in applications is the kin-
ematic viscosity

   ν = γ/ρ,  (46)

whose values for water are around n » 10 -6   m2 s-1. the nega-
tive semi-definite term in equation (45) thus represents a ki-
netic energy sink associated with local viscous dissipation. 
It is termed Joule heating, as it represents a conversion of 
mechanical energy to heat (Sections 6.3 and 7.1). It is com-
monly written as

  = n v,m · v,m ≥ 0.  (47)

As noted by McDougall [2003], frictional dissipation in the 
ocean interior associated with molecular viscosity is on the 
order6

  ≈ 10−9 W kg−1.  (48)

the number 10-9  W kg -1 sounds small, as indeed it is. to put  
it into perspective, using the heat capacity of seawater Cp » 
3989 Joules kg -1  K -1, frictional dissipation through molecu-
lar viscosity warms seawater at a rate of less than 10-3 ° K per 
hundred years. this is a negligible amount of heating from 
a large-scale ocean circulation perspective, and so it is com-
monly neglected in large-scale models.

Figure 3. Schematic of a grid cell bounded at its top and bottom 
in general by sloped surfaces and vertical side walls. the top and 
bottom surfaces can represent linear piecewise approximations to 
surfaces of constant generalized vertical coordinates, with s = s

1
 at 

the top surface and s = s
2
  at the bottom surface. they could also 

represent the ocean surface (for the top face) or the ocean bottom (for 
the bottom face). the arrows represent the pressure contact forces 
which act in a compressive manner along the boundaries of the grid 
cell and in a direction normal to the boundaries. these forces arise 
from contact between the shown fluid volume and adjacent regions. 
due to newton’s third law, the pressure acting on an arbitrary fluid 
parcel A due to contact with a parcel B is equal and opposite to the 
pressure acting on parcel B due to contact with parcel A. if coded ac-
cording to finite volume budgets, as in Lin [1997], this law extends to 
the pressure forces acting between grid cells in an ocean model.
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4.4. Momentum Budget for a Parcel

With the above considerations, the equation for linear mo-
mentum of a fluid parcel takes the form

  
ρ

dv
dt

+ 2Ω ∧ ρ v = −ρ∇Φ + ∇ · (τ − Ip).  (49)

the left-hand side of this equation is the time tendency for 
the linear momentum per volume of a parcel, along with 
the coriolis force, and the right-hand side is the sum of the 
gravitational, pressure, and frictional forces. the momentum 
equation (49) is a form of cauchy’s equation with the di-
agonal pressure force split from the stress tensor. cauchy’s 
equation becomes the Navier–Stokes equation when assum-
ing the frictional stress is linearly proportional to the fluid 
strain according to a Newtonian fluid [Aris, 1962; Batchelor, 
1967].

there are two general forms that the linear momentum 
equation (49) appears in ocean models: the advective form 
and the vector invariant form. the two differ by how the 
material time derivative is translated into an Eulerian form. 
the advective form exploits the identity

   
ρ

dv
dt

= (ρ v), t + ∇ · (ρ vv) + M (ẑ ∧ ρ v),  (50)

where M = v¶x (ln dy) - u¶y (ln dx) defines an advective metric  
frequency. Its form given here assumes that the lateral direc-
tions are described by locally orthogonal coordinates, which 
is the typical case for ocean fluid mechanics. For example, 
in spherical coordinates7 (r, l, f), the grid cell increments 
are given by dx = (r cos f) dl , dy = r df, in which case the 
advective metric frequency is given by M = (u/r) tan f. use 
of equation (50) in the linear momentum balance of equation 
(49) leads to the Eulerian budget

  

(r v), t + ∇ · (r vv) + (2W + ẑM) ∧ r v
= −r ∇F + ∇ · (t − I p).

 
(51)

the vector invariant form exploits the identity

 ρ
dv
dt

= ρ (∂t + ω∧)v + ρ∇K,     (52)

where

  ω = ∇ ∧ v  (53)

is the three-dimensional vorticity, and

  K = v · v/2  (54)

is the kinetic energy per mass of a fluid parcel. Use of equa-
tion (52) in the linear momentum balance of equation (49) 
leads to the prognostic equation for the linear momentum 
per mass; i.e., the velocity v

[∂t + (2Ω + ω) ∧ ]v = −∇ε + ρ−1∇ · (τ − I p),   (55)

where

  E = Φ + K  (56)

is the total mechanical energy per mass of a fluid parcel. The 
vector invariant velocity equation (55) exposes vorticity and 
mechanical energy per unit mass, whereas the linear momen-
tum equation (51) focuses on nonlinear self-advection along 
with the coordinate-dependent advection metric frequency.

4.5. Vorticity and Potential Vorticity

Vorticity is one of the most important dynamical vari-
ables in fluid mechanics. Furthermore, the associated poten-
tial vorticity scalar is key to understanding and predicting 
aspects of geophysical fluid flows. This section introduces 
these vorticities, with more complete discussions avail-
able in such places as Gill [1982], Pedlosky [1987], Müller 
[1995], Salmon [1998], and Vallis [2006].

to derive the vorticity equation, take the curl of the vector- 
invariant form of the velocity equation (55) to lead to the 
material evolution of absolute vorticity wa = w + 2W

   

dωa

dt
= −ωa (∇ · v)� �� �

vortex stretching

+(ωa · ∇)v� �� �
vortex tilting

+ ρ−2 (∇ρ ∧∇p)� �� �
baroclinicity

+∇∧ F(v)� �� �
friction

,     (57)

where we wrote the friction vector in the form Ñ × t = rF(v). 
the four terms on the right-hand side represent various 
manners whereby the absolute vorticity of a parcel is modi-
fied. The names associated with these terms represent the 
mechanisms under which vorticity is affected. A discussion 
of the physics of these mechanisms is outside the scope of 
the present considerations. Instead, chapter 2 of Pedlosky 
[1987] is highly recommended for garnering a physical un-
derstanding.
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Ertel [1942] determined that the potential vorticity

  
Π = ρ−1 ωa · ∇χ

 
(58)

is materially conserved so long as the scalar c is materi-
ally conserved and representable as just a function of den-
sity and pressure. Müller [1995] and Vallis [2006] discuss 
oceanographically relevant examples of c. Ertel’s poten-
tial vorticity theorem generalizes all vorticity theorems 
of fluid mechanics. Furthermore, the theorem provides a 
practical means for determining constraints on the fluid mo-
tion. In particular, potential vorticity plays a fundamental 
role in hydrostatic isopycnal models. Salmon [1998] dis-
cusses the connection of Ertel’s potential vorticity conserva-
tion to the relabelling symmetry possessed by fluid parcels.  
In the presence of a two-component equation of state, as in 
the ocean, there is no materially conserved potential vor-
ticity [Müller, 1995]. nonetheless, oceanographers have 
made great use of approximate forms of potential vortic-
ity, and it therefore remains of fundamental importance in  
modeling.

5. dENSITy

the density of seawater is an important variable to measure 
in the ocean and to accurately compute in an ocean model. 
In particular, density variations, by means of their effects on 
the pressure field, provide one of the most important driving 
forces for large-scale circulation.

density at a point in the ocean (the in situ density) is gen-
erally a function of temperature, salinity, and pressure,

  ρ = ρ(θ ,S, p),  (59)

where we choose to use either potential or conservative tem-
perature (Section 7.2) in the functional relation. This choice 
is more convenient than the alternative in situ temperature, 
as ocean models generally carry the more conservative q as a 
prognostic variable rather than in situ temperature (see Sec-
tion 7 for a discussion).

Equation (59) is known as the equation of state. Its precise 
form is determined empirically. the most accurate equa-
tion of state appropriate for ocean models has been given by 
Jackett et al. [2006]. this work is based on that of Feistel 
[1993], Feistel and Hagen [1995], and Feistel [2003]. Most 
ocean models are now switching to such accurate equations 
of state, as the earlier approximate forms, such as Bryan and 
Cox [1972], maintain a relatively narrow range of salinity 
variations over which the equation is valid. With ocean mod-

els of refined grid resolution and realistic fresh water forcing, 
it is desirable to remove such limitations, as model salinity 
can vary quite widely, especially near river mouths and sea  
ice.

The equation of state (59) is often approximated by re-
placing the pressure dependence with a depth dependence

 ρ(θ ,S, p) → ρ(θ ,S, po(z)),  (60)

where po(z) is a predefined reference pressure profile gener-
ally set as the hydrostatic pressure arising from the initial 
density profile (Section 9.2). converting pressure depend-
ence to depth dependence produces an infinite acoustic speed, 
which removes acoustic modes from the system (Section 
8.1). a time-dependent mass conservation is retained with 
the approximate density of equation (60), and this density 
is used to define the seawater parcel mass, the tracer mass, 
and the linear momentum. We may choose, however, to em-
ploy a more accurate expression for density in computing 
pressure if the hydrostatic approximation is used (Section 
9.2). The resulting fluid is termed pseudo-incompressible 
[Durran, 1999] or quasi-non-boussinesq [Greatbatch et al., 
2001].

the functional relation r = r(q, S, p) allows us to develop 
the material time derivative of in situ density 

 d lnρ
d t

=
1

ρ c2
s

dp
dt

+ βS
ds
dt

− αθ
dθ
dt

.  (61)

In this equation, we introduced the thermal expansion and 
saline contraction coefficients 

(62)

    

aq = −
�

¶ lnr
¶ q

�

p,S

bS =
�

¶ lnr
¶ S

�

p,q  
(63)

as well as the squared sound speed

   c2
s =

�
∂ p
∂ ρ

�

S,θ
.  (64)

It is interesting to note that when parcels mix as they are 
materially transported, e.g., from molecular diffusion with 
diffusivities kq and kS, the potential temperature and salinity 
terms in equation (61) become
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1
ρ c2

s

dp
dt

+ βS∇ · (κS∇S) − αθ ∇ · (κθ ∇θ ) = −∇ · v,
 

(65)

where mass conservation in the form of equation (3) was used 
to replace the density derivative with velocity convergence. 
this equation indicates that in addition to material changes 
in pressure, the mixing of salinity and potential temperature 
act, by means of mass continuity, to balance changes in the 
volume of a fluid parcel. For example, absent salinity and 
pressure effects, raising the potential temperature of a mass 
conserving fluid parcel by molecular diffusion (Ñ × (kq Ñq) > 
0) causes an increase in the volume of a parcel (d ln(dV)/dt = 
Ñ × v > 0) when the thermal expansion coefficient aq is posi-
tive. We caution that this is a deceptively simple thought ex-
periment, as expansion of a region of fluid by heating is actu-
ally mediated by pressure fluctuations occuring as acoustic 
modes, a subject we consider in Section 8.1.

6. ENErGETIc bUdGETS

there are fundamental symmetries that the momen-
tum equation (49) respects, and these symmetries lead to 
conservation laws for certain combinations of dynamical 
variables, such as kinetic energy and total energy. In the 
construction of numerical models, it is often beneficial to 
build analogous symmetries and conservation laws into the 
discrete equations. Such practices have been demonstrated 
to yield robust algorithms and physically realizable solu-
tions. In general, it is desirable to be able to manipulate the 
discretized model equations in an analogous fashion to the 
manipulations used in obtaining the conservation laws in 
the continuum. unfortunately, it is not always possible to 
maintain the exact conservation laws and symmetries in the 
discrete equations.

6.1. Kinetic Energy Budget

Energy is a useful scalar currency in physics because the 
total energy of a closed system is conserved. the ocean is not 
closed, but instead is a forced dissipative system. nonethe-
less, the governing equations are energetically self-consistent, 
and so it is useful to consider the energetic budgets in nu-
merical models. We start by considering the kinetic energy 
of a fluid parcel, which is given by (rdV )v × v/2 = (rdV)K. 
bounds on this quadratic quantity can provide indirect con-
traints with which to develop numerical algorithms for the 
momentum equation. these constraints are useful, as linear 
momentum is not conserved on a sphere [see Section 4.11 of 
Griffies, 2004].

the kinetic energy budget is obtained by taking the in-
ner product of v with the linear momentum equation (49) 
to find

ρ
dK
dt

= −ρ v · ∇Φ − v · ∇ p + v · ∇ · τ.    (66)

Use of the identity (7) renders the Eulerian budget

(ρK), t +∇· (ρ vK + v p) = p∇· v − ρv · ∇Φ + v · ∇ · τ.
 

(67)

note that we could have obtained this budget by working 
with either of the Eulerian forms: the advective form of 
the momentum budget (51) or the vector invariant velocity 
equation (55). On the discrete lattice, it is often more con-
venient to work with the vector invariant form, such as com-
monly used with the Arakawa c-grid models [Mesinger and 
Arakawa, 1976].

terms on the right-hand side of the kinetic energy budget 
(67) represent energy conversion processes, whereby kinetic 
energy is exchanged for other forms of energy. recall from 
the discussion of mass conservation in Section 2.1, the vol-
ume of a fluid parcel expands in a diverging velocity field ac-
cording to equation (2). We thus identify pÑ × v as a pressure 
work term: as pressure works to compress a fluid parcel (pÑ 
× v < 0), the internal energy of the parcel increases at the cost 
of decreasing its kinetic energy. the term -rv × ÑF repre-
sents an exchange of kinetic energy for gravitational poten-
tial energy arising from vertical motions. that is, as parcels 
move up the gravitational field gradient (rv × ÑF > 0), ki-
netic energy decreases as potential energy increases (see 
Section 6.2 for more on gravitational potential energy). Note 
that in the special case, common in ocean models, where the 
geopotential is aligned according to the local vertical, then 
ÑF = gẑ, and so rv × ÑF = rwg. Finally, the frictional stress 
term v × Ñ × t was discussed in Section 4.3 where we noted 
that equation (45) provides the form for this term due to mo-
lecular viscous effects.

bringing these results together leads to the Eulerian budget 
for kinetic energy per volume of a fluid parcel

  

(rK),t +∇ · (r vK + v p − v · t)
= p∇ · v − r v · ∇F− r �.  (68)

In this relation, we reintroduced the more general form of 
the viscous transport v × t, which allows us to identify a ki-
netic energy flux 
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  J = ρ v + v p − v · τ.K K  (69)

The terms in this flux alter kinetic energy locally but inte-
grate to boundary terms when considering a global budget.

In the derivation of the local kinetic energy budget (68), 
the coriolis term has exactly zero contribution to the ener-
getics. this result follows, as the coriolis force arises from 
our choice to describe motion in a moving reference frame at 
a point on the rotating Earth. Such an arbitrary choice of ref-
erence frame can have no impact on the energy of a parcel. 
this result suggests a desirable property for the discretized 
form of the momentum equation: that there be no local ki-
netic energy source due to the coriolis force. unfortunately, 
this property is difficult to achieve on the discrete lattice if 
components of discrete velocity reside on a staggered grid 
and are not co-located. The arakawa b-grid has both hori-
zontal velocity components co-located, whereas the Ara-
kawa c-grid places them on adjacent cell faces [Arakawa, 
1966]. When local conservation is unobtainable, it may still 
be useful to satisfy the global kinetic energy budget

      
∂t

�
Kρ dV =

�
dV (p∇ · v − ρ v · ∇Φ − ρ ),

    
(70)

in which we dropped boundary terms for brevity. In the case 
of the coriolis force on an Arakawa c-grid, there are some 
discretizations that ensure there is no net global spurious 
source or sink of kinetic energy associated with these terms 
[Sadourny, 1975; Arakawa and Lamb, 1981; Arakawa and 
Hsu, 1990].

6.2. Gravitational Potential Energy Budget

the evolution of gravitational potential energy (rdV)F for 
a parcel follows trivially by use of mass conservation

(ρ Φ),t + ∇ · (ρ vΦ) = ρ (∂,t + v · ∇)Φ.           (71)

time dependence can arise for the geopotential through tidal 
effects. In this case, the energetic balances for total energy 
of the terrestrial ocean fluid (Section 6.3) includes a source 
term representing input of potential energy from the astro-
nomical bodies affecting the tidal forcing. In addition to 
time-dependent effects, the potential energy of a parcel is 
affected by motions through the gravitational field. Namely, 
motions up the geopotential gradient (rv × ÑF > 0) increase 
gravitational potential energy. this mechanical energy con-
version term is equal and opposite to the corresponding con-
version term in the kinetic energy budget (68).

notably, mixing processes, which affect internal energy 
(Section 6.3), are absent on the right-hand side of the gravi-

tational potential energy budget (71). Therefore, the con-
nection between potential energy and internal energy is in-
direct. That is, mixing leads to local density modifications, 
which then lead to divergent flow through mass conservation 
[equation (3)]. This then leads to work being done on the 
fluid, which converts internal energy to kinetic energy. Then, 
through an adiabatic adjustment process, motions through 
the gravitational field are realized so as to modify potential 
energy. this adiabatic adjustment process is carried out very 
rapidly by acoustic modes (Section 8.1).

the total mechanical energy, E = K + F, is the sum of 
kinetic and gravitational potential energies, and it evolves 
according to

 (ρ E), t + ∇ · (ρ vE + v p − v · τ) = ρ Φ, t + p∇ · v − ρ . 
(72)

on the left side is the divergence of the mechanical energy 
flux, with this flux acting to transport mechanical energy 
throughout the fluid. On the right side are source terms that 
represent time-dependent gravitational effects (rF,t) and the 
conversion between kinetic energy and internal energy.

6.3. Mechanical Plus Internal Energies

In the previous discussion, we have inferred the existence of 
internal energy based on the conversion of mechanical energy 
into a non-mechanical form. this inference is founded on an as-
sumption that total energy of a fluid parcel is conserved. Quite 
generally, internal energy represents the energy of the molecu-
lar degrees of freedom that are averaged out when formulating 
a continuum description of a fluid. That is, the internal energy 
per mass, I, embodies the energy of molecular thermal agitation 
and molecular interactions, with details of this energy unavail-
able with a continuum description. Another source of energy 
introduced in our discussion of gravitational potential energy 
(Section 6.2) arises from time-dependent gravitational fields 
rF, t , which represent tidal forcing. We consider time-depend-
ent gravitational fields as a source of energy external to the ter-
restrial ocean fluid.

the total energy per mass, T (specific energy), of a fluid is 
therefore written as the sum of the mechanical plus internal 
energies

  T = K + Φ + I,  (73)

where, again, K = v2/2 is the kinetic energy per mass of a 
fluid parcel, F is the gravitational potential energy per mass, 
and I is the internal energy per mass. Energy conservation 
for a fluid parcel means that total energy per mass evolves 
according to the conservation law
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  (ρ T ), t +∇ · T = ρ Φ, tJ  (74)

for some flux of energy JT  . Nonzero normal flux components  
arise for open fluid systems such as the ocean. again, the 
nonzero source term rF,t arises from gravitational effects 
external to the terrestrial ocean system.

based on considerations of mechanical energy flux for a 
parcel affected by friction, we define the flux of total energy 
as

   T = ρ vE + v p − v · τ + q.J J . (75)

We introduced here the heat flux Jq, which is generally a 
function of temperature as well as tracer concentration [for 
discussions, see Fofonoff, 1962; Gregg, 1984; Landau and 
Lifshitz, 1987; Davis, 1994; McDougall, 2003]. Subtracting 
the mechanical energy budget (72) from the total energy 
budget (74) leads to the internal energy budget for a fluid 
parcel

   
ρ

dI
dt

= −∇ · q − p∇ · v + ρ .J
 

(76)

Internal energy of a parcel is thus affected by the conver-
gence of heat fluxes and sources due to pressure work and 
frictional dissipation. notice how internal energy is in-
creased by pressure work acting to compress the fluid. In 
the absence of irreversible effects due to heat transport and 
friction, internal energy is affected only by pressure work. 
Notably, equation (76) is a reflection of the First Law of 
Thermodynamics applied to a moving fluid parcel assumed 
to be locally in thermodynamic equilibrium, but non-locally 
to be out of equilibrium. We have more to say on such ap-
plications of linear irreversible thermodynamics to a moving 
fluid in Section 7.

7. baSIc NON-EQUILIbrIUM THErMOdyNaMIcS

The equations of an ocean model embody Newton’s Laws 
of motion applied to a continuum fluid. additionally, they 
employ results from linear irreversible, or non-equilibrium, 
thermodynamics, which is the subject of this section. In 
particular, it is useful to work with a thermodynamic vari-
able that is readily measured, provides information about 
the heat of a fluid parcel, and is conservatively transported 
through the fluid. However, there is no strictly conserva-
tive thermodynamic scalar that measures heat, as there are 
always sources, such as from frictional dissipation or heat 
of mixing. the purpose of this section is to introduce some 

basic notions of non-equilibrium thermodynamics and, in 
the process, expose a few details about useful temperature 
variables.

7.1. Budgets for Entropy and In Situ Temperature

We start the discussion with the fundamental thermody-
namic relation [see, for example, Section 5.2.4 of Griffies, 
2004]

   dI = T dζ − pdρ−1 + μS dS, (77)

where T is the in situ temperature, z is the entropy per mass, 
1000mS = msalt - mwater is the relative chemical potential be-
tween salt and fresh water.8 this relation holds between 
infinitesimal changes in thermodynamical state functions. 
Hence, although derived for quasi-static processes from the 
First Law of Thermodynamics using connections to work 
and heat, equation (77) holds for arbitrary infinitesimal 
changes; its connection to the First Law of Thermodynamics 
holds only for quasi-static processes.

Now assume that each fluid parcel is in local thermody-
namic equilibrium yet allow the full ocean system to be out 
of equilibrium. these assumptions yield the following inter-
nal energy time evolution 

 ρ
dI
dt

= ρ T
dζ
dt

− p∇ · v + ρ μS
dS
dt

,  (78)

where we used the mass balance (3) to relate material changes 
in density to the velocity convergence. The result (78) allows 
one to transfer the methods of equilibrium thermodynam-
ics to the non-equilibrium or linear irreversible thermody-
namics of moving fluid parcels. The term linear in this name 
refers to an assumption that the system is close to thermo-
dynamic equilibrium. In this case, the dissipative thermo-
dynamic fluxes are linear functions of the gradients of the 
thermodynamic state variables. nonlinear effects are not ab-
sent, however, as there are nonlinear effects from advective 
transport, nonlinear source terms, a nonlinear equation of 
state, and nonlinear dependence of the transport coefficients. 
DeGroot and Mazur [1984] provide a thorough accounting 
of this subject, and Gregg [1984] and Davis [1994] apply 
these methods to small-scale mixing in the ocean. Slightly 
different formulations can be found in Batchelor [1967] and 
Landau and Lifshitz [1987], and their approaches are pre-
ferred in the following.

Using equation (76) for the evolution of internal energy 
in equation (78) leads to the expression for evolution of en-
tropy in a seawater parcel
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T ρ

dζ
dt

= −∇ · Jq + ρ ε − ρ μS
dS
dt

.
 (79)

This equation implies that entropy of a fluid parcel evolves 
by three irreversible mixing processes: (1) convergence of 
heat fluxes; (2) frictional dissipation sources that increase a 
parcel’s heat content by Joule heating; and (3) salinity mix-
ing. correspondingly, a parcel generally maintains constant 
entropy if processes associated with its evolution are adi-
abatic, frictionless, and isohaline. As the friction source is 
very small in the ocean, adiabatic isohaline transport is very 
nearly isentropic. Indeed, when ocean modelers refer to adi-
abatic and isohaline processes, they typically assume this to 
be synonymous with isentropic.9

We now expose a few steps along the path toward devel-
oping a scalar field whose evolution is approximately con-
servative and which provides a measure of heat in the ocean. 
For this purpose, we develop an equation for the evolution 
of in situ temperature. To start, note that specific entropy z 
can be considered a function of pressure, temperature, and 
salinity z(p, T, S). consequently, its incremental change is 
given by 

 dζ = ζ,p dp + ζ,T dT + ζ,S dS,  (80)

with each of the partial derivatives taken with the other inde-
pendent variables held fixed. Use of the following Maxwell 
thermodynamic relations 

(81)

  

r
�

¶ z
¶ p

�

T,S
= −aT

�
¶ z
¶ S

�

T,p
= −¶ mS

¶ T
 

 
(82)

leads to

ρ T dζ = −T αT dp + ρ CpS dT − ρ T
∂ μS

∂ T
dS,       (83)

where we introduced the following thermodynamic response 
functions 

(84)

     

CpS = T

�
¶ z
¶ T

�

p,S

aT = −
�

¶ lnr
¶ T

�

p,S
,  (85)

with CpS the specific heat with constant pressure and salinity 
and at the thermal expansion coefficient for in situ tempera-
ture [in contrast to that defined for potential temperature or 

conservative temperature used in equation (62)]. as for de-
riving the internal energy equation (78), assume local ther-
modynamic equilibrium for parcels, thus allowing relation 
(83) to hold for material parcels moving through the fluid, 
in which case 

ρCpS
dT
dt

= ρ T
dζ
dt

+ T αT
dp
dt

− ρ T
∂ μS

∂ T
dS
dt

.       (86)

Now employ the relation (79) for entropy evolution to 
render 

   

r CpS
dT
dt

= T aT
dp
dt

+ r
�

mS − T
¶ mS

¶ T

�
dS
dt

+ r −∇ · Jq .
 

(87)

temperature of a seawater parcel is thus affected by the fol-
lowing processes: (1) adiabatic pressure effects which alter 
the temperature by expansion or contraction of the parcel, 
(2) material changes in salinity, (3) Joule heating from fric-
tional dissipation, and (4) the convergence of heat fluxes. It 
is possible to remove the adiabatic compression effects by 
introducing potential temperature (Section 7.2). However, 
the remaining source terms cannot in general be absorbed 
into another scalar function.

7.2. Potential and Conservative Temperatures

Vertical motion made without changes to entropy or salin-
ity change the hydrostatic pressure of a fluid parcel, which 
causes its in situ temperature to change according to [see 
equation (83)] 

  dT = Γdp,  (88)

where G = (Tat)/(rCpS) is the adiabatic lapse rate. conse-
quently, in situ temperature is not a conservative thermo-
dynamic variable to label water parcels of common origin, 
as it changes even in the absence of mixing or heating. this 
observation leads one to consider removing adiabatic pres-
sure effects from in situ temperature.

Potential temperature is defined as the in situ temperature 
that a water parcel of fixed composition would have if isen-
tropically transported from its in situ pressure to a reference 
pressure pr, with the reference pressure typically taken at the 
ocean surface. Mathematically, the potential temperature q 
is the reference temperature obtained by integration of dT = 
Gdp for an isentropic and isohaline in situ temperature 
change with respect to pressure [e.g., Apel, 1987]: 
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θ (S,T, p; pr) = T +
� pr

p
Γ(S,θ , p�)dp�.

         
(89)

by definition, the in situ temperature, T, equals the potential 
temperature, q, at the reference pressure p = pr. Elsewhere, 
these two temperature fields differ by an amount determined 
by the adiabatic lapse rate. the potential temperature of a 
parcel is constant when the entropy and material composi-
tion of the parcel are constant. Mathematically, this result 
follows by noting that when entropy changes at a fixed pres-
sure and composition, p = pr, then in situ temperature equals 
potential temperature. Equation (83) then leads to

  dζ = CpS d lnθ ,  (90)

implying dz = 0 if and only if dq = 0.
Potential temperature has proven useful for many oceano-

graphic purposes. However, we have yet to ask whether it is 
a convenient variable to mark the heat content in a parcel of 
seawater. traditionally, the potential temperature multiplied 
by the heat capacity is used for this purpose. Bacon and Fo-
fonoff [1996] provide a review with suggestions for this ap-
proach. In contrast, McDougall [2003] argues that potential 
temperature multiplied by heat capacity is less precise, by 
some two orders of magnitude, than an alternative thermo-
dynamic tracer called potential enthalpy. Indeed, enthalpy is 
what is more commonly associated with heat in thermody-
namics [Fofonoff, 1962], so it is sensible that ocean mod-
els should be carrying an enthalpy variable to represent heat 
content.

At present, most ocean models consider their heat variable 
to be potential temperature, and this variable is assumed to 
be conservative. this assumption has implications for the 
equation of state (59) and the calculation of heat fluxes at the 
ocean boundaries. McDougall [2003] notes that if we reinter-
pret the conservative heat variable in a model to be propor-
tional to potential enthalpy, then the conservation equation 

  ρ C o
p

dΘ
dt

= −∇ · Jq  (91)

is an approximate statement of the first law of thermodynam-
ics for the ocean. In this equation, Q is the conservative tem-
perature variable, and C op is an appropriately chosen constant 
heat capacity. The alternative to equation (91), whereby Q  
is replaced by potential temperature q, is commonly used by 
ocean modelers. It is roughly 100 times less accurate and can 
lead to sea surface temperature differences upwards of  1°c 
in regions of large salinity deviation, such as river mouths. 
The National aeronautics and Space administration God-
dard Institute for Space Studies ocean model [Russell et al., 

1995] uses potential enthalpy for its heat variable, and the 
new version of the Modular Ocean Model [Griffies, 2007] 
provides an option for using conservative temperature. For 
the remainder of this document, we use potential tempera-
ture q as the heat scalar, noting that the equations remain the 
same if using the more accurate Q.

8. LINEar MOdES OF MOTION

Having now developed the fundamental equations of the 
ocean, we move on to the task of introducing the linear dy-
namical modes admitted by these equations. this analysis 
initiates an exploration of the multitude of dynamical pro-
cesses active in the ocean. More central to our purposes, the 
analysis provides us with guidance toward which numerical 
methods are needed to integrate the equations. the results 
are generally used to motivate certain approximations, so 
some material here anticipates approximation methods dis-
cussed in Section 9.

We are particularly interested here in the speed of various 
linear dynamical modes. this then allows us to determine 
a guide for the time step required to explicitly represent a 
particular mode by making use of the courant–Friedrichs–
Lewy (cFL) constraint [e.g., Haltiner and Williams, 1980; 
Durran, 1999]. depending on details of space and time 
discretization, this constraint says that when simulating a 
propagating signal on a discrete lattice, UDt/D must remain 
less than a number on the order of unity. Here, U is the 
speed of the mode, D is the discrete grid spacing, and Dt is 
the discrete time step. The cFL constraint says that as mo-
tions increase in speed, the numerical model must reduce 
its time step to represent these motions. Finer grid spac-
ings also require smaller time steps. If the model fails to 
satisfy the cFL constraint for a particular mode, the model 
will likely go unstable, and it generally will do so quite 
rapidly.

8.1. Acoustic Waves

Linear acoustic fluctuations arise from small amplitude adia-
batic, frictionless, and isohaline motion [e.g., Apel, 1987]. Such 
motions lead, through the equation of state (59), to the equation 
for pressure fluctuations in terms of density fluctuations [see 
equation (61)]

  

dp
dt

= ρ c2
s

d lnρ
dt

.

 
(92)

Noting the approximate form of mass conservation in Sec-
tion 9, we write mass conservation in the form 
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nb

d lnρ
dt

= −∇ · v,
 

(93)

where we introduced the non-dimensional parameter nb, 
with nb = 1 with mass conserving non-boussinesq kinemat-
ics and nb = 0 for incompressible flow. Likewise, we write 
the linearized velocity equations, in the absence of the co-
riolis force, friction, and gravity force, in the form 

(94)
  

ρ u, t = −∇z p

nh ρ w, t = −p, z  
(95)

where Ñz is the horizontal gradient operator, and we intro-
duced the non-dimensional parameter nh, which is unity for 
non-hydrostatic dynamics and vanishes for hydrostatic dy-
namics. use of these relations in a linearized version of the 
pressure equation (92) leads to the wave equation for linear 
pressure fluctuations10

 [ nb nh ∂tt − c2
s ( nh ∇2

z + ∂z z)] p = 0.    (96)

considering a single Fourier mode with space–time depend-
ence of the form exp[i(wt - kx - ly - mz)], an approximate 
modal analysis of the above system yields the dispersion re-
lation involving two of the four modes to be of the form 

 

�
nh nb

c2
s

�
ω2 = nh (k2 + l2) + m2.

    (97)

the unapproximated system (with nb = nh = 1) has non-
dispersive modes that travel at speed cs in three dimensions. 
the phase speed cs  1500ms-1 in the ocean is roughly two 
orders of magnitude faster than motions of interest in most 
climate and regional applications. If these modes were ex-
plicitly represented in models, then the time step would be 
very small, making the model prohibitively expensive.

there are three distinct ways in which the acoustic modes 
can be “filtered” from the system.
      1. Make the equation of state (59) independent of pres-
sure (incompressible), in which case 1/cs ® 0. this approach 
has the advantage that only the equation of state is modified. 
It has the disadvantage that it is inappropriate to neglect the 
effect of pressure on density at global scales [e.g., Dewar et 
al., 1998].
       2. constrain the flow to be incompressible by setting nb =  
0. Here, sound waves are prohibited because the acoustic 
mode propagation requires divergent flow to drive density 
and pressure anomalies. this approach, used alone, renders 
the system elliptic in pressure. It is the approach used in the 

Massachusetts Institute of Technology general circulation 
model (MITgcm) when integrating the boussinesq non- 
hydrostatic equations [Marshall et al., 1997].
       3. assume hydrostatic (or quasi-hydrostatic) balance in 
the vertical momentum equation (set nh = 0). In this case, 
only the m = 0 mode satisfies the dispersion relation (97). 
This is the traditional approach in meteorology, which filters 
vertically propagating sound waves but retains an external 
acoustic mode known as the Lamb wave.

In oceanography, the traditional filters used are the second 
and third in conjunction. This approach filters out all acoustic 
modes and converts the elliptic problem for pressure into the 
local one-dimensional hydrostatic balance. recently, how-
ever, non-boussinesq ocean models are becoming the norm. 
In these models, only hydrostatic balance is used to filter 
acoustic modes, thus retaining the Lamb wave. The Lamb 
wave has not yet presented itself as a cause for concern in the 
stability of non-boussinesq hydrostatic ocean models proba-
bly because the time-implicit or split-explicit treatment of the 
external mode is sufficient to damp or resolve this mode [see 
comment at the end of DeSzoeke and Samelson, 2002].

A fourth approach to numerically handling acoustic modes 
has been used in regional models. Here, rather than filtering 
the modes, the models slow them down so that they can be 
explicitly resolved [Browning et al., 1990]. as for the first 
method above, this approach is likely to be inappropriate for 
global scale modeling.

8.2. Inertia–Gravity Waves

After the acoustic modes, the next fastest linear modes are 
the inertia–gravity waves. These are rotationally modified 
gravity waves which exist as external modes as well as an 
infinite range of internal modes. The external mode can be 
analyzed in the context of the depth-integrated boussinesq 
equations or equivalently by considering a homogenous layer 
of constant density fluid [e.g., Sections 5.6 and 8.2 of Gill, 
1982]. these equations are often referred to as the shallow 
water equations, which we write in their linear form as 

(98)
 

(¶t + f ẑ ∧ )u = −g∇h
h,t = −H∇ · u,  (99)

where u is the horizontal velocity field in the homogeneous 
layer, h is the surface height fluctuation with respect to a 
resting fluid at z = 0, and H is the depth of the resting fluid, 
which is assumed constant for present purposes. We assume 
the coriolis parameter f to be constant, which defines the f-
plane approximation.

Introducing a space–time dependence of the form exp[i(wt - 
kx - ly)] leads to three linear eigenmodes. The first occurs 
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with zero frequency w = 0, which is the geostrophic mode 
where the coriolis force balances pressure f ẑ Ù u = - gÑh. 
the geostrophic mode is a stationary mode of variability. It 
therefore places no time step constraint on the simulation. 
However, it is a critical element determining the large-scale 
structure of the ocean circulation. the nonzero frequency 
modes satisfy the dispersion relation 

 ω2 = f 2 + gH (k2 + l2).  (100)

the waves satisfying this relation are a pair of dispersive 
inertia–gravity or Poincaré waves. These waves provide the 
mechanism by which a fluid adjusts to an imbalance which 
then leads to geostrophic balance.

the inability of a numerical simulation to adequately 
adjust by inertia–gravity waves is very often the cause of 
grid-scale noise. For example, models built on the Arakawa 
b-grid can exhibit a checkerboard mode in the surface height 
field, and this is a direct consequence of the grid scale grav-
ity waves exhibiting a null mode (spurious zero frequency 
numerical mode) [Mesinger, 1973, Killworth et al., 1991], 
that is, certain of the numerical gravity waves are spuriously 
static, rather than propagating. Similarly, coarse-resolution 
models built on the Arakawa c-grid exhibit longitudinal or 
latitudinal coherent noise which is a direct consequence of a 
null-mode associated with the numerical representation of 
the coriolis force [see Adcroft et al., 1999, for a review of 
this issue].

regardless of the spatial treatment of the inertia–gravity 
modes, permitting these modes in a simulation introduces 
a limitation on the model time step if they are to be treated 
explicitly. For short waves, the phase and group speed are 
approximately that of surface gravity waves. In the deep 
open ocean, this speed is of order ÖgH      

 
» 200 ms-1. Satisfy-

ing the cFL condition for these waves in a model with D = 
100 km horizontal grid spacing (roughly 1° resolution) 
means the time step must satisfy Dt = D/U » 500 s. Al-
though longer than the time step required to admit acous-
tic waves, this time step is far smaller than practical when 
considering the needs of global ocean modeling, given the 
present power of computers. other approaches must be 
used to avoid this limitation for the full model equations 
(see Section 11.6).

In contrast to the short waves, long inertia–gravity waves 
are dominated by rotation (w2  f  2). In this case, we are led 
to a time step limitation as a function of the coriolis param-
eter. the most stringent limitation arising from these inertial 
waves occurs at the pole, where 1/(2W)  1.9 h.

We now consider internal modes in which stratification 
is relevant. For this purpose, consider the following linear 
boussinesq non-hydrostatic system 

(101)

(102)

 

ro (¶t + f ẑ ∧ )u = −∇h p

nh w, t + g + p, z/r = 0

∇ · u + w,z = 0

r, t − (N2 ro/g)w = 0,



         (103)

(104)

where r0 is the constant boussinesq reference density, and 
we again introduce a non-dimensional parameter nh to mon-
itor non-hydrostatic effects. We ignore horizontal density 
variations because our focus is on effects of vertical stratifi-
cation as represented by the squared buoyancy frequency

  N2 = −(g/ρo)ρ,z,  (105)

which is assumed constant for present purposes. A linear 
modal analysis assuming a space–time dependence of the 
form exp[i(w t - kx - ly - mz)] leads to both the geostrophic 
mode (w = 0) and the internal inertia-gravity wave disper-
sion relation 

  
�

nh (k2 + l2) + m2�ω2 = m2 f 2 + (k2 + l2)N2.  (106)

non-hydrostatic effects are generally relevent only for re-
gimes where the aspect ratio (ratio of vertical to horizontal 
scales) is order unity, meaning the horizontal wave numbers 
are on the order of the vertical: k 2 + l 2 » m 2. these modes 
are responsible for allowing the fluid to adjust toward geo-
strophic balance as well as to adjust to hydrostatic balance in 
the case of non-hydrostatic models. For hydrostatic inertia– 
gravity waves, the long waves are dominated by rotation, 
as were the external waves, while short waves have phase 
speed approaching the internal wave speed, N/m.

8.3. Rossby Waves

rossby waves represent a slowly evolving, nearly geo-
strophic fluctuation. They arise from the gradient of the co-
riolis parameter [see equation (121) for definition of coriolis 
parameter] with respect to latitude 

  

β = f,y

= (2Ω/R) cosφ .  (107)

to develop the dispersion relation for rossby waves, re-
consider the linear shallow water system of equations (98) 
and (99), only now, let the coriolis parameter be given 
by a linear function of latitude f = fo + by, with  fo and b 
constant. assuming a space–time dependence of the form 
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exp[i(w t - kx - ly)] leads to the dispersion relation satisfied 
for this beta plane shallow water system [e.g., Section 6.4 of  
Cushman-Roisin, 1994]

    w = −b L2
d

�
l

1 + L2
d (k2 + l2)

�
,  (108)

where L2
d  f 2o = g H defines the rossby radius of deformation.

Spurious behavior of numerical rossby waves can often be 
associated with spurious behavior of inertia–gravity waves. 
This arises because spurious behavior of inertia–gravity 
waves implies a spurious gravitational adjustment process, 
which in turn leads to a poor representation of the geo-
strophic balance for some modes. Short-scale rossby waves 
are generally dissipated locally before they can propagate far. 
Indeed, this, and a preferred westward drift for large-scale 
waves, is the mechanism of western enhancement of bound-
ary currents [Pedlosky, 1987]. A common numerical problem 
associated with rossby waves is due to insufficient dissi-
pation necessary to trap eastward propagating, short-scale 
rossby waves. removing this problem requires enhancing 
horizontal friction sufficiently to resolve the Munk boundary 
layer [Munk, 1950; Griffies and Hallberg, 2000; Large et al., 
2001]. Once inertial boundary currents are resolved, eddy–
mean flow interactions and other nonlinear interactions tend 
to be sufficient. Further discussion of numerical representa-
tion of rossby waves can be found in Wajsowicz [1986] and 
Fox-Rabinovitz [1991].

8.4. Implications for Stability of Numerical Models

the stability of numerical models depends on the choice 
of numerical time-integration method, the spatial discre-
tization, and the permitted modes in the equations. ocean 
models generally do not permit acoustic modes that would 
otherwise be prohibitive: a grid spacing of 100km would re-
quire a time step of order less than 1 min if the model admit-
ted acoustic modes. the next fastest modes are the external 
gravity waves, with speeds exceeding 200m s-1 in the deep 
ocean. as discussed in Section 11.6, these modes are usually 
treated separately from the full three-dimensional fluctua-
tions. We thus do not consider external modes in this sec-
tion. the remaining processes may cause a numerical model 
to be unstable either through a direct numerical instability or 
through the generation or admission of excessive grid-scale 
noise.

A process may be directly numerically unstable in the von 
neuman sense [Durran, 1999] if it is treated explicitly, and 
the shortest characteristic timescale of that process is not 
resolved by the model time step. time-implicit treatment 

of a process often yields unconditional numerical stability, 
although other considerations such as accuracy may lead to 
constraints on the model time step.

The simplest example of a process with an identifiable 
term in the equations is the inertial oscillation, for which the 
coriolis term is responsible. the characteristic timescale is 
f -1, which is shortest at the poles: (4p /1day)-1 ~1.9 h. to re-
solve inertial oscillations, a time-explicit integration scheme 
requires that 

   f Δ t < γ,  (109)

where g is a number that depends on the details of the nu-
merical integration scheme. We choose g  = 1/2 as a repre-
sentative number. thus, the maximum time step allowed to 
integrate inertial oscillations stably is D t  fmax = g / f. For refer-
ence, 1/(2 f ) ~ 57 min is plotted in Figure 5.

Advection is characterized by a velocity scale, U. the 
shortest advective charactistic timescale in a numerical 
model is D/U, where D is the spatial grid scale and U is rep-
resentative of the largest characteristic velocity. The cFL 
number is the ratio of this characteristic timescale to the 
model time step, 

  Cu =
U Δt

Δ
.     (110)

this dimensionless ratio is often known as the courant 
number. Most time-explicit schemes for advection require 
that Cu be less than a number on the order of unity, with the 
constraint more restrictive in higher dimensions due to the 
possibility of propagation diagonal to the discrete grid lines. 
that is, the largest time step that can support numerical sta-
bility for a given flow and grid spacing scales is 

  
Δ tu

max ∝ Δ
U

.
 

(111)

this result applies in all spatial directions for which advec-
tion is explicit. In practice, this constraint can be most restric-
tive for regions of fine vertical resolution with strong surface 
wind stress curls. Furthermore, the cFL criteria may be either 
additive or independent, again depending on the algorithm 
details.

The flow speed U is a result of the forcing and balances in 
a model simulation. It is also a function of resolution, par-
ticularly for low-resolution models. the transport of ocean 
boundary currents is determined by the basin-wide forcing, 
and numerical models respect this transport even at coarse 
resolution. However, if the boundary current is not resolved, 
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high grid reynolds number (i.e., velocity advection dominates 
accelerations) or insufficient dissipation to damp short east-
ward propagating rossby waves near boundaries. As shown 
below, at coarse resolutions, the boundary resolution criteria 
dominates the need for viscosity, whereas the grid reynolds 
number criteria dominates at fine resolution. additionally, bi-
harmonic friction operators are favored at fine resolution due 
to their enhanced scale selectivity, thus increasing the energet-
ics of the flow while, ideally, maintaining a sufficient level of 
dissipation at the grid scale [e.g., Semtner and Mintz, 1977; 
Griffies and Hallberg, 2000]. Notably, a lack of sufficient fric-
tion may not immediately translate into a catastrophic model 
instability (i.e., model blow-up). Instead, depending on grid 
resolution, forcing, and numerical methods, it is possible for 
models to run stably, albeit with unphysically huge levels of 
grid noise, using very small, if not zero, interior friction.

We now consider the time step constraints introduced by 
the Laplacian and biharmonic friction operators. Viscous 
dissipation terms have a grid-scale characteristic time of 
D2/A2 and D4/A4, for harmonic and biharmonic viscosities, 
respectively. the explicit stability criteria require that the 
time step be smaller than

such as when there is only one cell in the current, then U 
becomes inversely proportional to D to maintain the proper 
transport. For the purposes of this discussion, we have cho-
sen the profile for U (D) depicted in Figure 4. The corre-
sponding limitation on time step (dashed line in Figure 5) 
has a D1 dependence at fine resolution and a D2 dependence 
at coarse resolution. these two resolution regimes for U and 
D tU are indicated in table 1.

the gravest internal gravity wave (lowest vertical eigen-
mode) propagates with a characteristic speed cg µ NH. these  
waves have a grid scale characteristic time of D /cg, which 
in turn leads to a stability constraint that Dt must be smaller 
than

  Δ t
cg
max ∝ Δ

cg
.  (112)

unlike advection, the fastest internal wave speed is inde-
pendent of resolution.

A friction operator is typically used to control noise in nu-
merical models and to maintain a finite grid reynolds number 
to keep the solution stable. typical causes of noise include a 

Figure 4. (a) Scaling for the maximum speed U seen in global numerical models as a function of spatial resolution. (b) the har-
monic viscosity required to maintain a finite grid Reynolds number or that required to ensure the Munk boundary layer is resolved. 
(c) As for Figure 4b, but for a biharmonic viscosity. the spatial resolution is assumed to be isotropic and relatively uniform. this 
assumption is not generally the case for many global model grids.
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where b ~ 2 ´ 10-11 m-1 s -1 is the planetary vorticity gradient 
at the equator. If we chose the viscosities to be sufficient to 
create a Munk boundary layer wide enough to be resolved by 
a grid spacing, D, then the viscosities will scale as 

  A2 ∝ βΔ3 or A4 ∝ βΔ5,  (115)

respectively.11 this scaling determines the slope of the curves 
for A2 and A4 in the coarse grid spacing regime of Figure 4. 
Thus, the effective characteristic timescales [equation (113)] 
for viscosity becomes ( bD)-1 for both harmonic and biharmonic 
forms. this scaling is seen in the far right column of table 1.

The second criteria for setting the viscosity applies to finer 
resolution where nonlinearity in the momentum equation is 
sufficient to form an inertial boundary layer (which will be 
thinner than the frictional boundary layer of coarse-resolution 
models). In this regime, the role of the viscous terms is to 
dissipate grid-scale energy and noise. the required viscosity 
can be estimated by requiring the grid reynolds number to 
be finite so that 

 Δ t
A2
max ∝

Δ2

A2
or Δ t

A4
max ∝

Δ4

A4
,  (113)

respectively. these appear to have higher power dependence 
on D than the advective (Dt umax) and gravity wave (D t cg

max) 
constraints. but this result is only true for given viscosity 
parameters (A2 or A4). In practice, the viscosity applied in 
ocean models is a strong function of resolution, and there are 
two distinct criteria for setting the viscosity. At very coarse 
resolution, a significant source of noise can occur when the 
viscous Munk boundary layer is not resolved [Munk, 1950]. 
the boundary layer scale, Lb, scales as 

 Lb ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�
A2

b

�1/ 3

harmonic friction

�
A4

b

�1/ 5

biharmonic friction,

 (114)

Figure 5. using the scaling for U and viscosities shown in Figure 4, the maximum Dt allowed by each process: coriolis term, 1/f ; 
advection D /U; internal gravity waves D /cg; viscosity D2/A2 or D4/A4. note that the timescales of processes have arbitrarily been 
equalized at the grid-scale, as we have neglected the details of the numerial discretizations. the curves shown can not be compared 
to each other, as they should each be scaled by appropriate factors to reflect the numerical details.
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ficients that have been ignored for these curves. Of note, 
though, is that the scaling behavior of the largest stable time 
step allowed in a model is very complicated at coarse and 
marginal resolutions, more so than is indicated by the curves 
shown. In contrast, the scaling becomes simple at fine reso-
lutions. In practice, the numerical details of the Laplacian 
and biharmonic friction operators will make the maximum 
allowed time step shorter. At coarse resolution, we typically  
find Dt 

A4
max < Dt 

A2
max 

< Dt umax 
. this result is not apparent in Figure  

5, as we have arbitrarily set all timescales to be equal at the 
grid scale. that is, at coarse resolution where the boundary 
currents are not resolved, the time step is usually limited by 
viscosity.

besides grid-scale-dependent viscosities, which are now 
common in ocean models, Smagorinsky [1963, 1993] pro-
posed that the Laplacian viscosity due to unresolved scales 
should be proportional to the resolved horizontal deformation 
rate times the squared grid spacing. In effect, the Smagorin-
sky viscosity tailors the local dissipation to both the local flow 
state and the local grid resolution using only a single non- 
dimensional adjustable parameter. If this parameter is prop-
erly chosen, the resulting viscosity ensures that the flow re-
spects the numerical stability properties previously discussed 
even when simulating multiple flow and grid regimes such as 
occur in realistic ocean simulations. It is for these pragmatic 
reasons that the Smagorinsky viscosity has found notable 
use in large-scale ocean models [e.g., Blumberg and Mellor, 

 A2 ∝ Ub Δ or A4 ∝ Ub Δ3,  (116)

where Ub is the scale of the boundary speed, which itself is 
also a function of grid resolution. at very fine resolution, 
the grid-length characteristic timescale [equation (113)] of 
either form of viscosity becomes 

  Δ t
A2,4

max ∝ Δ
Ub

.  (117)

there is a marginal resolution where the viscous boundary 
layer is resolved, but the inertial boundary layer may be mar-
ginally resolved so that the maximum realized velocity is 
still a function of resolution. In this narrow regime, the char-
acteristic timescale for viscosities becomes 

  Δ t
A2,4

max ∝ Δ2

Ub Lb
,  (118)

where Lb is now the realistic inertial boundary layer scale. 
the three regimes for scaling behavior of the viscous limita-
tion on maximum time step are listed in table 1.

Figure 5 schematically shows the scaling of maximum 
time step discussed above and tabulated in table 1. the ab-
solute values are not necessarily appropriate to any specific 
model because discretization modifies the numerical coef-

Table 1. table of scaling relations for maximum time step permitted by each process.

Process timescale D < L
b

D > L
b 

Advection, U 
 
        

D tu
max ∝ Δ

U  

U ∼ Ub
D

Ub  

U ∼ Ub Lb/D
D2

Ub Lb

Gravity wave, Cg

        D t
cg
max ∝

Δ
cg

Δ
cg

Harmonic, A2 ∝

         D t
A2
max ∝

 

1

Δ2

A2

Artech CH0 Page 1 − 02/13/2008, 17:43 MTC

DU
b

   

1

ΔUb
Δ

Ub
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LbUb

D2

Ub Lb  

bD3

1
bD

biharmonic, A4 ∝

        D t
A4
max ∝ Δ4

A4  

D3Ub
D

Ub  

LbD2Ub

D2

Ub Lb
 

bD5

1
bD

U is the flow speed realized in the model, Ub is maximum oceanic flow speed observed in boundary currents, cg is the speed of the gravest 
internal gravity waves, D is the smallest grid spacing, Lb is a boundary layer scale, b is the planetary vorticity gradient at the Equator and 
A2 and A4 are the laplacian and biharmonic viscosities, respectively.
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1987; Rosati and Miyakoda, 1988; Bleck and Boudra, 1981; 
Bleck et al., 1992], with Griffies and Hallberg [2000] also 
arguing for its utility with a biharmonic operator.

In Figure 5, we have also shown the Dt f
 
 timescale aris-

ing from inertial oscillations. this timescale is independent 
of spatial resolution. the Dt 

Cg timescale arises from internal 
gravity waves, and it has a scaling of D1, with cg  NH invar-
iant with resolution (Section 8.2). Vertical friction also has 
stability criteria, but is somewhat easier to treat implicitly in 
time because of the non-periodic nature of the vertical di-
rection and the small aspect ratio of the computational grid. 
notably, there are typically many fewer degrees of freedom 
in the vertical than the horizontal directions.

9. aPPrOxIMaTIONS

We denote the set of equations developed thus far the 
unapproximated ocean equations. there have indeed been 
approximations made in deriving these equations: the fluid 
is approximated by a continuum, geopotentials are ap-
proximated by surfaces of constant oblate spheroid radius 
(Section 4.1), and the angular rotation rate of the Earth is 
assumed constant. nonetheless, the suite of phenomena de-
scribed by these equations is immense, with space scales and 
timescales ranging from millimeter and seconds to global 
and millenia. Various methods have been used to filter the 
equations to focus on particular subranges of this spectrum. 
From a modeling perspective, filtering, or approximating, 
the equations helps to reduce the cost of the resulting simu-
lation. the previous discussion of linear modes anticipated 
some of the approximations commonly made in physical 
oceanography. We more formally review these approxima-
tions in this section.

9.1. Shallow Ocean Approximation

In the shallow ocean approximation,12 the metric functions 
measuring horizontal distances on the Earth are dependent 
only on the lateral coordinates. radial dependence of the 
metric functions is reduced to the constant radial factor R = 
6.367 ´ 106 m. this radius corresponds to the ellipsoid of 
best fit to the sea level geopotential. This is the appropriate 
value for the “Earth’s radius” of use in ocean models. Note 
that R in ocean models is often taken as the slightly larger 
value R = 6.371 ́  106 m. this value corresponds to the radius 
of a sphere with the same volume as the Earth [Gill, 1982, 
page 597].

the shallow ocean approximation is motivated by not-
ing the relatively small thickness of the ocean relative to the 
Earth’s radius. Within this approximation, distances used to 
compute partial derivatives, covariant derivatives, areas, and 

volumes are determined by a metric tensor whose components 
are functions only of the lateral position on the sphere. Addi-
tionally, assumptions regarding the metric function depend-
ence, as well as assumptions about the smallness of vertical 
accelerations associated with the hydrostatic approximation 
(Section 9.2), have implications toward the energy and angu-
lar momentum conservation laws. In particular, the angular 
momentum about the Earth’s center is computed with a mo-
ment-arm that has a fixed radius r = R. Hence, motion in the 
vertical direction does not alter angular momentum in the 
shallow ocean approximation.

9.2. Hydrostatic Approximation

the hydrostatic approximation exploits the large disparity 
between horizontal motions, occurring over scales of many 
tens to hundreds of kilometers, and vertical motions, occur-
ring over scales of tens to hundreds of meters. In this case, 
it is quite accurate to assume the moving fluid maintains the 
hydrostatic balance, whereby the vertical momentum equa-
tion takes the form 

  p,z = −ρ g.  (119)

because the vertical momentum budget has been reduced to 
the hydrostatic balance, the coriolis force per mass must be 
given by 

  Fc = − f ẑ ∧ v,  (120)

where 

  f = 2Ω sinφ  (121)

is the coriolis parameter and f is the latitude. that is, we 
drop the nonradial component of the Earth’s angular rotation 
vector when computing the coriolis force in a hydrostatic 
fluid.13

by truncating, or filtering, the vertical momentum budget to 
the inviscid hydrostatic balance, we are obliged to parameter-
ize strong vertical motions occurring in convective regions, 
as hydrostatic equations cannot explicitly represent these mo-
tions. Such has led to various convective parameterizations in 
use by ocean models [Killworth, 1989; Marshall and Schott, 
1999]. these parameterizations are essential for the models to 
accurately simulate various deep water formation processes, 
especially those occurring in the open ocean due to strong 
buoyancy fluxes.

The kinetic energy density for a hydrostatic fluid involves 
only the horizontal motions [e.g., Bokhove, 2000] so that
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K =

1
2

u · u.

 
(122)

no other change is required for the energetic relations es-
tablished in Section 6 to follow through for the hydrostatic 
fluid. This result is self-consistent with the scaling implicit 
in the hydrostatic balance that w << |u|. correspondingly, the 
hydrostatic relative vorticity vector is

  ω = ∇ ∧ u,  (123)

where u is the horizontal velocity vector.
Making these three changes in the non-hydrostatic veloc-

ity equation (55) leads to the hydrostatic vector invariant 
velocity equation

 [∂t + ( f ẑ + ω) ∧ ]v = −∇E + ρ−1∇ · (τ − I p),  (124)

where, again, E = u × u /2 + F. note that the vertical com-
ponent of equation (124) reduces to the hydrostatic balance 
upon setting the time derivative of the vertical velocity com-
ponent to zero and by noting that the hydrostatic form of K  
and w mean that ÑK + w Ù v has a zero vertical component.

In hydrostatic ocean models, the effects of horizontal 
stresses are usefully split from vertical stresses when dis-
cussing friction. Friction from vertical stresses are generally 
parameterized by downgradient diffusion of momentum

 
(∇ · τ)vertical strain = ∂z (κmodel u,z),  (125)

where kmodel > 0 is the vertical viscosity used in the model. 
The vertical (more generally dianeutral) viscosity is gener-
ally assumed to be equal to, or more often roughly ten times 
greater than, the vertical or dianeutral diffusivity employed 
for tracer. this vertical Prandtl number (ratio of viscos-
ity to diffusivity) is not well measured in the ocean, leav-
ing modelers to tune this parameter based on simulation 
integrity.

Vertically integrating the hydrostatic balance (119) over 
the full depth of the ocean fluid leads to

  pb − pa = g

� h

−H

r dz,  (126)

with pb the hydrostatic pressure at the ocean bottom and pa 
the pressure at the ocean surface applied from the overlying 
atmosphere or ice. Use of this result in the mass budget (30) 
then leads to

 ∂t (pb − pa) = −∇ · Uρ + qw ρw.  (127)

Assuming knowledge of the tendency for the applied surface 
pressure pa, this budget is isomorphic to that for the boussin-
esq surface height [equation (143)].

9.3. Oceanic Boussinesq Approximation

The boussinesq approximation is an attempt to simplify 
the appearance of density in the ocean equations. In situ 
density in the large-scale ocean varies by a relatively small 
amount, with a 5% variation over the full ocean column at 
the upper end of the range, and most of this variation due 
to compressibility has no dynamical consequence. Further-
more, the dynamically relevent horizontal density varia-
tions, Dr, are on the order of 0.1%. Thus, it is justifiable to 
make approximations to the density in certain terms within 
the ocean equations, as discussed in this section.

There are two distinct steps to the boussinesq approximation. 
We refer to these two steps in conjunction as the oceanic 
boussinesq approximation. The first step of the boussinesq 
approximation applies a linearization to the velocity equa-
tion (55) by removing the nonlinear product of density times 
velocity

 

[∂t + ( f ẑ + ω)∧]ρo v + ρo∇zK + ∇z p + ρ ∇z Φ = ∇ · τ.
 

(128)

to obtain this equation, the product rv was replaced by rov,  
where ro is a constant boussinesq reference density.14 Im-
portantly, one retains the in situ density dependence of the 
gravitational potential energy, and, correspondingly, it is re-
tained for computing the hydrostatic pressure. It is through 
pressure that variations in density create critical dynamical 
effects. It is notable that as shown by equation (174), hydro-
static non-boussinesq models based on pressure as the verti-
cal coordinate naturally eliminate the nonlinear product rv, 
thus removing the need to make any approximations [Huang 
et al., 2001; DeSzoeke and Samelson, 2002; Marshall et al., 
2004; Losch et al., 2004]. Interest in removing these non-
linear products arises in hydrostatic ocean modeling using 
depth-based vertical coordinates. The associated boussinesq 
kinetic energy budget is given by

(roK),t + Ñ × (roKv + pv - v × t) = pÑ × v - rv × ÑF - ro. 
(129)

The second step in the oceanic boussinesq approximation 
considers the mass continuity equation (5) where it is noted 
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that to leading order, the three-dimensional flow is incom-
pressible 

              
∇ · v ≈ 0.  (130)

It is this step in the approximation which filters acoustic 
modes, if they are not already filtered by the hydrostatic ap-
proximation (Section 8.1). More formally, the nearly incom-
pressible observation manifests in the following scaling 

            d lnρ
dt

� ∇ · v.  (131)

this scaling follows, as 

  d lnρ/dt ∼ (U/L)Δρ/ρo,  (132)

whereas each term of Ñ × v scales as U/L or W/H. In this equa-
tion, (U,W ) are horizontal and vertical velocity scales, and 
(L,H) are horizontal and vertical length scales. With Ñ × v =  
0, mass conserving kinematics of the non-boussinesq system 
are translated into volume conserving kinematics, in which 
case the mass of a parcel is approximated by dM = rodV, and 
the tracer mass in a parcel is approximated by (rodV )C.

there are some confusing points that arise when consider-
ing the boussinesq approximation. Namely, volume conser-
vation for a parcel, through the mass budget (2), means that 
the three-dimensional velocity field v is non-divergent. A 
non-divergent velocity field cannot support acoustic modes 
(Section 8.1), and this is useful for purposes of large-scale 
modeling. a non-divergent velocity field also cannot support 
material evolution of in situ density [equation (3)]. Further-
more, through equation (61), a non-divergent velocity only 
supports, in general, adiabatic and isohaline motions. these 
motions are of interest for ideal incompressible fluid me-
chanics. They are, however, insufficient for describing the 
ocean circulation where mixing and heating are critical.15

How does the oceanic boussinesq approximation work 
in ocean models? The oceanic boussinesq approximation 
assumes the resolved flow to be incompressible, in which 
case acoustic modes are not supported. this approximation 
furthermore retains the dependence of density on pressure, 
heating, and salinity mixing, thus avoiding any assumption 
regarding the fluid properties. To support a nontrivial mate-
rial evolution of density, as arises through pressure changes, 
mixing, and heating, requires a divergent velocity field, 
which is unresolved in oceanic boussinesq models: the ef-
fect of this divergent velocity field manifests through non-
trivial density evolution.

To illustrate how a boussinesq model can support non-
trivial density evolution, write the velocity as the sum of di-
vergent and non-divergent components

  v = vnd + vd.  (133)

the divergent velocity vd is associated with the acoustic 
modes. Although we do not present a formal asymptotic 
analysis here, the acoustic fluctuations are of small ampli-
tude and high frequency with respect to the oceanic flows of 
interest, which are embodied in vnd. that is, 

  |vd| � |vnd|.  (134)

by construction, the continuity equation can now be split 
into the following two parts:

(135)

  

∇ · vnd = 0

∇ · vd = −d lnρ/dt.  (136)

Given the scaling noted above, the non-divergent velocity 
contributes to leading order in the material time derivative 
on the right-hand side of equation (137) so that 

  ∇ · vd ≈ −dnd lnρ
dt

,  (137)

where dnd/dt = ¶t + vnd × Ñ. the divergent velocity is seen, 
through mass conservation (3), to support a nonzero mate-
rial evolution of density. this evolution, through equation 
(61), is affected by pressure fluctuations, salinity mixing, 
and heating 

 1
ρ c2

s

dp
dt

+ βS
dS
dt

− αθ
dθ
dt

= −∇ · vd.  (138)

The oceanic boussinesq approximation considers the re-
solved prognostic velocity field to be the non-divergent ve-
locity vnd, and this maintains an incompressible prognostic 
flow field that does not support acoustic modes. It is this 
velocity which is time stepped by using the boussinesq mo-
mentum equation, and it is this velocity which transports 
tracer through advection. the divergent velocity vd does 
not vanish, however, as each term on the left-hand side of 
equation (138) is generally nonzero for the oceanic boussin-
esq approximation. Instead, its divergence can, in principle, 
be diagnosed by evaluating the terms in equation (138).16  
Again, it is the existence of vd which allows the oceanic 
boussinesq system to self-consistently employ a realistic 
equation of state in which density is a function of pressure, 
temperature, and salinity, thus supporting nonzero material 
time variations of the in situ density. these variations are 
critical for representing the thermohaline-induced variations 
in density which are key drivers of the large-scale ocean  
circulation.
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9.3.1 Implications for gravitational potential energy. to 
obtain the gravitational potential energy equation, multiply 
the approximate mass budget in equation (137), involving 
the divergent velocity, by the geopotential F, to render the 
boussinesq gravitational potential energy equation 

(ρ Φ), t +∇ · (ρ Φvnd) = ρ (∂t + vnd · ∇)Φ − Φρ ∇ · vd.

(139)

Hence, from the perspective of the boussinesq ocean model, 
which time steps the non-divergent velocity vnd, there is a 
new term affecting potential energy relative to the unap-
proximated budget (71). This term is given by 

(140)−Φρ∇ · vd = Φ
dρ
dt

= Φρ
�

1
ρ c2

s

dp
dt

+ βS
dS
dt

− αθ
dθ
dt

�
,

(141)

where we used equations (137) and (138) to replace the di-
vergence Ñ × vd with the material changes in pressure, tem-
perature, and salinity and where the material time derivative 
is taken with the resolved non-divergent velocity vnd. this 
source is affected by fluctuations in the pressure field, heat-
ing, and salinity mixing. Importantly, these three processes 
are coupled, with heating and mixing, for example, affecting 
pressure and pressure affecting dynamics. In boussinesq mod-
els that replace the pressure dependence of density with depth 
dependence, as in equation (60), the source takes the form 

−Φρ ∇ · vd = Φρ
�

w
ρ c2

s

∂ ρ
∂ p

∂ po

∂ z
+ βS

dS
dt

− αθ
dθ
dt

�
.

(142)

contrary to the more general form of equation (141), the 
pressure contribution is more readily diagnosed in an ocean 
model using this approximated equation of state. Further 
discussion of energetics of boussinesq equations using the 
simpler equation of state can be found in Vallis [2006].

9.3.2 Implications for sea level height. We now ask how 
well the boussinesq ocean model approximates the surface 
height relative to the non-boussinesq model. The surface 
height in a boussinesq ocean model satisfies the approxi-
mate balance of volume conservation for the column 

 η Bouss
, t = −∇ · U + qwρw/ρo,  (143)

where U = ò  
h

-H
dzu is the vertically integrated horizontal ve-

locity. this equation approximates the more exact result for 

a mass conserving fluid which is obtained by vertically in-
tegrating the mass conservation equation (3) over a column 
of seawater, using the bottom kinematic boundary condition 
(24) and surface kinematic boundary condition (32), to find 

 η,t = −∇ · U +
qw ρw

ρ(η)
−

� η

−H
dz

d lnρ
dt

,  (144)

where r(h) is the density at the ocean surface. The miss-
ing term in the boussinesq surface height equation (143) 
arises from stretching and compressing a vertical column 
associated with changes in the ocean hydrography within 
a fluid column. The absence of this steric effect represents 
a limitation of boussinesq ocean models for prognostically 
simulating, for example, effects of anthropogenic climate 
changes on sea level [Greatbatch, 1994; Mellor and Ezer, 
1995].17

10. ELEMENTS OF VErTIcaL cOOrdINaTES

a key characteristic of rotating and stratified fluids, 
such as the ocean, is the dominance of lateral over vertical 
transport. Hence, it is traditional in ocean modeling to ori-
ent the two horizontal coordinates orthogonal to the local 
vertical direction as determined by gravity. the more dif-
ficult choice is how to specify the vertical coordinate and 
the associated transport across surfaces of constant verti-
cal coordinate. Indeed, the choice of vertical coordinate is 
arguably the single most important aspect in the design of 
an ocean model. the main reason it is crucial is that practi-
cal issues of representation and parameterization are often 
directly linked to the vertical coordinate choice, and these 
issues enter at a level fundamental to developing the model 
algorithms.

10.1. Three Flow Regimes

currently, there are three main vertical coordinates in use 
by ocean modelers, and they arose from applications focus-
ing on complementary dynamical regimes. the following 
characterizes these regimes and provides a qualitative assess-
ment of the abilities of the three coordinates. this assessment 
is subject to modifications due to algorithmic improvements, 
continually being developed, which push the envelope of ap-
plicability for the various vertical coordinates. 

Upper ocean mixed layer. this is a generally tur-
bulent region dominated by transfers of momentum, 
heat, freshwater, and tracers with the overlying at-
mosphere, sea ice, rivers, etc. the mixed layer is of 
prime importance for climate system modeling and 

•
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operational oceanography. It is typically very well 
mixed in the vertical through three-dimensional 
turbulent processes. these processes involve non- 
hydrostatic physics, which requires very fine horizontal 
and vertical resolution (i.e., a vertical-to-horizontal 
grid aspect ratio near unity) to explicitly represent.  
In this region, it is useful to employ a vertical co-
ordinate that facilitates the representation and pa-
rameterization of these highly turbulent processes.  
Geopotential and pressure coordinates, or their rela-
tives, are the most commonly used coordinates, as 
they facilitate the use of very refined vertical grid 
spacing, which can be essential to simulate the strong 
exchanges between the ocean and atmosphere, rivers, 
and ice. these coordinates, in particular geopotential 
coordinates, have been the dominant choice of model-
ers focusing on global climate.
Ocean interior. tracer transport processes in the 
ocean interior predominantly occur along neutral di-
rections [McDougall, 1987]. the transport is domi-
nated by large-scale currents and mesoscale eddy 
fluctuations. Water mass properties in the interior 
thus tend to be preserved over large space scales 
and timescales (e.g., basin and century scales). It is 
critical to represent this property of the ocean inte-
rior in a numerical simulation of ocean climate. An 
isopycnal coordinate framework is well suited to 
this task, whereas geopotential and sigma models 
have problems associated with numerical truncation 
errors. As discussed by Griffies et al. [2000b], the 
problem can become more egregious as the model 
resolution is refined due to the enhanced levels of 
eddy activity that pumps tracer variance to the grid 
scale. Quasi-adiabatic dissipation of this variance is 
difficult to maintain in non-isopycnal models. We 
have more to say on this spurious mixing problem 
in Section 12.1.
Solid Earth boundary. the solid Earth topography 
directly influences the ocean currents. In an un-
stratified ocean, the balanced flow generally fol-
lows lines of constant f/H, where f is the coriolis 
parameter and H is the ocean depth. Additionally, 
there are several regions where density driven cur-
rents (overflows) and turbulent bottom boundary 
layer processes act as strong determinants of wa-
ter mass characteristics. Many such processes are 
crucial for the formation of deep water properties 
in the World ocean and for representing coastal 
processes in regional models. It is for this reason 
that terrain following sigma models have been 
developed over the past few decades, with their 

•

•

dominant application focused on the coastal and 
estuarine problem.

As reviewed by Griffies et al. [2000a], the geopotential, 
isopycnal, and sigma models each focus on one of the above 
regimes. Each do quite well within the confines of the sepa-
rate regimes. It is in the overlap where problems arise. be-
cause the ocean involves all of the regimes, there remain 
problems applying one particular coordinate choice for 
simulating the global ocean climate system. It is not clear 
whether these problems are insurmoutable. Indeed, much 
progress continues to be made at addressing various weak-
nesses. nonetheless, the problems have motivated some ef-
fort to develop generalized vertical coordinates,18 whereby 
the model algorithms determine the vertical coordinate ac-
cording to the physical flow regime, e.g., pressure near the 
surface, isopycnal in the interior, and terrain following next 
to the solid Earth [Bleck, 2002]. We have more to say on 
such approaches when discussing solution methods in Sec-
tion 11.

10.2. Depth and Pressure Isomorphism

A natural set of vertical coordinates of use for describing 
boussinesq ocean models is based on the depth, or geopo-
tential, vertical coordinate, as depth measures the volume 
per area above a point in a fluid column. depth-based ocean 
models are the oldest of those models used for studying cli-
mate, with classical references for this first generation of 
ocean climate models being Bryan and Cox [1967]; Bryan 
[1969a, b]; Bryan et al. [1975]; Bryan and Lewis [1979]; 
Cox [1984]. the work of Huang et al. [2001], DeSzoeke and 
Samelson [2002], Marshall et al. [2004], Losch et al. [2004] 
highlights an isomorphism between depth-based boussinesq 
mechanics and pressure-based non-boussinesq mechanics 
(see Section 11.4 for details). This isomorphism has allowed 
for a straightforward evolution of depth-based models to 
the pressure-based models more commonly considered in 
recently developed ocean climate models. Pressure-based 
vertical coordinates are naturally used to describe non-
boussinesq hydrostatic fluids, as pressure in a hydrostatic 
fluid measures the mass per area above a point in a fluid 
column (Section 9.2).

10.3. Non-Orthogonality

the generalized vertical coordinates used in ocean mod-
eling are not orthogonal, which contrasts with many other 
applications in mathematical physics.19 Hence, it is useful to 
keep in mind the following properties that may seem odd on 
initial encounter.
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the horizontal velocity in ocean models measures motions 
in the horizontal plane, perpendicular to the local gravita-
tional field. That is, horizontal velocity is mathematically the 
same regardless the vertical coordinate, be it geopotential, 
isopycnal, pressure, or terrain following. the key motivation 
for maintaining the same horizontal velocity component is 
that the hydrostatic and geostrophic balances are dominant in 
the large-scale ocean. use of an alternative quasi-horizontal 
velocity, for example one oriented parallel to the general-
ized surface, would lead to unacceptable numerical errors. 
correspondingly, the vertical direction is anti-parallel to the 
gravitational force in all of the coordinate systems. We do 
not choose the alternative of a quasi-vertical direction ori-
ented normal to the surface of a constant generalized vertical 
coordinate.

It is the method used to measure transport across the gen-
eralized vertical coordinate surfaces which differs between 
the vertical coordinate choices. that is, computation of the 
dia-surface velocity component detailed in Section 2.2 rep-
resents the fundamental distinction between the various co-
ordinates. In some models, such as geopotential, pressure, 
and terrain following, this transport is typically diagnosed 
from volume or mass conservation. In other models, such as 
isopycnal layered models, this transport is prescribed based 
on assumptions about the physical processes producing a 
flux across the layer interfaces. We return to this key point 
in Section 11 when discussing solution methods.

11. SOLUTION METHOdS

the purpose of this section is to introduce some of the 
steps needed to develop an algorithm for solving the ocean 
equations.

11.1. Finite Volumes

In formulating the budgets for an ocean model, it is typical 
to focus on mass, tracer, and momentum budgets for a finite 
domain or control volume, such as that of an ocean model grid 
cell. the budget for a grid cell is distinct from the budget for 
infinitesimal mass conserving Lagrangian fluid parcels mov-
ing with the fluid. Mass conserving fluid parcels form the 
fundamental system for which the budgets of mass, tracer, 
momentum, and energy are generally formulated from first 
principles. Grid cell budgets are then derived from the funda-
mental parcel budgets. Formulating budgets over finite-sized 
regions is an important first step toward developing a nu-
merical algorithm. In particular, it is an essential step when 
working with a finite volume formulation [e.g., chapter 6 
of Hirsch, 1988] such as with the MITgcm [Marshall et al., 
1997; Adcroft et al., 1997].

Figure 6. Schematic of an ocean grid cell labeled by the vertical in-
teger k. its sides are vertical and oriented according to x̂ and ŷ, and 
its horizontal position is fixed in time. the top and bottom surfaces 
are determined by constant generalized vertical coordinates s

k-1 and 
s

k
, respectively. Furthermore, the top and bottom are assumed to 

always have an outward normal with a nonzero component in the 
vertical direction ẑ. that is, the top and bottom are never vertical. 
We take the convention that the discrete vertical label k increases 
as moving downward in the column, and grid cell k is bounded at 
its upper face by s = sk-1 and lower face by s = sk.

the grid cells of concern for typical ocean models have 
vertical sides fixed in space–time, but with the top and bot-
tom generally moving (Figure 6). In particular, the top and 
bottom either represent the ocean top, ocean bottom, or a 
surface of constant generalized vertical coordinate. As be-
fore, we assume that at no place in the fluid do the top or 
bottom surfaces of the grid cell become vertical. this as-
sumption allows for a one-to-one relation to exist between 
geopotential depth z and a generalized vertical coordinate s 
(i.e., the relation is invertible).

to establish the grid cell budget, we integrate the budget 
for mass conserving fluid parcels over the cell volume. a 
first step is to take a differential relation of the form (7) and 
transform it to a finite domain relation by integrating over 
a region such as that for the grid cell shown in Figure 6. 
The following finite domain result follows by using standard 
vector calculus:
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�
r

dY
dt

dV = ¶t

��
r YdV

�

+
�

dA(n̂) n̂ · (v − v(ref ))(r Y).    
(145)

Hence, the mass weighted integral of the material time de-
rivative of a field Y is given by the time derivative of the 
mass weighted field integrated over the domain, plus a 
boundary term that accounts for the transport across the do-
main boundaries, with allowance made for moving domain 
boundaries. Applying this result to the parcel tracer budget 
(33) leads to the finite domain tracer budget 

  

¶t

��
Cr dV

�
=

�
S(C) r dV

−
�

dA(n̂) n̂ · [(v − vref )r C + J].
 
(146)

Again, the left-hand side of this equation is the time ten-
dency for tracer mass within the finite-sized grid cell region. 
When the tracer concentration is uniform, the SGS flux and 
source vanish, in which case the tracer budget (146) reduces 
to the finite domain mass budget 

       
∂t

��
ρ dV

�
= −

�
dA(n̂) n̂ · [(v − vref )ρ ].  (147)

Further work leads to similar domain statements for the mo-
mentum budget.

11.2. Reynolds Averaging

The finite volume budgets provide a first step along a par-
ticular avenue toward discretizing the ocean equations. the 
next step explicitly considers the shape and size of the grid 
cells, and approximates these geometric details as well as 
fields within these cells, given information resolved by the 
discrete model. this step exposes our lack of information 
about the scales smaller than the grid scale, and in so doing, 
introduces the SGS parameterization problem.

From the finite volume perspective, the SGS parameteri-
zation problem arises when a particular form of the resolved 
model variables is assumed, e.g., the model variables rep-
resent a mass weighted average of the continuous variables 
such as 

  Ψmodel ≡

�
Ψρ dV

�
ρ dV

.  (148)

the averaging described here is one form of a more generic 
reynolds averaging procedure required to specify the ocean 
equations appropriate for the chosen discretization. Averag-
ing of the form (148), or any other with more sophisticated 
weighting, introduces correlation terms between nonlinear 
products of SGS fields. a prescription for the correlations 
depends on the model grid and the unresolved physical pro-
cesses. It also depends on whether the average is performed 
at a constant point in space (Eulerian average), on a moving 
surface such as an isopycnal (quasi-Lagrangian average), on 
a pressure surface, or another surface.

regardless of the details of the reynolds averaging, aver-
aging over the subgrid scales appropriate for ocean models 
(e.g., scales smaller than 10 to 100 km) produces correla-
tion terms that are many orders larger than the effects from 
molecular processes (e.g., molecular tracer diffusion and 
molecular friction). Hence, for all purposes of large-scale 
ocean modeling, the SGS flux Jc for tracer C is just that 
from reynolds averaging, as is the momentum friction ten-
sor t.

Although we can, in principle, formulate a reynolds aver-
aging procedure for the ocean equations, there has not been a 
satisfying first principles closure for these equations relevant 
at the scale of global ocean models. Hence, the reynolds 
averaged ocean equations are closed by introducing ad hoc 
steps that are unsatisfying both in principle and practice. We 
have more to say on this point regarding the lateral friction 
used in ocean models in Section 12.2.

11.3 General Comments on Solution Algorithms

the numerical procedures required to solve the ocean equa-
tions are dependent on details of the approximations or filters 
applied to the equations. For example, the non-boussinesq 
and non-hydrostatic ocean equations, 

[∂t + (2Ω + ω ) ∧ ]v = −∇E + ρ−1∇ · (τ − I p)  (149)

(150)

(151)

(152)

 

ρ,t +∇ · (ρ v) = 0

(ρ θ ),t + ∇ · (ρ vθ + Jθ ) = ρ Sθ

(ρ S),t +∇ · (ρ vS + JS) = ρ SS

ρ = ρ(θ ,S, p)  (153)
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permit acoustics modes (Section 8.1; recall that E = K + F is 
the total mechanical energy per mass of a fluid parcel). an 
algorithm to solve these equations would significantly differ 
from an algorithm developed to solve the oceanic boussin-
esq equations

[ ¶t + (2 W + w )Ù ] rov = - ro ÑK - rÑF + Ñ × (t - I p)
(154)
(155)

(156)

(157)

   

∇ · v = 0

θ,t + ∇ · (vθ + Fθ ) = Sθ

S,t + ∇ · (vS + FS) = SS

ρ = ρ(θ ,S, p)   (158)

which do not support acoustic modes. the choice of vertical 
coordinate also has a critical impact on the solution algorithm. 
The major distinction here is between Eulerian and Lagrang-
ian viewpoints [Adcroft and Hallberg, 2006]. We briefly de-
scribe the procedures resulting from these two viewpoints for 
hydrostatic models, which can be applied to both the boussin-
esq and non-boussinesq momentum equations.

11.4. Sample Eulerian Algorithms

We start our consideration of solution algorithms with the 
boussinesq hydrostatic equations written in geopotential (or 
depth) vertical coordinates. We also consider the shallow 
ocean approximation (Section 9.1). The resulting boussin-
esq hydrostatic primitive equations are given by 

(159)

(160)

(161)

(162)

(163)
 

[∂t + ( f ẑ + ω) ∧ ]v + ∇zE + ρ−1
o ∇z p = ρ−1

o ∇ · τ

Φ,z + ρ−1 p,z = 0

∇z · u + w,z = 0

θ,t + ∇z · (uθ ) + (wθ ),z = Sθ

S,t + ∇z · (uS) + (wS),z = Ss

ρ = ρ(θ ,S, p). 
(164)

notice that we allow for the general pressure dependence of 
the equation of state according to the discussion in Section 9.3.  
In these equations, w, E, and t each assume their hydrostatic 
forms given in Section 9.2

(165)

(166)

   

ω = ∇ ∧ u

E = u · u/2 + Φ

∇ · τ = ∂z (κmodel u,z) +∇ · τhorizontal strain.  (167)

Equations (159)–(164) are seven equations with seven un-
knowns (u, v, w, p, q, S, r). There are four predictive or 
prognostic equations: two components of the horizontal 
velocity equation (159) and the potential temperature and 
salinity equations (162) and (163). There are three diagnos-
tic equations: the hydrostatic balance (160), the boussinesq 
continuity equation (161), and the equation of state (164). 
Predictive equations are used to update in time (i.e., predict) 
the corresponding model variable, while the remaining vari-
ables are determined by the diagnostic relations.

The system of equations (159)–(164) can be solved us-
ing explicit-in-time algorithms. For example, given an initial 
hydrographic specification of q and S and p, we can proceed 
as follows:  

the in situ density r can be diagnosed from the 
equation of state (164) using pressure at a lagged 
time step [e.g., Dewar et al., 1998; Griffies et al., 
2001];
Hydrostatic pressure p can be diagnosed by vertical 
integration of the hydrostatic equation (160); 
Horizontal velocity u can be predicted using the ve-
locity equation (159); 
the vertical velocity component w can be diag-
nosed by vertical integration of the continuity equa-
tion (161); 
tracers q and S can be predicted using the tracer 
equations (162) and (163); 
returning to step 1 repeats the cycle for a subse-
quent time step. 

this algorithm will work using fully explicit time-integra-
tion methods. However, the time step will be limited by the 
fastest mode, which, in this case, is the external gravity wave 
which can exceed speeds of 200 ms-1 in the deep ocean. As 
noted in Section 8.2, resolving external gravity waves in a 
global ocean model is prohibitively expensive. An alterna-
tive treatment of the fast external modes is discussed in Sec-
tion 11.6.

The hydrostatic boussinesq equations (159)–(164) permit 
four linear internal modes of variability: two inertia–gravity, 
one geostrophic, and one thermohaline mode.20 Furthermore, 
the equations are written in a transparent form for developing 
solution algorithms, as there is no ambiguity about the way 
to use each equation, and there is only one obvious candidate 
for which predictive equation to use to predict a particular 
variable. As we now discuss, changing the nature of an equa-
tion within the system can potentially lead to inconsistencies. 
To illustrate this point, consider the non-boussinesq and hy-
drostatic primitive equations written with a general vertical 
coordinate s: 

1.

2.

3.

4.

5.

6.
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(168)

(169)

(170)

(171)

(172)

[∂t + ( f ẑ + ω)∧ ]v + ∇sE + ρ−1∇s p = ρ−1∇ · τ

∂s Φ + ρ−1∂s p = 0

(ρ z,s),t +∇s · (ρ uz,s) + (ρ w(s)),s = 0

(ρ z,s θ ),t + ∇s · (ρ uz,s θ ) + (ρ w(s) θ ),s = ρ z,s Sθ

(ρ z,s S),t + ∇s · (ρ uz,s S) + (ρ w(s) S),s = ρ z,s SS

ρ = ρ(θ ,S, p)

(173)

where, again, w(s) = z,s ds/dt is the dia-surface velocity com-
ponent introduced in Section 2.2. Equations (168)–(173) 
also permit four linear internal modes of variability, but the 
equations now contain five time derivatives. Hence, there 
are now five predictive equations and only two diagnostic 
relations. consider a situation where z,s is known or pre-
scribed (for instance, with geopotential vertical coordinates 
z,s 

= 1); there are then two possible equations that might be 
used to determine the in situ density r: either equation (170) 
or equation (173). It is not immediately obvious which is the 
proper equation to use. If we use the equation of state (173), 
then mass conservation (170) might be violated, but if we 
use mass conservation, then the equation of state may not be 
satisfied. a judicious choice of vertical coordinate removes 
this ambiguity. For example, setting s = p and noting that 
grz,p = -1 brings equations (168)–(173) into the form 

(174)

(175)

(176)

(177)

(178)

[∂t + ( f ẑ + ω)∧ ]u + ∇pE = ρ−1∇ · τ

∂pΦ + ρ−1 = 0

∇p · u + ∂p(ṗ) = 0

θ,t + ∇p · (uθ ) + (θ ṗ),p = Sθ

S,t +∇p · (uS) + (S ṗ),p = SS

ρ = ρ(θ , s, p),    (179)

where p. = dp/dt is the material time derivative of pressure. 
These equations are, term for term, isomorphic to the bouss-
inesq hydrostatic geopotential coordinate equations (159)–
(164). This isomorphism, already mentioned in Section 10.2, 
has been exploited in meteorology for many years [e.g., 
Haltiner and Williams, 1980] and more recently has been 
brought into use for non-boussinesq ocean models [Huang 
et al., 2001; DeSzoeke and Samelson, 2002; Marshall et 
al., 2004; Losch et al., 2004]. A solution procedure for the 
compressible pressure-coordinate equations (174)–(179) is 
identical to that for the incompressible equations in height 
coordinates (159)–(164), except solving for F instead of p 

and without the need to temporally lag pressure to evaluate 
the equation of state.

returning to the general coordinate non-boussinesq ocean 
equations (168)–(173), we note that there are two distinct 
approaches to solving these equations. the approaches are 
distinguishable by their treatment of the continuity equation 
(170). The first method adopts an Eulerian perspective, used 
in the preceding algorithms, where continuity is used to di-
agnostically determine transport across coordinate surfaces 
(vertically integrating equation (170) for the dia-surface ve-
locity component w(s)). To achieve this, the time derivative 
(rz,s),t must be prescribed, or more specifically, rz,s must be 
functionally related to other dependent or independent model 
variables. this is the case for the terrain-following coordi-
nates commonly referred to as s-coordinates of which a sim-
ple example is the Phillips [1957] sigma-coordinate s = s = 
(p - pa)/ (pb - pa), where pb is the pressure at the solid-Earth 
boundary, and pa is the pressure applied at the top of the water 
column. For this vertical coordinate, the factor rz,s = - (pb - 
pa)/g is minus the mass per area of the water column, and 
this two dimensional field is predicted by the external mode 
equations (Section 11.6).

11.5. Sample Lagrangian Algorithms

The second approach to solving the non-boussinesq ocean 
equations (168)–(173) adopts the Lagrangian perspective, 
common to most layer (isopycnal or stacked shallow water) 
models. For this approach, the cross-coordinate flow, w(s), 
is prescribed. We focus here on isopyncal models, in which 
case w(s) is set to zero in the adiabatic limit. the continu-
ity equation (170) is then used prognostically to predict the 
layer mass per area 

    ρ dz = ρ z,s ds.  (180)

Most isopycnal algorithms [e.g., Bleck et al., 1992] assume 
the potential density of each layer to be constant in time and 
space. With zero dia-surface flow, the continuity equation 
(170) leads to

    (r z,s),t + ∇s · (r uz,s) = 0,  (181)

which predicts layer mass per area. a difficulty with this 
approach is that q and S are predicted independently. Hence, 
there is no guarantee that the diagnosed potential density rref = 
r(q, S, pref) will correspond to the assumed potential density 
of the layer. there are various approaches to correcting for 
this evolution of layer density, such as wrapping the layer 
remapping together with dianeutral processes like cabelling, 
as proposed by Oberhuber [1993], McDougall and Dewar 
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[1997], Hallberg [2000]. We have more to say on this point 
in Section 12.1.

A more general approach has been proposed [Hirt et al., 
1974; Bleck, 2002] in which remapping is used to reallocate 
mass so as to bring the layer densities back to their targets. 
This extra step is the foundation of the arbitrary Lagrangian– 
Eulerian method (aLE), which allows for the remapping step 
to remap to any coordinate, not necessarily isopycnal. The aLE 
method has become the preferred approach for general coor-
dinate modeling because it is quite flexible. The aLE-based 
procedure for solving the general-coordinate hydrostatic non-
boussinesq equations is generally as follows:  

Given the mass per area rz,sds of a layer, pressure 
can be found by vertically integrating the hydro-
static equation (169). 
Given the pressure p, potential temperature q, sa-
linity S, the in situ density can be calculated from 
the equation of state (173). 
the horizontal velocity u can be predicted using 
the velocity equation (168). 
the mass thickness rz,sds, q, and S can be predicted, 
assuming the generalized s surfaces are material (s. =  
0), by using equations (170)–(172). 
A remapping step redistributes mass, q, and S so 
as to bring the surfaces of s to the desired position. 
this step introduces irreversible numerical mixing 
processes (Section 12.1), although it is sometimes 
hidden within the operators describing physical 
mixing processes [Hallberg, 2000]. 

11.6. Solving for the External Mode

The ocean external modes are significantly faster than the 
internal modes. treating the full three-dimensional system 
explicitly with a time step short enough to resolve external 
motions would be prohibitively expensive. there are three 
methods that have been used for avoiding this limitation: 
the rigid lid method, the split-explicit method, and the time- 
implicit method.

ocean model algorithms approximate the external mode 
by using solutions to the vertically integrated continuity 
and momentum equations. these equations are coordinate- 
independent and take the form 

(182)

(183)

∂tUρ + g(H + η)∇pb + F(Uρ ) = S

∂t pb + ∇ · Uρ = qw ρw + ∂t pa
 

1.

2.

3.

4.

5.

where Ur = ò h-H 
rudz [equation (31)] was introduced when 

discussing mass conservation for a vertical column. We have 
grouped various terms into fast (F) and slow (S) vectors. The 
choice of which terms are placed in the fast vector (F) is a 
matter of taste, and it varies from model to model. For the 
present discussion, we ignore these terms, yet note that many 
models include the coriolis force in this vector, whereas oth-
ers also include horizontal friction or bottom drag. the lin-
ear forms of equations (182) and (183) describe plane waves 
with phase and group speed of cg  ÖgH    . these are the ex-
ternal gravity waves discussed in Section 8.2. The essential 
role of these equations is to allow the external mode to adjust 
the system to an imbalance of divergent mass transport. this 
adjustment occurs on timescales that are short compared to 
the baroclinic evolution of the model.

The first generation of ocean climate models, based on 
the algorithm of Bryan [1969a], employed the rigid lid ap-
proximation with the oceanic boussinesq approximation. 
this approach sets the time tendency of the surface height 
in equation (143) to zero and drops the surface water fluxes. 
consequently, the vertically integrated horizontal veloc-
ity is non-divergent, thus allowing for the introduction of 
a streamfunction for the vertically integrated velocity in the 
solution algorithm. this approach was revolutionary for its 
time, as it facilitated efficient time stepping, whereby fast 
barotropic gravity waves are absent from the algorithm. 
nonetheless, it is physically unsatisfying due to the inabil-
ity to represent tides and through the lack of a direct water 
forcing [Huang, 1993]. additionally, it is computationally 
awkward, as the resulting elliptic problem is very difficult to 
solve accurately in realistic ocean geometries. Hence, practi-
tioners often halted the elliptic solver searches after a maxi-
mum number of steps regardless of the remaining distance 
to convergence.

the split-explicit approach solves the depth averaged 
equations explicitly with a short external mode time step. In 
contrast, the baroclinic portion of the model is time stepped 
with a larger time step determined by the slower baroclinic 
processes. Investigations have revealed that the split-explicit 
methods, such as those from Blumberg and Mellor [1987], 
Bleck and Smith [1990], Killworth et al. [1991], Dukowicz 
and Smith [1994], Griffies et al. [2001], can be just as ef-
ficient computationally as the rigid lid method, yet without 
sacrificing tides, direct surface water forcing, or compromis-
ing the realism of the ocean geometry. Hence, the rigid lid 
methods are largely obsolete in the more recent (e.g., post-
2000) models used for global climate.

there are many variants on the implementation details of 
the split-explicit approach, with essentially two broad strate-
gies taken. In Eulerian models, the flow is partitioned as 
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            u = û + ū,    (184)

with the barotropic component determined by the following 
depth and mass-weighted average: 

                        ū =
Uρ

� η

−H
ρ dz

.  
(185)

the baraclinic component is the remainder: û = u - u- . the 
full momentum equations may be rewritten to predict only 
the baroclinic component in a manner analogous to the rigid 
lid approach of Bryan [1969a; e.g., Blumberg and Mellor, 
1987; Killworth et al., 1991; Griffies et al., 2001]. Alterna-
tively, the full flow may be corrected by replacing the baro-
tropic component with the results of the barotropic solver. 
In Lagrangian vertical coordinate models, the nonlinearity 
of the continuity equation and, in particular, the nonlinearity 
of the advection schemes used to guarantee positive definite-
ness of thickness, make a decomposition of the flow accord-
ing to equation (184) troublesome. The alternative approach 
used is to make adjustments to either the layer transports 
or the barotropic transports to make them consistent [e.g., 
Bleck and Smith, 1990]. Earlier models allowed these two 
estimates of barotropic transport to remain inconsistent and 
used weak coupling to drive one toward the other [Hallberg, 
1997; Higdon, 2005].

the time-implicit treatment of the external mode requires 
that the fast barotropic terms, principally the pressure gradi-
ent force due to the bottom pressure and the depth-integrated 
mass divergence, to be evaluated in the future part of the 
time step (i.e., solved implicitly). The analogous depth av-
erage equations can be rearranged into a two-dimensional 
elliptic equation which closely resembles the wave equation 
in structure. this wave equation takes the form 

 
�
∇ · ((H + η)∇) − Γ

Δt2

�
pn+1

b = r.h.s.  (186)

where the details of the right-hand side terms (r.h.s.) and G 
are dependent on the choice of time discretization. notably, 
this elliptic operator is better conditioned than that arising in 
the rigid lid approach [Dukowicz and Smith, 1994], and so 
convergence is more rapid. Such is fortunate, as this elliptic 
equation must be solved fairly accurately to ensure that the 
residual mass divergence does not grow during the integra-
tion of the baroclinic model. the elliptic equation should 
strictly be nonlinear. However, it is typically linearized by 
lagging the nonlinear terms in time. For deep ocean calcula-
tions, this linearization is justifiable, but it becomes less ap-
propriate in shallow regions. the time-implicit approach can 

recover the rigid lid approximation by dropping the Helm-
holtz term (G/Dt 2 ® 0). The physical interpretation of this 
limit is that we are finding pb so as to adjust the barotropic 
flow to be exactly non-divergent.

11.7. Non-Hydrostatic Methods

Non-hydrostatic effects are significant only for large as-
pect ratio flows (e.g., Kelvin–Helmholtz instability) but can 
lead to systematic differences at small aspect ratios. non- 
hydrostatic global models generally are too expensive to be 
in routine use. However, as spatial resolution is refined and 
the sub-mesoscale is resolved, non-hydrostatic effects need 
to be included. relaxing the hydrostatic approximation in 
the non-boussinesq equations permits acoustic modes, and 
so most non-hydrostatic models of the ocean assume the 
oceanic boussinesq approximation. The methods of Mc-
Dougall et al. [2003] might well be able to incorporate quasi 
non-boussinesq effects in non-hydrostatic models.

the non-hydrostatic algorithms used in ocean models use 
derivatives of the projection method [Chorin, 1968]. Here, 
the problem is posed as follows: what (non-hydrostatic) 
pressure gradients are required to correct the flow to make 
the flow exactly non-divergent? by summarizing the full 
three-dimensional momentum equations and continuity as 

 ρo vn+1 + Δ t∇p = ρo vn + Δt G

∇ · vn+1 = 0
 (187)

(188)

where G is the vector of all explicit forces, a rearrangement 
and substitution of variables yields the three-dimensional el-
liptic equation 

 
∇ · ∇p = ∇ ·

�ρo

Δt
vn

�
+ ∇ · G.

 
(189)

The first term on the right-hand side is important for im-
plementation; otherwise, a residual divergence in the system 
may accumulate and lead to numerical instability. the three-
dimensional elliptic equation for pressure replaces the ver-
tical integration for hydrostatic pressure in the hydrostatic 
algorithms discussed in Section 9.2.

In the atmosphere, non-hydrostatic models do not make 
the boussinesq approximation, and such models therefore 
permit acoustic modes. However, atmospheric acoustic 
waves are slow enough to be resolvable explicitly in the 
horizontal directions, whereas an implicit treatment in the 
vertical direction is sufficient to render a stable algorithm. 
thus, non-hydrostatic atmospheric models are essentially 
hyperbolic, while oceanic non-hydrostaic models are elliptic 
in pressure.
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12. SUMMary aNd OUTSTaNdING PrObLEMS

We have aimed in this chapter to present a compendium 
of the scientific rationale for the equations used in physical 
ocean models. this rationale is independent of model reso-
lution, and so provides a basis for both coarse-resolution 
global models as well as very fine-resolution regional and 
coastal models. differences in applications largely reflect on 
the approximations made to the equations as well as choices 
for SGS parameterizations.

there remain many outstanding problems with ocean 
models. a large number can be alleviated by refining the 
resolution, thus allowing the simulation to rely less on the 
often ad hoc SGS parameterizations and depending more 
on resolved dynamical features. this reliance on enhanced 
resolution has a cost in computational expense. It also is 
limited by numerical algorithmic integrity. namely, for en-
hanced resolution to accurately capture the dynamics, the 
numerical methods must respect the dynamics. this state-
ment is relevant at all resolutions. However, large levels of 
viscous dissipation generally used at coarse resolution can 
sometimes hide problems revealed only upon refining the 
grid and reducing viscosity. Our goal in this final section 
is to discuss two issues which present a limitation on ocean 
simulations and which do not appear to be remedied upon 
refining the resolution: (a) the spurious mixing problem and 
(b) the specification of horizontal friction.

12.1. The Spurious Mixing Problem

direct measurements of tracer diffusivity in the ocean 
were pioneered with the purposeful passive tracer release 
experiments of Ledwell et al. [1993]. These measurements 
indicate that on the large scales (on the order of hundreds of 
kilometers), the associated neutral to dianeutral anisotropy 
in mixing can be as high as 108 in the ocean interior, with 
smaller anisotropies in regions of strong dianeutral mixing 
such as within boundary layers or above rough topography. 
Another method for determining the dianeutral diffusivity 
uses the indirect approach suggested by Osborn [1980] and 
reviewed by Gregg [1987] and Davis [1994]. In this indirect 
approach, momentum dissipation at small scales is directly 
measured, and dianeutral diffusivity is inferred based on a 
theoretical connection between buoyancy mixing and mo-
mentum dissipation. these microstructure techniques like-
wise indicate that the levels of interior dissipation are very 
small, in general agreement with the direct tracer release 
measurements. they each indicate that the level of interior 
dianeutral mixing corresponds to a diffusivity on the order 
10-5 m2s-1, with 10 to 100 times smaller values suggested at 
the equator by measurements from Gregg et al. [2003]. This 

is a strong statement regarding the level to which the ocean 
interior respects the neutral orientation of transport. ocean 
models, especially those used for purposes of climate simu-
lations, must respect this anisotropy.

For a numerical simulation to respect these small levels 
of mixing requires a tremendous level of integrity for the 
tracer transport algorithms. there are two main approaches 
that modelers have taken in this regard. First, modelers intent 
on respecting this level of mixing have tended to work with 
an isopycnal vertical coordinate. the advantage isopycnal 
models have over alternative vertical coordinates is that their 
advective transport operator is the sum of a two-dimensional 
lateral operator which acts independently of the dia-surface 
transport operator, with the dia-surface transport set, ideally, 
according to physical processes leading to mixing between 
density classes. Although suitable for the ideal adiabatic 
simulations, this is not sufficient for the real ocean. Here, a 
nonlinear equation of state introduces new physical sources 
of mixing, and the independent transport of two active tracers 
(temperature and salinity) requires remapping algorithms to 
retain fields within pre-specified density classes. These details 
introduce levels of dianeutral mixing which have yet to be 
systematically documented. they have nonetheless generally 
been considered negligible, with remapping often wrapped 
together with diapycnal processes [Oberhuber, 1993; Mc-
Dougall and Dewar, 1997; Hallberg, 2000], thus using phys-
ical mixing processes in lieu of numerical mixing.

the second approach focuses on improving numerical 
transport methods. As discussed in Griffies et al. [2000b], the 
difficulties of maintaining small levels of spurious mixing 
are enhanced when moving to an eddying regime where the 
quasi-geostrophic cascade pumps tracer variance toward the 
grid scale. dissipating this variance is required to damp un-
physical grid scale features. dissipation methods include the 
addition of an operator acting on the small scales (e.g., La-
placian or biharmonic), or dissipation inherent in the advec-
tion scheme (e.g., odd order schemes and/or flux limiters). 
However, most dissipation methods remain ignorant of the 
constraints based on spurious dianeutral transport. notable 
exceptions include the adiabatic dissipation arising from the 
Laplacian operator of Gent and McWilliams [1990] and Gent 
et al. [1995], which attempts to parameterize physical proc-
esses, or the operators of Smith and Gent [2004] and Roberts 
and Marshall [1998], which are motivated from numerical 
considerations. For advection operators and dissipation op-
erators, the question remains whether they can be constructed 
so that in practice, their numerical truncation errors are com-
parable with, or ideally less than, the tiny levels of physical 
mixing seen in the ocean interior. this problem remains at 
the forefront of ocean modeling practice, especially as eddy-
ing simulations for global climate become the norm.
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12.2. Frictional Stresses in Ocean Models

as discussed in Section 8.4, modelers generally must set the 
strength of lateral fricional stresses to satisfy requirements of 
certain numerical constraints.21 For example, in the presence 
of solid-Earth boundaries, friction must be sufficient to main-
tain a nontrivial side boundary layer. Even in the absence of 
boundaries, horizontal friction must be sufficient to maintain  
a finite grid reynolds number UD/nmodel, with nmodel  the model  
horizontal viscosity. otherwise, the simulation may go unsta-
ble, or at best, it will produce unphysical noise-like features. 
this constraint on the numerical simulation is unfortunate, as 
it generally requires a model viscosity many orders of mag-
nitude larger than the molecular viscosity relevant for the 
ocean. the reason is that model grid sizes, even in mesoscale 
eddy-permitting simulations, are much larger than the Kol-
mogorov scale (»10-3m) where molecular friction acts.

Various methods have been engineered to employ the 
minimal level of horizontal friction required to meet the nu-
merical constraints [e.g., Griffies and Hallberg, 2000; Large 
et al., 2001; Smith and McWilliams, 2003]. Notably, model-
ers generally assume that the frictional stresses are isotropic 
in the horizontal direction, with anisotropy only between the 
horizontal and vertical stresses. However, as noted by Large 
et al. [2001] and Smith and McWilliams [2003], we may 
choose to allow one more degree of freedom by breaking 
horizontal isotropy. doing so provides a practical avenue 
toward reducing the overall dissipation, and it can have a 
nontrivial advantage for simulating certain features such as 
the equatorial currents.

Quite generally, methods for selecting model horizontal 
friction are ad hoc. they furthermore lead to some of the 
most unsatisfying elements in ocean model practice, as de-
tails of friction can strongly influence the simulation. Unfor-
tunately, it appears that this sensitivity remains as resolution 
is refined [Chassignet and Garraffo, 2001]. one compelling 
approach to resolve this problem with ad hoc friction opera-
tors is to remove horizontal friction operators from the mod-
els altogether. In their place, one allows dissipation to occur 
within the momentum transport operators. this approach, 
formally termed implicit large eddy simulation, holds some 
promise [Margolin et al., 2006]. It is analogous to the trend 
for handling the tracer equation in eddying simulations, 
whereby lateral SGS operators are removed or rendered far 
subdominant to the resolved advection process. the hope 
is that numerical methods for the resolved transport can be 
designed that are smarter and more robust than the suite of 
SGS operators engineered thus far.
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Notes

1. the three dimensional velocity vector is written v = (u, w), with 
u = (u, v) the horizontal components and w the vertical compo-
nent.

2. this notation is standard in theoretical physics. It serves our pur-
poses by distinguishing between a partial derivative and a tensor 
label.

3. Water crossing the ocean surface is typically quite fresh, such 
as for precipitation or evaporation. However, rivers and ice melt 
can generally contain a nonzero salinity.

4. We assume there to be no mass flux through the solid Earth 
boundary.

5. Electromagnetic effects are generally ignored in physical ocean 
models.

6. note that Wkg-1 = m2s-3.
7. For spherical coordinates, r is the radial position, l is the longi-

tude, and f is the latitude.
8. We consider seawater to be a binary system of fresh water and 

salt. the factor of 1000 accounts for the use of salinity in parts 
per thousand rather than salt concentration.

9. this meaning for isentropic ocean models is consistent with the 
models not including frictional heating.

10. note that when nh = 0, we require the buoyancy force to recover 
hydrostatic balance. We ignore this force here to focus on the 
linear dynamical modes arising without buoyancy.

11. As noted by Griffies et al. [2000b], it is prudent to admit at least 
two grid points in a Munk boundary layer to minimize spurious 
levels of mixing associated with advection truncation errors.

12. this approximation is distinct from the shallow water approxi-
mation.

13. The quasi-hydrostatic approximation discussed in Marshall et 
al. [1997] keeps the full coriolis terms, but still integrates a bal-
ance equation for pressure as in Section 11.4.

14. Some ocean models choose the boussinesq density to be ro = 
1000kg m-3 [e.g., Cox, 1984], which is roughly the density of 
freshwater at standard conditions, whereas others [e.g., Griffies 
et al., 2004] choose r

0
 = 1035kg m-3, which is roughly the mean 

density of seawater in the World ocean [page 47 of Gill, 1982].
15. See Veronis [1973] for a thorough discussion, with critique, of 

the boussinesq approximation in which salinity, temperature, 
and potential density are materially conserved.

16. the existence of a nonzero vd in the oceanic boussinesq approx-
imation is analogous to the presence of a nonzero ageostrophic 
flow in quasi-geostrophic models in which the ageostrophic flow 
is not directly computed but can be diagnosed.

17. For diagnostic purposes in a non-boussinesq model, it is of inter-
est to determine the local effects from column stretching on sea 
level. The material time derivative in equation (144) is difficult to 
diagnose. Hence, we offer the alternative expression, derived from 
the column integrated mass budget (30): h , t  = (1/r-)(-Ñ × Ur +  

qwrw - D¶tlnr-), with r- = (H + h)-1ò   
h

-H
 dzr the vertically aver-

aged density in a column. It is now clear that -D¶t ln r- represents 
a positive contribution to the surface height when the vertically 
averaged in situ density within a column decreases.
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18. So far as we know, generalized vertical coordinates are synony-
mous with hybrid vertical coordinates.

19. It is nonetheless notable that a similar set of generalized verti-
cal coordinates has found use in other areas of theoretical phys-
ics. In particular, condensed matter physicists and biophysicists 
studying the dynamics of fluctuating membranes use these co-
ordinates, where the coordinates go by the name Monge gauge. 
Their mathematical aspects are lucidly described in Section 10.4 
of Chaikin and Lubensky [1995].

20. See Müller and J. Willebrand [1986] for a discussion of a ther-
mohaline mode arising from the presence of two tracers, tem-
perature and salinity, affecting in situ density.

21. there is a notable exception to the discussion here, where Hollo-
way [1992] argues that unresolved stresses associated with inter-
actions between the ocean and the solid-Earth boundary impart a 
net momentum to the fluid.
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