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Abstract

We note that there are essentially two methods of solving the hydrostatic primitive equations in general
vertical coordinates: the quasi-Eulerian class of algorithms are typically used in quasi-stationary coordi-
nates (e.g. height, pressure, or terrain following) coordinate systems; the quasi-Lagrangian class of algo-
rithms are almost exclusively used in layered models and is the preferred paradigm in modern isopycnal
models. These approaches are not easily juxtaposed. Thus, hybrid coordinate models that choose one
method over the other may not necessarily obtain the particular qualities associated with the alternative
method.

We discuss the nature of the differences between the Lagrangian and Eulerian algorithms and suggest
that each has its benefits. The arbitrary Lagrangian–Eulerian method (ALE) purports to address these dif-
ferences but we find that it does not treat the vertical and horizontal dimensions symmetrically as is done in
classical Eulerian models. This distinction is particularly evident with the non-hydrostatic equations, since
there is explicitly no symmetry breaking in these equations. It appears that the Lagrangian algorithms can
not be easily invoked in conjunction with the pressure method that is often used in non-hydrostatic models.
We suggest that research is necessary to find a way to combine the two viewpoints if we are to develop mod-
els that are suitable for simulating the wide range of spatial and temporal scales that are important in the
ocean.
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1. Introduction

Traditionally, ocean models have been written to integrate forward in the time the equations of
motion written in just one vertical coordinate at a time, most commonly either height, potential
density or some form of terrain-following coordinate. Recently, several models have been devel-
oped in a general coordinate framework and specifically to work with hybrid coordinates (for
example, Bleck, 2002; Song, 2003; and other references in Griffies et al., 2000b). Hybrid coordi-
nates aim to mimic different types of coordinates in different parts of a model. For example, the
expected optimum hybrid coordinate might be similar to potential density in the ocean interior
where the flow is nearly adiabatic, then matching to some form of terrain-following coordinate
in the bottom boundary and matching either a height or pressure coordinate in the surface mixed
layer regions.

One concern about these new classes of models is whether they can produce solutions of the
same caliber as the earlier class of single coordinate models. In each category of single coordinate
model, much work has been invested in developing techniques for rendering accurate and phys-
ically relevant solutions. For example, height coordinate models no longer have a spurious repre-
sentation of the topography (Adcroft et al., 1997) and isopycnal models can be made truly
adiabatic (Oberhuber, 1993). General coordinate models allow the exploration of hybrid coordi-
nates where optimal features of single coordinate models are blended. It is not yet clear whether
these optimal features are compatible. The ultimate test will be to compare the new general coor-
dinate models side-by-side with each of the single coordinate models; this has not yet been done.

In this note, we discuss some algorithmic considerations that arise when building a generalized
or hybrid coordinate model. We are first concerned with use of the continuity equation in isopyc-
nal models (described, for example, by Bleck, 2002) which has the advantage that it renders iso-
pycnal coordinate models truly adiabatic. The method treats the dynamics as Lagrangian in the
vertical, in contrast to the Eulerian algorithms used previously. This distinction was discussed by
Bleck (1978). The general notion (with which we agree entirely) is that an adiabatic formulation is
preferable for climate scale modeling. However, we also consider how to integrate forward non-
hydrostatic equations in general coordinates, appropriate for small scale processes. We find that
the Boussinesq non-hydrostatic equations and a Lagrangian treatment of the vertical direction are
mutually exclusive. We conclude with more questions than answers and hope that this note will
stimulate some research into these issues.
2. Hydrostatic equations in general vertical coordinates

The traditional equations of motion for the ocean (in which the hydrostatic and Boussinesq
approximations are made) can be written in terms of a general vertical coordinate r = r(x,y,z, t).
We restrict our discussion here to the Boussinesq equations for the purpose of comparison with
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the non-hydrostatic equations discussed later. We recognize that we could as easily use the hydro-
static non-Boussinesq equations here. The hydrostatic model equations are:
2 Iso
horizo
gz/q0.
Dt~vh þ f k̂ ^~vh þ
1

q0

rrp þ
q
q0

rrðgzÞ ¼ ~F h ð1Þ

orp þ qorðgzÞ ¼ 0 ð2Þ

otzr þrr � ðzr~vhÞ þ orðzr _rÞ ¼ 0 ð3Þ

otðzrhÞ þ rr � ðzrh~vhÞ þ orðzrh_rÞ ¼ Qh ð4Þ

otðzrsÞ þ rr � ðzrs~vhÞ þ orðzrs_rÞ ¼ Qs ð5Þ

q ¼ qðh; s; pÞ ð6Þ

otgþr �
Z

~vhzrdr ¼ P ð7Þ
where~vh is the horizontal component of the flow vector, f is the Coriolis parameter, q0 is a ref-
erence density, q is in situ density, g is the constant of gravitational acceleration, z is height ref-
erenced to the geoid, ~F h is an arbitrary horizontal force resulting from the divergence of internal
and external stresses on the fluid, p is the thermodynamic pressure, _r is the vertical flow rate across
an r surface and h is potential temperature, s is the salinity, g is the free-surface height displace-
ment and Qh, Qs and P are general sources and sinks of heat, salt and fresh water, respectively. In
all the equations in this note, $r = (ox,oy, 0) is the gradient operator along r surfaces. The integral
in the free surface equation (7) is over the full depth of the fluid and consequently is independent
of the choice of coordinate system.

The factor, zr � orz, is referred to as the ‘‘thickness’’ and is the scale factor describing the ver-
tical coordinate mapping from height. zr is the principle discriminator between different coordi-
nate systems (choices of r). If we choose r = z then zr = 1 and we recover the conventional
height coordinates equations. If we choose r = r = (z � g)/(H + g), where z = �H is the location
of the solid bottom, then zr = H + g and we recover the usual terrain-following coordinate equa-
tions. If we choose r = q then zr = (ozq)

�1 and with some small manipulation 2 we can obtain the
continuous isopycnal coordinate equations.

The hydrostatic approximation (2) allows the pressure, p, to be found by vertical integration
given an appropriate pressure boundary condition at the sea-surface (p = pa at z = g):
p ¼ pa þ g
Z rs

r
qzrdr0
where rs = r(z = g) denotes the coordinate of the free surface. Vertical integration for the pressure
is carried out in both classes of model discussed next.
pycnal models are usually formulated using the Montgomery potential, M = q/q0 + qgz/q0, so that in the
ntal momentum equations 1

q0
rqp þ q

q0
rqðgzÞ ¼ rqM and the hydrostatic balance equation becomes opM =
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2.1. The EVD algorithm: quasi-Eulerian treatment of the vertical direction

In the height coordinate equations, the continuity equation is unambiguously a strong constraint
on the flowfield and is thus used to diagnose the vertical component of velocity in such away so as to
be exactly non-divergent. The continuity equation is used in essentially the samemanner in themore
general class of terrain-following coordinate models. Although the continuity equation (3) appears
to be prognostic in ‘‘thickness’’, the rate of change of thickness is dictated by the free-surface evolu-
tion (7) due to the prescribed functional relationship between the coordinate r and g. Thus, inEq. (3),
the time tendency term is known and the equation may be integrated vertically to diagnose _r:
zr _r ¼ zr _r�H �
Z r

r�H

otzr þrr � zr~vhð Þdr0 ð8Þ
where r�H = r(z = �H) denotes the coordinate of the ocean floor and _r ¼ _r�H denotes the no nor-
mal flow boundary condition. Due to the close algorithmic connection between the height and ter-
rain-following coordinate models we refer to this diagnostic use of the continuity equations as the
quasi-Eulerian treatment of the vertical direction, or EVD method for short.

In the continuous equations, the free-surface equation (7) is derived by vertically integrating the
continuity equation (3) from top to bottom and is consistent with applying Eq. (8) at the free-sur-
face along with appropriate boundary conditions. In the discrete equations, conservation proper-
ties typically depend on the relationship between the free-surface equation and the three
dimensional continuity equation. However, it simply suffices to ensure that the vertical sum of
the time tendencies and horizontal volume fluxes are independently equal to the corresponding
terms in the free-surface equation.

We should emphasize that the EVD algorithm refers specifically to the ‘‘Eulerian’’ treatment of
the vertical terms in the continuity equation. The horizontal terms could be treated with a
Lagrangian or semi-Lagrangian method. Moreover, the vertical advection terms in the thermody-
namic and momentum equations could be treated with a Lagrangian method. However, it is typ-
ically hard to retain conservation properties of tracers if the tracer equations are treated
differently to the continuity equation.

If we choose to use isopycnal coordinates, r = p, the algorithm above would appear to work
well. However, the procedure of integration differs from the LVD algorithm (described next) used
by modern isopycnal models: in the EVD algorithm, we predict the heat and salt (4) and (5), and
then diagnose the density. From the density we can diagnose the rate of change of thickness and
then diagnose from continuity (3) the cross-coordinate flow, _r. Using this procedure, it is very
hard to guarantee that the cross-coordinate flow, _r, is identically zero (adiabatic) in the absence
of diabatic forcing.
2.2. The LVD algorithm: quasi-Lagrangian treatment of the vertical direction

In contrast to the EVD algorithm, if we treat the vertical coordinate as Lagrangian, as is the
case in modern isopycnal models, then it is more natural to use the continuity equation
prognostically:
otzr ¼ �rr � ðzr~vhÞ � orðzrRÞ ð9Þ
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where _r ¼ R is prescribed. This is especially evident if we consider the adiabatic limit where the cross-
coordinate flow vanishes ð_r ¼ R ¼ 0Þ. In this case, integrating equations (1)–(3) over layers yields the
stacked shallow water equations which represent the archetypal isopycnal model. This conveniently
eliminates the need to calculate any vertical fluxes due to advection (there are none) so that all (un-
forced) prognostic equations appear as strictly horizontal (i.e. terms involving r in Eqs. (3)–(5) van-
ish). Further, all advective truncation errors are confined to the horizontal coordinate planes and
may be entirely masked by epineutral stirring and mixing, to the extent that the coordinate surfaces
coincide with neutral surfaces (Bleck, 1998). In this system there is a clear separation of dynamics and
thermodynamics; the dynamical modes (internal waves and Rossby mode) are governed by Eqs. (1)–
(3) alone. There is no vertical advective signature of linear internal waves; the time tendency of thick-
ness plays that role. Propagation is due to horizontal dynamics and hydrostatic pressure alone.

We will refer to the prognostic use of the continuity equation (9) as the quasi-Lagrangian treat-
ment of vertical dynamics or LVD for short. It specifically refers to the specification of cross-coor-
dinate flow, _r ¼ R, and prognosticated evolution of thickness, zr. The LVD algorithm is at the
heart of modern isopycnal models and some hybrid coordinate models. These models use the
‘‘arbitrary Lagrangian–Eulerian’’ method (or ALE for short) which facilitates non-adiabatic mo-
tions––i.e. it allows cross-coordinate flow in an otherwise Lagrangian vertical coordinate system.
In the ALE method, the approach is to first integrate the equations forward in a truly Lagrangian
phase assuming no cross-coordinate flow and then in a second phase to re-map quantities in the
vertical. The re-mapping phase plays the role of cross-coordinate fluxes and can be formulated to
re-map to any arbitrary coordinate. In this regard the ALE method is completely general. This use
of two distinct phases is generally known as operator splitting. Although the re-mapping phase
can account for cross-coordinate flow and render the system as if it were in fixed coordinates
(Eulerian), it does not change the algorithmic nature of ALE which is Lagrangian. The ALE
method belongs to the class of LVD algorithms because the continuity equation is not used diag-
nostically. This becomes clear when we later consider how to solve the non-hydrostatic equations
in which the three space dimensions are treated symmetrically.

We have ignored many details that are necessary to successfully integrate the isopycnal equa-
tions. For instance, a problematic issue is that zr must be positive definite; using the LVD algo-
rithm, a positive definite advection method is required for thickness. Also, one of the
thermodynamic equations is redundant and care must be taken in eliminating this equation con-
sistently with a non-linear equation of state. Here, we assume that such issues are resolvable and
not pertinent to this discussion.

2.3. The conundrum

We summarize the essential differences between two basic methods of solution for the hydro-
static primitive equations (also noted by Bleck, 1978) as follows.

The quasi-Eulerian treatment of the vertical direction (EVD), which encapsulates the algorithms
used in height and terrain-following coordinate models, has the following features:

• The continuity equation is used in the form of 8 to diagnose the cross-coordinate flow rate, _r,
• the free-surface equation is integrated forward in addition to the three dimensional equations,
• the thickness, zr, and its time derivative, otzr, are functionally related to other variables.
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The Lagrangian treatment of the vertical direction (LVD), as used in modern isopycnal models
that in principle can be exactly adiabatic, has the following features:

• The continuity equation is used in the form of (9) to predict the thickness zr,
• the cross coordinate flow, _r ¼ R, is specified when used in the continuity equation,
• the free-surface equation is redundant.

It should be self evident that these two algorithms are mutually exclusive; one cannot both sup-
ply and diagnose a quantity in an equation.

It has been recognized that spurious diabatic fluxes are a major problem for ocean climate mod-
els and these spurious fluxes are particularly large for the height and terrain-following coordinate
models (Griffies et al., 2000a). Isopycnal models do not suffer from this problem and can poten-
tially represent truly adiabatic flows.

It is simplest to use the LVD algorithm to solve the isopycnal equations and simplest to use the
EVD algorithm when the coordinate is not related to thermodynamic quantities.

The ultimate goal of hybrid coordinate models is to do as well as single coordinate models in
particular regions of the ocean. Hybrid coordinate models currently use either the EVD or LVD
algorithm. It is not clear whether a hybrid coordinate model using the EVD algorithm can repre-
sent adiabatic flows as accurately as a model using the LVD algorithm––this is an open question
that needs addressing. On the other hand, it is possible to use the LVD algorithm for a non-
Lagrangian coordinate by means of the ALE method (the re-mapping phase accommodates the
cross-coordinate flow). To this end, the ALE method would appear to be the best method to
achieve optimal fidelity for all coordinate systems.
3. Incompressible non-hydrostatic equations in general coordinates

One aspect of the LVD algorithm is that it explicitly breaks the symmetry between horizontal
and vertical direction. This may be justified since in a hydrostatic model the statement of hydro-
static balance breaks the symmetry. However, models such as the MIT general circulation model
(Marshall et al., 1997a) have an optional capability to solve the non-hydrostatic equations. A de-
sire to implement general and hybrid coordinates in such a model forces us to consider whether
the LVD algorithm can be used for the incompressible non-hydrostatic equations; the current
methodology (known as the projection method) used to solve the non-hydrostatic equations falls
into the class of EVD algorithms and treats all three space dimensions symmetrically.

The Boussinesq equations are filtered equations and do not exhibit acoustic modes. They differ3

from Eqs. (1)–(7) by relaxing the hydrostatic approximation (2) which is replaced with the vertical
momentum equation
3 To
the ho
Dtwþ 2~X ^~v
� �

� k̂ þ 1

q0

z�1
r orp þ

q
q0

z�1
r orðgzÞ ¼ F w ð10Þ
be consistent, the approximated Coriolis terms in Eq. (1) must be replaced with the full Coriolis terms, namely
rizontal components of 2~X ^~v.



230 A. Adcroft, R. Hallberg / Ocean Modelling 11 (2006) 224–233
where w = Dtz is the vertical component of velocity in height coordinates. We use the Eulerian
vertical flow, w and not _r to keep the vertical momentum equation simple. Note that the horizon-
tal pressure gradient term (Eq. (1)) now takes the form 1

q0
ðrrp � z�1

r orprrzÞ. To close the equa-
tions we need to relate w and _r. We do this by assuming a limited functional form of
r = (z,g,H,q). Thus, we can write
_r ¼ rzwþ rgDtgþ rHDtH þ rqDtq ð11Þ

where
rz �
or
oz

����
g;H ;q

; rg �
or
og

����
z;H ;q

; rH � or
oH

����
z;g;q

and rq �
or
oq

����
z;g;H
Note that rz should not be confused with the reciprocal of zr; the first is a functional derivative
holding arguments constant while the second is a spatial derivative hold horizontal coordinate
and time constant.

Eqs. (1), (10), (3)–(7) and (11) can be solved using the projection method, also known as the
pressure method, which is the canonical method for solving incompressible equations (Chorin,
1968; Durran, 1998). Alternative methods, for example a semi-implicit treatment of sound waves,
essentially take a similar form. The projection method, as we describe it, assumes an explicit in
time treatment of all terms except the pressure gradient (although the method can be generalized).

We summarize the time-discretized momentum and continuity equations with
~v ðnþ1Þ
h �~v ðnÞ

h

Dt
þ 1

q0

rrp � z�1
r ðrrzÞorp

� �
¼ ~G

ðnÞ
h ð12Þ

wðnþ1Þ � wðnÞ

Dt
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q0

z�1
r orp ¼ GðnÞ

w ð13Þ

rr �zr~v ðnþ1Þ
h

� �
þ or zr _r

ðnþ1Þ� �
¼ �otzr ð14Þ
where the G�s incorporate all the terms that are explicit in time. For convenience, it is useful to
define the intermediate quantities
~v � ¼~v ðnÞ þ Dt~G
ðnÞ
h

w� ¼ wðnÞ þ DtGðnÞ
w

_z�r ¼ otzr þrr �zr~v �
h

� �
þ or zrrzw�ð Þ
which simplifies the time-stepping equations to
~v ðnþ1Þ ¼~v � � Dt
q0
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Invoking the functional relationship (11) between w and _r we obtain
_rðnþ1Þ ¼ rzw� � rz
Dt
q0

z�1
r orp þ rgDtg

ðnþ1Þ þ rHDtH ðnþ1Þ þ rqDtq
ðnþ1Þ
Substituting into the continuity equation applied to the future time step (Eq. (14)) we obtain a
Poisson problem to solve for p:
rr � ðzrrrpÞ �rr � ðorprrzÞ þ orðrzorpÞ ¼ q0
Dt _z�r þ or zr rgDtgðnþ1Þ þ rHDtH ðnþ1Þ þ rqDtqðnþ1Þ� �� �� �

ð15Þ
The appearance of the time-derivatives of g and q on the right hand side will be troublesome for
conservation properties but in principle does not stop us from using the method to integrate the
equations forward. Broadly speaking, the pressure equation (15) is an elliptic equation that, in a
discrete form and given appropriate boundary conditions, can be solved by various linear algebra
methods.

Common sense suggests that pure isopycnal coordinates should not be used for non-hydrostatic
modelling because of monotonicity requirements for vertical coordinates and the exclusion of res-
olution in unstratified regions. This is, of course, pointless since non-hydrostatic effects tend to be
associated with over turning (e.g. Kelvin–Helmholtz instabilities). Similarly, terrain-following
coordinates can be used for non-hydrostatic modelling but the presence of the cross-terms in
the elliptic pressure equation greatly affects the ease with which the equation can be solved.
The larger the terms become the harder it is for algebraic solvers to find solutions efficiently. This
suggests that a useful strategy for choosing a vertical coordinate for non-hydrostatic modelling is
to minimize these cross-terms. Consequently, the most natural choice of vertical coordinate is
height (where the terms vanish) or something closely related to height, such as the z* coordinate
(Adcroft and Campin, 2004). The latter choice is still more complicated than height due to the
time-dependent source terms in the pressure equation (15).

By construction, the projection method excludes the use of the LVD algorithm of Section 2.2;
the LVD algorithm prescribes _r in the continuity equation and in the projection method this same
term should be substituted from the vertical momentum equation. We therefore conclude that
non-hydrostatic models using the projection method must use the EVD algorithm (Section 2.1).
4. Discussion

We have considered the general methods for solving the equations of motion in primitive equa-
tion form (i.e. prognostic in velocity) in both the hydrostatic and non-hydrostatic limits. We
found that the two basic approaches to hydrostatic modelling appear to be exclusive; it is hard
to formulate an algorithm that can encompass both approaches. This is of relevance because
the isopycnal modelling community has learned that the Lagrangian approach is best suited for
modelling adiabatic motions; the EVD algorithm is not sufficiently adiabatic for some important
oceanographic applications, even applied in isentropic coordinates (Griffies et al., 2000a). Given
the highly adiabatic nature of the interior ocean, the argument is that hydrostatic hybrid coordi-
nate ocean models should use the LVD algorithm to avoid spurious diabatic effects.
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In order to construct versatile models that can work efficiently at both the large scales where the
flow is hydrostatic and at very small scales in the non-hydrostatic limit (e.g. coastal scale and pro-
cess studies), we would need to keep the algorithm considerations we have discussed in mind when
choosing vertical coordinates and designing algorithms. We argue that it is hard to envision non-
hydrostatic modelling in a vertical coordinate that significantly differs from height. Moreover, the
projection method used in current non-hydrostatic models of the ocean (Marshall et al., 1997b)
excludes the possibility of using the LVD algorithm. Thus, while we might prefer the LVD algo-
rithm for philosophical reasons, future models designed to model a wide range of scales and pro-
cesses may be forced to use the EVD method.

The differences in solutions invoked by using either the EVD of LVD algorithm in hybrid coor-
dinate models could in principle be evaluated by comparing two such models with the same hybrid
coordinate. However, other implementation details (such as the choice of pressure gradient meth-
od) are likely to be influenced by the choice of over-arching algorithm and may mask the essential
differences. Nevertheless, a comparison may address the question of whether differences due to
choice of algorithm are significant at all.

We have considered the non-hydrostatic equations in order to emphasize the difference between
the EVD and LVD algorithms. The essential difference is that the EVD algorithm treats all spatial
dimensions equally while the LVD algorithm treats the vertical dimension very differently from
the horizontal.

The elliptic pressure equation appears in the incompressible non-hydrostatic equations because
the acoustic modes have been filtered out of the system. In the unapproximated Navier–Stokes
equations the role of the diagnostic elliptic equation for pressure is played by a prognostic equa-
tion for pressure; the system is hyperbolic. Here, there appears to be no inherent problems to solv-
ing the equations explicitly in general coordinates using either the EVD and LVD algorithm. We
speculate that relaxing the incompressible approximation may allow general coordinate non-
hydrostatic modelling in the future. This approach is more readily available for use in the atmo-
sphere than in the ocean: the Mach number (U/cs) is less than one but still of first order while in
the ocean the Mach number is of order 10�2.

As computational resources and capabilities increase with time, the resolution of ocean models
will be driven ever higher to a point where even global models achieve the resolutions normally
associated with regional and process models. At some point, as is happening in meteorology,
non-hydrostatic models will become the norm rather than the exception. The current direction
that we are heading with the particular algorithms used in hybrid coordinate models may be at
odds with this long-term goal. We suggest that a worth-while goal would be to find a non-hydro-
static algorithm that can recover adiabatic properties in the hydrostatic limit. This may require the
adiabatic constraint to be enforced in the EVD algorithm or alternatively a non-symmetry break-
ing form of LVD algorithm be found. We hope that this discussion may stimulate research toward
these goals.
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