Dynamics of a dense gravity current flowing over a corrugation

Mehmet Ilicak\textsuperscript{a,}* , Sonya Legg\textsuperscript{a}, Alistair Adcroft\textsuperscript{a}, Robert Hallberg\textsuperscript{b}

\textsuperscript{a}Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ 08540, USA
\textsuperscript{b}NOAA-GFDL, Princeton University, Forrestal Campus, U.S. Route 1, P.O. Box 308, Princeton, NJ 08542, USA

1. Introduction

Deep and intermediate water formation is crucial for the large scale ocean circulation and plays an important role for the meridional overturning circulation. These dense waters originate in marginal seas and form overflows that flow out through narrow channels and settle in the open ocean at levels determined by entrainment. Important examples of overflows are the Weddell Sea (Foldvik et al., 2004), Ross Sea (Gordon et al., 2004), Denmark Strait (Macrander et al., 2007), Faroe Bank Channel (Mauritzen et al., 2005), Mediterranean Sea (Baringer and Price, 1997) and Red Sea (Peters et al., 2005) overflows. Observations show that only Antarctic overflows sink to the bottom of the ocean while other overflow equilibrate at intermediate depths.

Overflows are bottom-trapped gravity currents and are therefore controlled by the topography (Özgökmen et al., 2004; Ilicak et al., 2008a). In general, the continental slopes are not smooth and consist of many ridges, canyons and topographic corrugations.

The steering of dense gravity currents by corrugations has been observed in oceanic overflows. Sherwin et al. (2008) describe that a significant part of the Faroe-Shetland Channel Bottom Water appears to be channelled through a canyon that leads southward down the southern flank of the Faroe Bank into the Ellett gully. Foldvik et al. (2004) show that the Weddell Sea overflow is directed by two ridges to the deeper ocean after it leaves the continental shelf and is influenced by planetary rotation. Muench et al. (2009b) suggest that corrugations at the Drygalski Trough in the Ross Sea might be responsible for the enhanced downslope overflow transport that feeds Antarctic Bottom Water (AABW), the dominant abyssal water mass in the world (Johnson, 2008).

There are several approaches to investigate the effects of ridges and canyons on gravity currents. The first is to conduct laboratory experiments (Davies et al., 2006; Darelius, 2008; Wahlin et al., 2008). Their main advantage is that large ensembles of experiments can be performed with known parameters and real fluid. Davies et al. (2006) perform idealized rotating fluid tank experiments to replicate and quantify the main structures of the steady Faroe Bank Channel overflow which flows in a divergent canyon. Darelius (2008) shows that laminar, dense gravity currents are steered downslope by V-shaped ridges and canyons. She observes that the corrugations can transport all the overflow water...
downslope when the transport of the overflow is less than the maximum corrugation transport defined by an analytical theory. Wahlin et al. (2008) perform a set of laboratory experiments in a rotating tank to investigate the effect of small-scale topography on plume mixing. They also find that the dense overflow is directed downslope when a ridge or canyon is present. The total mixing and the entrainment rate of the overflow increases when the flow meets an obstacle (Wahlin et al., 2008). However, the disadvantages of laboratory experiments are that the effective Reynolds number is orders of magnitude smaller (Darelius, 2008) and the topographic scales are typically much larger than those in the ocean (Wahlin et al., 2008).

An alternative approach to investigating the effects of corrugations on overflows is with high resolution numerical simulations (Jiang and Garwood, 1998; Özgökmen and Fischer, 2008; Wilchinsky and Feltham, 2009; Wang et al., 2009). The Filchner overflow in the Weddell Sea is modeled by Wilchinsky and Feltham (2009) and Wang et al. (2009). The former found that the plume of Ice Shelf Water runs into two ridges when it travels along the slope of the continental shelf. They argue that the temporal variability of the overflow observed by Darelius et al. (2009) can be due to the dome-like structures of the plume. Wilchinsky and Feltham (2009) employ numerical simulations with and without the ridges and find that their presence strongly affects the plume shape. Wang et al. (2009) perform numerical simulations for the Weddell Sea overflow. They find that the eddies formed by the overflow have typical scales of 20–40 km, and a temporal scale of about 3 days. They also show that two ridges shape the details of the overflow structure. Ridges not only split and steer the overflow but also generate strong mixing. Matsumura and Hasumi (2010) also conduct realistic numerical simulations to study the effect of the ridges on Weddell Sea overflow. They find that ridges have two different mechanisms of inducing offshore transport: a strong downslope current at the upstream side of the ridge and offshore transport by eddies that are induced when the overflow passes over the ridge. Numerical simulations in Muench et al. (2009b) suggest that the Ross Sea overflow might be directed downslope by multiple fine scale corrugations (Height ~ 10 – 100 m with Wavelength ~ 1 km).

Observations and numerical studies therefore show that two well-known deep water formation sites (Ross Sea and Weddell Sea overflows) are influenced by the effect of corrugations. However, the small-scale nature of these corrugations prevents their explicit resolution in global ocean general circulation models (OGCMs) used in climate models. Typically, OGCMs have a resolution of 1° ~ 100 km in the horizontal direction, which is much larger than the length-scale of the corrugations. Thus, the effect of the corrugations has to be parameterized. In this study, we study the interaction between a single corrugation (canyon or ridge) and a gravity current. Our main goal is to address the following questions:

(a) How is the dense water transported and mixed over a corrugation?
(b) Is there a single parameter that describes the flow for different corrugations?
(c) Can we develop a parameterization of the effects of the corrugation on the overflow for use in OGCMs?

To investigate the effects of a corrugation, we systematically perform idealized experiments with different aspect ratios of the corrugation. Our focus is on the pathway of the overflow in the presence of a canyon or a ridge. The overflow transport and mixing in different simulations are computed for quantitative comparison. We also propose a new numerical parameterization based on physical properties to reproduce the effect of a corrugation in a coarse model. To our knowledge, this is the first time that a set of detailed and systematic numerical simulations have been conducted to understand the interaction between the overflow and a single corrugation.

Our main findings are the following. Ridges steer the overflow plume off-shore more effectively than canyons with the same aspect ratio. When the height (width) of the obstacle increases, the downslope transport of the plume increases (decreases). This is consistent with the analytical theory developed by Wahlin (2002). We find that the corrugation Burger number ($Bu_c$) can be used to define the flow over rough topography. We also propose a new parameterization as a function of $Bu_c$ that can be used to represent the effect of unresolved shear on mixing in coarse resolution models. There is a reasonable agreement in the overflow thickness and transport between the coarse models with parameterization and the high resolution models without the parameterization. The outline of this paper is as follows: The numerical model and setup of the experiments are introduced in Section 2. The main results are presented and discussed in Section 3, then we summarize and conclude in Section 4.

2. Model setup

In this study, the Generalized Ocean Layer Dynamics (GOLD) model is employed. GOLD is a free-surface, hydrostatic, primitive equation ocean model that uses isopycnal (density) coordinates in the vertical (Adcroft et al., 2004; Hallberg and Adcroft, 2005; Gnanadesikan and Anderson, 2009). The most obvious advantage of an isopycnal model is that there is no spurious mixing due to the advection schemes in rough topographies unlike in geopotential and terrain-following coordinates (Griffies et al., 2000). Density models have to parameterize the diapycnal mixing explicitly. Here, GOLD uses a new parameterization for bottom boundary and shear induced mixing depending on the local balance of turbulent kinetic energy and shear (Jackson et al., 2008). In this shear-driven parameterization the eddy diffusivity ($\kappa$) is computed as

$$\frac{\partial^2 \kappa}{\partial z^2} + \frac{\kappa}{L_d} = -2SF(Ri),$$

(1)

where $S$ is the vertical shear and $L_d$ is a vertical decay length scale defined as $L_d = 0.82L_0$. Here, $L_0 = \sqrt{k/N}$ is the buoyancy length scale where $k$ is the turbulent kinetic energy. The function $F(Ri)$ on the right hand side of Eq. (1) is the mixing function and depends on the gradient Richardson number, $Ri$, as

$$F(Ri) = F_{v,max} \left( 0 \frac{1 - Ri/Ri_c}{1 + zRi/Ri_c} \right).$$

(2)

Note that for this parameterization to be effective, the shear causing the mixing must be explicitly resolved. In this study, $\alpha = -0.97$ and $Ri_c = 0.25$, as calibrated against 3D direct numerical simulations of stratified shear instability by Jackson et al. (2008).

The computational domain is similar to the Dynamics of Overflow Mixing and Entrainment (DOME) setup (Legg et al., 2006) but with a negative Coriolis parameter appropriate to the Southern Hemisphere. The domain is 150 km long in the $y$-direction and 85 km wide in the cross-slope $y$-direction (Fig. 1(a)). A dense flow is injected into the northern end of a flat-bottom channel of depth 600 m, width 10 km and 2 km long. The horizontal resolution of 500 m is smaller than the Rossby deformation radius ($L_{RD} = 3 – 4$ km). All experiments use 25 isopycnal layers. A single corrugation (ridge or canyon) is placed 35 km east of the opening of the channel (Fig. 1(b)), so that when the overflow encounters the corrugation, the flow is already geostrophically adjusted (recall $f < 0$). The channel opens into an idealized open ocean with a uniform slope, $s = 0.08$, and a maximum depth of 7000 m. The
The idealized ocean is deep enough to minimize the reflection of the open boundary conditions at the southern side of the domain. A quadratic bottom drag formulation is used with a drag coefficient of $C_d = \frac{2}{C_2 10^{3/2}}$ which is comparable to the overflow observations (Muench et al., 2009a). In this study, an $f$-plane approximation with the Coriolis parameter $f = \frac{1.4}{C_0 1.4} 10^{3/2}$ is employed. The characteristic method boundary conditions of Blayo and Debreu (2005) are applied to the east, west and south boundaries (see Appendix A for equations). In addition to open boundary conditions, a sponge layer is also used at $x > 140$ km to damp the density structure back toward the initial condition and remove the passive tracers that mark the overflow. The model is integrated for 40 days after the dense water is released from the north. This integration time is sufficient for the gravity current to reach the eastern boundary and achieve a quasi-steady state. The overflow reaches the boundary 10 days after the initial release, thus statistical data analysis are performed between 15 and 35 days. Surface stresses and buoyancy fluxes are set to zero everywhere in order to focus only on the variability of the flow due to corrugations.

Injection of the inflow in the channel is as follows. The dense overflow has its maximum thickness, $H_{in}$ and velocity at the left-hand wall (when looking downstream) with a transport of

$$T_{in} = g' H_{in}^2 / (2f),$$

where $g' = g \omega \rho_o / \rho$ is the reduced gravity. Initially, there is no stratification in the ambient water and the injected outflow is $0.2$ kg m$^{-3}$ denser than ambient water which leads to $g' = 0.0019$ m s$^{-2}$. A parabolic profile is chosen for the inflow so that the minimum gradient Richardson number $\left( Rl_b = -\frac{\omega^2 \rho}{(\bar{\omega})^3} \right)$ is equal to $1/3$ between the overflow and the ambient water. This condition minimizes the mixing in the channel and keeps the structure of the inflow constant. For further information about the inflow conditions, the reader is referred to Legg et al. (2006).

![Fig. 1](image)

**Table 1** Experimental setup for ridges and canyons with different height, $H$, and width, $W$ using $s = 0.08, f = -1.4 \times 10^{-3}$ s$^{-1}, g' = 1.9 \times 10^{-3}$ m/s$^2$ and $H_{in} = 150$ m.

<table>
<thead>
<tr>
<th>Exp</th>
<th>Height [m]</th>
<th>Width [m]</th>
<th>Aspect ratio (H/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>50</td>
<td>2000</td>
<td>0.025</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>2000</td>
<td>0.075</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>2000</td>
<td>0.15</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>2000</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>800</td>
<td>2000</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
<td>2000</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>1200</td>
<td>2000</td>
<td>0.6</td>
</tr>
<tr>
<td>8</td>
<td>50</td>
<td>4000</td>
<td>0.0125</td>
</tr>
<tr>
<td>9</td>
<td>150</td>
<td>4000</td>
<td>0.0375</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
<td>4000</td>
<td>0.075</td>
</tr>
<tr>
<td>11</td>
<td>600</td>
<td>4000</td>
<td>0.15</td>
</tr>
<tr>
<td>12</td>
<td>800</td>
<td>4000</td>
<td>0.2</td>
</tr>
<tr>
<td>13</td>
<td>1000</td>
<td>4000</td>
<td>0.25</td>
</tr>
<tr>
<td>14</td>
<td>1200</td>
<td>4000</td>
<td>0.3</td>
</tr>
<tr>
<td>15</td>
<td>50</td>
<td>6000</td>
<td>0.00833</td>
</tr>
<tr>
<td>16</td>
<td>150</td>
<td>6000</td>
<td>0.025</td>
</tr>
<tr>
<td>17</td>
<td>300</td>
<td>6000</td>
<td>0.05</td>
</tr>
<tr>
<td>18</td>
<td>600</td>
<td>6000</td>
<td>0.1</td>
</tr>
<tr>
<td>19</td>
<td>800</td>
<td>6000</td>
<td>0.1333</td>
</tr>
<tr>
<td>20</td>
<td>1000</td>
<td>6000</td>
<td>0.1666</td>
</tr>
<tr>
<td>21</td>
<td>1200</td>
<td>6000</td>
<td>0.2</td>
</tr>
</tbody>
</table>
A reference experiment with no topographic corrugation serves as a control case. A total of 42 perturbation experiments are conducted with 7 different heights, \( H \), and 3 widths, \( W \) (Table 1), for a ridge and a canyon (21 simulations each). This set of experiments provides information about the modification of transport, along-slope location and entrainment of the overflow due to corrugations with different aspect ratios. Fourteen additional experiments are performed with different Coriolis accelerations, \( f \), different reduced gravities, \( g_0 \), and different initial thicknesses of the inflow, \( H_{in} \). These latter experiments help us understand the effect of ridges when the upstream properties of the overflow change.

3. Results

3.1. The initial propagation of the modeled overflow

A passive dye is injected with the overflow in the channel. A plan view of the vertically integrated passive tracer concentration for the reference case (i.e. no corrugation) is shown in Fig. 2. After the overflow is released, the gravity current flows downslope and to the left due to the Earth’s rotation (recall \( f < 0 \)). The dense overflow never reaches its neutral buoyancy since there is no ambient stratification. However, the overflow becomes geostrophically adjusted and follows the isobaths (Fig. 2(b)). Cenedese et al. (2004) described three regimes for a dense current flowing down a sloping topography depending on the Froude, \( Fr \), and the Ekman, \( Ek \), numbers. The first regime is laminar flow which was observed for \( Fr < 1 \). The second regime is the so-called roll-wave regime which was observed for \( Fr \geq 1 \) and \( 0.05 < Ek < 5 \). The last regime is the eddy regime which occurs for \( Fr < 1 \) and \( 0.01 < Ek < 0.1 \). In our control run, \( Fr = u / \sqrt{g H_{in}} \approx 0.6 \) and the Ekman number is \( Ek = (\delta_e H_{in})^2 / (\alpha f^2) \approx 0.01 \) where \( \delta_e = C_d g_0 a / f^2 \) is the bottom Ekman depth and \( \alpha \approx \sqrt{s^2 + (H/W)^2} \) (Wahlin, 2002) where \( s \) is the background slope. Three distinctive cyclones in Fig. 2(c) indicate that the flow is indeed in the eddy regime. After 10 days, the overflow follows the topography and reaches the eastern boundary (Fig. 2(d)). Previous studies (Spall and Price, 1998; Ezer, 2006; Ilıcak et al., 2011) also show cyclogenesis in overflow systems. Spall and Price (1998) argue that the potential vorticity (PV) conservation might be responsible to generate cyclonic vortices. The exact mechanism to generate eddies in the gravity currents is beyond the scope of this paper.

Next, we look at the frequencies of the eddies formed by the overflow. Two different stations, S1 and S2, are selected away from the inflow area (see Fig. 1(a) for location of the stations). Fig. 3(a) and Fig. 3(c) display the time series of tracer concentration at station S1, 50 meter above bottom (mab) and S2, 70 (mab) respectively. There is strong temporal variability not only in tracer but also in velocities (not shown). Power spectra are computed for both time series. Fig. 3(b) and Fig. 3(d) clearly indicate three distinct signals in the overflow; (i) 14 h, 30 h and 60 h of oscillations for the station S1, (ii) 13 h, 30 h and 75 h of oscillations for the station S2. These three signals can be seen at all depths (not shown), thus the oscillations are close to barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic. Darelius et al. (2009) describe that the Filchner overflow also has three different oscillations; 35 h, 70 h and 140 h in addition to the tides. They observe that oscillations in temperature are accompanied by oscillations in velocity and they are both barotropic.
flows out from the continental shelf. To this end, we performed an additional experiment with an idealized bathymetry of the Weddell Sea. Two ridges are included in the model topography; both of them have a cosine shape with a width of 8 km. The first ridge (on the left) has a maximum height of 300 m and starts from 1500 m depth until 3500 m depth (Wang et al., 2009). The second ridge (on the right) has maximum height of 500 m and starts from about 800 m depth until 2500 m depth (Wang et al., 2009). The model is integrated 120 days. Fig. 4(a) displays the vertically averaged tracer field at time = 60 days. It is clear that both ridges steer the flow downslope. Two cyclones are visible around $x = 230$ km and $x = 270$ km. We choose two stations before and two stations after the ridges. The station locations are similar to those in Darelius et al. (2009). Tracer fields at 100 mab and 50 mab for stations S3, S4, S5 and S6 are shown in Fig. 4(b) and (c), respectively. Power spectra of the tracer fields show similar magnitude oscillations as seen in the control run (Fig. 4(d) and (e)). The same order of magnitude of variability is also seen in our simulation without any atmospheric forcing. Therefore, we believe that the observed fluctuations are due to the eddies generated by the vortex stretching described above. This result is also consistent with the one described by Wang et al. (2009).

3.2. The steering of the overflow by ridges and canyons

In this section, ridges and canyons with different aspect ratios are investigated. Figs. 5 and 6 display vertically integrated tracer concentration for different ridges and canyons, respectively. The tracer weighted overflow thickness for the control run is shown in Figs. 5(a) and 6a at time = 20 days. Fig. 5(b) displays the domain with a ridge which has a height of 150 m and a width of 6 km ($H_m = 150$ m). Since the aspect ratio of the ridge is small, the flow seems only slightly affected. There are still two eddies visible in
the domain. However, when the height of the ridge is increased up to 600 m, the flow is changed dramatically (Fig. 5(c)). When the plume reaches the corrugation, the flow is steered downslope by the ridge. The dense water becomes much wider when it passes to the other side of the corrugation. The gravity current is transported to the deeper ocean due to the existence of the ridge. The tracer concentration can be found as far as $y = 30$ km south at the upstream side of the corrugation. The vertically integrated thickness of the overflow at the downstream side of the ridge is up to 100 m. This indicates that the overflow entrains ambient fluid.

Fig. 5. Plan view of the vertically integrated passive tracer concentration at a time 20 days after the release of the dense overflow for different cases: (a) control run ($H = 0$), (b) ridge $H = 150$ m; $W = 6$ km, (c) ridge $H = 600$ m; $W = 6$ km, (d) ridge $H = 1200$ m; $W = 6$ km. Depth contours are shown in black lines.

Fig. 6. Same as Fig. 5 but for canyons.
The theory predicts that corrugations have maximum transports non-dimensional transport capacity for a given corrugation shape. When the height of the ridge is increased to 1200 m, the overflow is piled up and transported to the deep ocean predominantly on the upstream side of the ridge (Fig. 5(d)). Most of the overflow is deeper than \( y = 40 \) km at the downstream side of the corrugation. This means that the mean path of the overflow is shifted off-shore.

The dynamics of the overflow passing over a canyon are similar to the dynamics of the gravity current in the ridge case. Fig. 6(b) displays the overflow passing a canyon which has a depth of 150 m and a width of 6 km. Once again, the overflow is not affected by the corrugation with a small aspect ratio. The steering of the flow by a canyon is more visible when the depth of the canyon increased to 600 m (Fig. 6(c)). The plume becomes much wider and spreads to the deeper part of the ocean. Fig. 6(d) displays the overflow passing a canyon which has a depth of 9000 m depth and reaches the southern boundary at the end of the domain. The overflow thickness upstream of the corrugation is comparable to or larger than unity, and there is strong mixing which will increase the overflow transport and the height of the overflow while reducing \( g' \).

Darelius and Wahlin (2007) find that the maximum transport of the corrugation for a given \( \gamma \) is larger for ridges than for canyons, since the walls of a canyon limit the lateral extent of the dense flow and the transport of the corrugation has to increase when \( \gamma \) decreases. The entrainment is often a function of Richardson number which can be defined

\[
Ri = \frac{s}{\gamma} \approx \frac{H_s}{(sW)^2} \frac{H_s}{U^2} = \frac{1}{Fr^2}.
\]

where \( Fr \) is the Froude number and \( H_s \) is the overflow thickness upstream of the corrugation. The geostrophic velocity \( (U) \) can be scaled with the Nof speed \( U \sim g' l f \) (Nof, 1983). This would give an estimate of the Froude number: \( Fr = \sqrt{\frac{g' l f}{Ho}} \). To compare with

\[
\gamma = \frac{sW}{\delta E}
\]

Fig. 7. (a) Non-dimensional transport of corrugations vs. \( \gamma \). (b) Non-dimensional transport of corrugations vs. \( Bu_c \).

The analytical theory developed by Wahlin (2002) predicts the non-dimensional transport capacity for a given corrugation shape. The theory predicts that corrugations have maximum transports depending on a nondimensional parameter \( \gamma = sW/\delta E \), where \( s \) is the background slope, \( W \) is the width of the corrugations and \( \delta E \) is the bottom Ekman depth (Wahlin, 2002; Darelius and Wahlin, 2007; Darelius, 2008). When the overflow transport, \( T_o \), is less than the maximum transport of the corrugation, \( T_c \) (where \( T_c \) is a function of \( \gamma \); see Eqs. (21) and (24)), the theory predicts that no dense water should cross over the corrugation. However, the theory is developed for a steady state solution so that the flow has to be stationary for the dense water to remain in a canyon. Steady state implies that the net transport across the corrugation must be zero, which can be satisfied only if the Ekman transport in the canyon is balanced by the geostrophic component (Wahlin, 2002). On the other hand, in all our simulations the dense plume passes over the corrugation even with large aspect ratios (i.e. smaller \( \gamma \)). One possible explanation might be that the eddies break the balance between geostrophic and Ekman transport, and that the eddies can carry the water past on the side of the ridges even when \( T_o < T_c \). In addition to this, the analytical theory assumes that mixing is negligible and the Burger number, \( Bu_c = g' H/(f^2 W^2) \), is small. In our idealized experiments \( Bu_c \) is comparable to or larger than unity, and the overflow transport, \( T_c \), is affected by the corrugation with a small aspect ratio.

\[
Bu_c = \frac{g' H}{f^2 W^2} = \frac{1}{Fr^2}.
\]

Fig. 8. (a) Non-dimensional transport of the ridge (\( H = 600 \) m and \( W = 6 \) km) changing \( f, g \) and \( H_in \). (b) Non-dimensional transport of the ridge (\( H = 600 \) m and \( W = 6 \) km) changing \( f, g \) and \( H_in \) vs. \( \gamma \).
theory, we examine the maximum transport of ridges and canyons with respect to two non-dimensional numbers: $\gamma$ and a corrugation Burger number defined as

$$Bu_c = \frac{1}{Fr} \left( \frac{H}{W} \right)^2 = \frac{H^2}{W^2} \frac{1}{s^2} \frac{H_0}{g^2/F^2}. \quad (5)$$

Note that the corrugation Burger number, $Bu_c$, is different than the original $Bu$. The former is a function of Richardson number and aspect ratio of the corrugation. We find that $Bu_c$ is more suitable to describe and parameterize the flow (as discussed in Section 3.4). Fig. 7(a) and (b) show the non-dimensional maximum transport of the corrugations for different $\gamma$ and $Bu_c$, respectively. The transport of a corrugation is normalized by $\bar{T} = \frac{s}{C_d} (sW)^2$ as described in (Davies et al., 2006). In the experiments shown in Figs. 7(a) and 6(b), $\gamma$ and $Bu_c$ are changed by changing either height ($H$) or width ($W$) of the canyon (see Table 1). In the ridge case, an additional eight experiments are performed changing the background slope ($s = 0.04, 0.06$) with a width of 6 km and different heights of $H = 50, 150, 300, 600$ m, respectively (red stars in Fig. 7(a) and (b)). It can be clearly seen that ridge transports (black stars) are larger than canyon transports (blue circles) at the same $\gamma$ as expected by the theory. There is a clear correlation between the transport, $\bar{T}$, and $\gamma$ and $Bu_c$. When $H$ of a ridge increases (holding $W$ constant), the non-dimensional parameter $\gamma$, which can also be defined as

$$\gamma = \frac{sW}{C_d Fr \sqrt{s^2 + (H/W)^2}}. \quad (6)$$

Fig. 9. Vertical section of averaged tracer at $y = 70$ km for (a) ridge with $H = 600$ m and $W = 6$ km (b) canyon with $H = 600$ m and $W = 6$ km. Averaged tracer values are computed in geopotential coordinates. Vertical section of averaged tracer at $y = 50$ km for (c) ridge with $H = 600$ m and $W = 6$ km (d) canyon with $H = 600$ m and $W = 6$ km. Averaged tracer values are computed in geopotential coordinates.
decreases and \( B_u \) increases. This means that the ridge can steer more dense water into the deep ocean, thus the cross-slope transport of the ridge increases. On the other hand, if \( H \) is kept constant and \( W \) increases, \( \gamma \) increases and \( B_u \) decreases. In this case, the maximum transport goes down since the slope of the corrugation becomes more gentle (i.e. \( H/W \) decreases) and the ridge or canyon carries less dense water to the deep. The theoretical values of a cosine shaped ridge and canyon (see Appendix B for solutions) are also computed (black and blue lines in Fig. 7(a)). Darelius (2008) finds that the theory overestimates the transport of the corrugations in the laboratory experiments. We can see that canyon transports are below the theoretical values. However, the transports of the ridges are above the theoretical values, which indicates that the simulated flow carries more than the analytical estimation.

We also perform fourteen additional experiments with a fixed ridge geometry (with \( H = 600 \) m and \( W = 6 \) km) changing the Coriolis parameter (\( f = -1, -1.1, -1.2, -1.3 \times 10^{-4} \) s\(^{-1} \)), reduced gravity (\( g = 0.0024, 0.0029, 0.0033, 0.0038 \) m s\(^{-2} \)) and initial overflow thickness \( (H_0 = 200, 250, 300, 350, 400, 450 \) m), respectively. The maximum transport that the ridge carries for these new experiments is shown in Fig. 8. Changing \( f \) (blue points) and \( g \) (green points) do not effect the non-dimensional transport significantly since the transport is normalized by \( \frac{H}{x^2} \frac{d}{C_0} \). On the other hand, when the initial overflow thickness increases, the cross-slope transport of the ridge also increases (black points in Fig. 8(a)). On the other hand, increases in transport due to increases in \( H_0 \) can not be represented using \( \gamma \) (black circles in Fig. 8(b)). Thus, we focus on the dependence of properties on \( B_u \), since it contains information on the corrugation, \( H^2 \), and information on the upstream properties of the overflow, \( H_0/[s^2g/f^2] \).

Time-averaged vertical sections of tracer for a ridge and a canyon with \( H = 600 \) m and \( W = 6 \) km are shown in Fig. 9. The dense overflow piles up on the upstream side of the ridge. The flow is thinnest at the top of the ridge, then the thickness of the overflow increases rapidly at the end of the corrugation (Fig. 9(a)). Deformations of the density field at \( x = 73 \) km clearly indicate a presence of a hydraulic jump. There is strong mixing after the edge of the corrugation since the tracer is diluted and the densest layer (shown in red) disappears on the right side of the ridge. In the canyon case, the overflow leans on the right side of the corrugation (looking northward in Fig. 9(b)). Once again, there is a small jump in the density field at \( x \approx 73 \) km. On the right side of the canyon, there is still fluid in the densest (red) layer which indicates less mixing with respect to the ridge case (to be discussed in Section 3.3).

The effect of corrugations can also be seen in the mean off-shore distance of the overflow plume. We compute the mean position of the overflow as a function of along slope distance for different corrugation cases:

\[
\mathcal{Y} = \frac{\int \rho T(x, y, z) dydz}{\int \rho(x, y, z) dydz},
\]

where \( \mathcal{Y} \) is the passive tracer. We only consider \( \gamma \) where it is greater than 0.05. The mean plume locations in \( y \)-direction for different heights of ridges are shown in Fig. 10(a). The control run plume travels along isobaths 15 km downslope from the source (green line). A small vertical ridge with a height of 50 m or 150 m does not change the direction of the flow significantly and the mean plume path is slightly below the control run plume path (black and blue lines). However, when the height of the ridge is increased to 300 m, the flow is steered downslope and travels along \( y = -20 \) km down from the source (red line). It can be clearly seen when the height of the ridge increases, the flow travels to the deeper part of the ocean (i.e. downslope in the \( y \)-direction). This is consistent with the maximum transport of the corrugation analysis. Increasing \( H \) leads to increased \( B_u \), thus the ridge steers the overflow water further downslope. Fig. 10(b) displays the tracer-weighted overflow path for ridges of different widths. The heights of these ridges are kept constant at \( H = 600 \) m. For the 8 km wide ridge, the plume path is at approximately 20 km down (cyan line) from the inflow channel since the slope of the ridge is gentler compared to the other ridges with the same height. When the width of the ridge decreases, \( B_u \) increases which leads to more downslope transport and a path lower down the slope (Fig. 10(b)).

To summarize, corrugations such as ridges and/or canyons may steer the plume downslope. The analytic theory developed by Wahlin (2002) and Darelius and Wahlin (2007) suggests that the flow is governed by a single parameter \( \gamma \) (Eq. (6)). However, we find that the corrugation Burger number, \( B_u \) (Eq. (5)), is a better parameter to describe the flow over topography since it includes the dependence on overflow thickness. Our idealized simulations show that ridges are more effective than canyons in transporting the overflow to the deeper ocean as predicted by the theory. The main reason behind this is that the flow in the canyon is limited by the canyon walls. The maximum downslope transport of a corrugation can be increased when the height of the corrugation increases (i.e. \( \gamma \) decreases or \( B_u \) increases) or when the width of the corrugation decreases (i.e. \( \gamma \) increases or \( B_u \) decreases).

3.3 Transport and mixing

The overflow thickness and alongslope transport are good indicators for the mixing in gravity current simulations (Legg et al., 2006; Ilıcak et al., 2008a). Tracer weighted overflow thickness, \( h_o \) is defined as

\[
h_o(x) = \frac{\int h(x, y, z) \tau(x, y, z) dydz}{\int \tau(x, y, z) dydz},
\]

where \( h \) is the height above the bottom. Fig. 11(a) displays the mean overflow thickness as a function of along-slope distance for ridges
with different heights but constant width ($W = 6$ km). A steady increase in the overflow thickness can be seen in the control case (green line) because of the entrainment of ambient water. The tracer weighted overflow thickness is around 60 m for the control case (green line) because of the entrainment of ambient water. The statistically steady overflow thicknesses are consistent with the vertical section described in the previous section. In all the ridge simulations, the transport suddenly increases when the overflow meets the corrugation and the transport is always larger than the one in the control run after the corrugation. The maximum transport occurs at the ridge with the height of 800 m, consistent with the maximum overflow thickness in Fig. 11(a). Note that the decrease in the transport for the ridges with 1000 m and 1200 m heights after $x \approx 90$ km indicates that either the flow has not reached steady state for these cases or the water is becoming so dilute that $\tau < 0.05$ over much of the plume. The overflow thickness and transport analysis indicate that the mixing increases with increasing height of the ridge.

Finally, we look at the entrainment rate of the overflow due to the corrugation. An entrainment coefficient can be defined as diapycnal velocity, $w_E$, divided by the mean or characteristic velocity (Riemenschneider and Legg, 2007). In this study, we employ bulk computation using the transports to compute the entrainment coefficient:

$$E = \frac{w_E}{U} = \frac{(\overline{T_{T1}^2 + T_{T2}^2} - \overline{T_{T1}^2})}{\bar{U}/S},$$

where $w_E$ is the bulk diapycnal velocity, $T_1$, $T_2$ and $T_3$ are the transports of $\tau > 0.05$ water through Sections 1–3 (for section locations see Fig. 1(a)). $\bar{U}$ is the mean velocity computed at the upstream of the corrugation and $S$ is the surface area of the $\tau > 0.05$ surface in the region bounded by the sections. All quantities are time averaged between 15 and 35 days after the flow has reached a quasi steady-state.

Fig. 12 shows the normalized entrainment coefficient for different ridge scenarios. The control case entrainment coefficient ($E_0$) is employed to normalize $E$. Note that, since the initial transport depends on $g', f$ and $H_{in}$ (Eq. (3)), a new control run has to be run when we change those variables. There is a strong correlation between $Bu_l$ and $E/E_0$. For the ridge with $W = 6000$ m, $E/E_0$ is the
rugation increases (larger \( \frac{E}{E_0} \) which is proportional to the entrainment. Thus, we can assume eddy diffusivity has to be converted to the diapycnal velocity model handles the mixing. Since GOLD is an isopycnic model, the changes will lead to additional mixing in the model.

To investigate the performance of the new parameterization, three experiments using Eq. (14) are performed with a coarse resolution model (without corrugations). Since we do not want to change the upstream conditions, horizontal resolution is kept constant \( (A_\chi = 500 \text{ m}) \) until \( x = 50 \text{ km} \) and starts to increase up to \( A_\chi = 8 \text{ km} \) using a hyperbolic function. Three different experiments are employed to try to reproduce a ridge with a 6 km width and a height of \( H = 150, H = 300 \) and \( H = 600 \) m, respectively. Fig. 13(a) displays the vertically integrated tracer for the experiment that simulates the ridge with \( H = 600 \) m. In the high resolution case, the ridge was located 65.5 \( \times \) 71.5 km. The new parameterization increases mixing around the same location. The flow becomes laminar after \( x = 50 \text{ km} \) because of the coarse resolution. Since the new parameterization effects only the vertical shear, there is no downslope transport unlike the high resolution case. Fig. 13(b) shows time and meridional average of the overflow thickness for the cases with the new parameterization (i.e. no corrugation) and

\[
\frac{\kappa_{\text{corrugation}}}{\kappa_0} \approx \frac{E}{E_0} = f(Bu_c).
\]

We propose a new parameterization which is a modified version of Eq. (1),

\[
\frac{\partial^2 \kappa}{\partial x^2} \frac{\kappa}{L^2} = -2SF(Ri),
\]

where \( SF = f(Bu_c) \) is a modified vertical shear enhancing the resolved shear \( S \) by a factor \( f(Bu_c) \) to account for the unresolved shear in a coarse resolution model. In addition to Eq. (14), the modified vertical shear is also used to compute the gradient Richardson number and the turbulent kinetic energy, thus \( Ri = N^2 / S^2 \) is decreased while \( \kappa \) is increased locally around the corrugation area.

3.4. Parameterization

In order to derive a function able to account for the under-representation of mixing due to unresolved corrugations in future coarse simulations, we fit empirically the dependency of the averaged normalized entrainment coefficient on the corrugation Burger number. To derive a generic function, there are two boundary conditions to be satisfied; a) in the case of no corrugation \((Bu_c = 0)\), the function has to be unity since \( E \) has to be equal to \( E_0 \), b) in the case of a vertical wall that goes all the way to the surface \((i.e. Bu \rightarrow \infty)\), the function has to go to zero. To this end, the following exponential function is proposed

\[
\frac{E}{E_0} = f(Bu_c) = a \times e^{-b \cdot Bu_c} + c \times e^{-d \cdot Bu_c},
\]

where the best-fit coefficients are

\[
a = 14.55 \quad b = 9.2961 \quad c = -13.55 \quad d = 914.7.
\]

We also try different functions (polynomial, sin, etc.), however the exponential function is the best fit. The first boundary condition is ensured by \( a + c = 1 \) and the second boundary condition is satisfied since the exponential terms are bounded. In Fig. 12, the black curve is obtained using Eq. (11) for different corrugation Burger numbers.

To implement the new function, first we have to revisit how the model handles the mixing. Since GOLD is an isopycnic model, the eddy diffusivity has to be converted to the diapycnal velocity which is proportional to the entrainment. Thus, we can assume that \( \kappa \) in the resolved corrugation cases can be also proportional to the \( \kappa \) in the control case.

\[
\frac{\kappa_{\text{corrugation}}}{\kappa_0} \approx \frac{E}{E_0} = f(Bu_c).
\]
4. Discussion and conclusion

Dense and intermediate water masses are crucial for the global meridional overturning circulation. Many of these waters must flow over ocean canyons/ridges or down continental slopes. The mixing around these topographic features is an important process determining the final properties and quantity of the overflows.

In this study, we attempt to understand the dynamics of the overflow as it passes over a single corrugation. The main goal is to improve our understanding of the interaction between the overflow and the corrugation. A set of sixty idealized experiments were conducted with different corrugation geometries and initial conditions. These include changing the aspect ratio of a ridge or a canyon and changing the initial thickness of the overflow, the Coriolis parameter and the density difference between the overflow and the ambient water. Gravity currents are known to exhibit mixing due to nonhydrostatic effects, such as Kelvin–Helmholtz instabilities (Özgökmen et al., 2004; Özgökmen et al., 2006; Özgökmen et al., 2007; Ilıcak et al., 2008b). Complex geometries can increase the amount of mixing by inducing wave breaking and hydraulic jumps (Ilıcak et al., 2009; Ilıcak and Armi, 2010). Large eddy simulations (LES) can be employed to resolve such processes; however LES can be quite expensive computationally. For our problem, in which a relatively large domain is necessary in order to capture the mesoscale eddies, $O(10^{10})$ grid points would be required for a mixing-resolving resolution of 10 m. Thus, we use the next best thing: an isopycnal high-resolution hydrostatic model which uses a sophisticated mixing scheme. The vertical mixing scheme performs well as long as the shear in the flow is resolved (Jackson et al., 2008). The efficiency of these simulations allows us to carry out a large number of simulations, covering an extensive parameter space. Verification of these results by comparison with a limited number of LES calculations is a subject for future study, but beyond the scope of this paper.

In the control run experiment, the overflow is released without any corrugation in the interior. Analysis of the pathways, transport and mixing of the overflow yields the following conclusions. The flow is in the eddy regime described by Cenedese et al. (2004). We further investigate the frequencies of the tracer field away from the inlet and find out that there are three distinct oscillations: (i) 14 h, (ii) 30 h and (iii) 60 h. These oscillations are barotropic and can also be seen in the velocity field. The same magnitude of oscillations are observed in the Filchner overflow (Darelius et al., 2009). We propose a new parameterization as a function of $Bu_{c}$ that can be used to represent unresolved shear in coarse resolution models. The new parameterization is an exponential function that increases the shear locally, thus it also increases the turbulent kinetic energy and decreases the gradient Richardson number. We perform three experiments to investigate the performance of the new parameterization. The aim is to reproduce the mixing in the high resolution cases where the corrugations are explicitly resolved. There is a reasonable agreement in the overflow thickness and transport between the models with parameterization and the high resolution models. However, the new parameterization does not yet include an enhanced drag to steer the flow downslope. Such a complex problem is not easily represented by a single universal parameterization. In order to simplify the problem we keep the shape of the corrugation constant, so that the corrugation can be characterized to first-order by the aspect ratio ($H/W$). A refinement to this characterization could use the corrugation slope instead. Additionally, a single non-dimensional parameter such as the corrugation Burger number may not be sufficient to represent the effects of both mixing and downslope transport due to the presence of a corrugation. Nevertheless, the proposed parameterization is a first step in representing the effects of unresolved corrugations on gravity currents. The information on mixing over a ridge/sill from this study may be used for future improvements and calibration of this parameterization for use in climate models. Overall, we conclude that mixing effects of corrugations can be implemented as unresolved shear in an eddy diffusivity formulation and this parameterization can be used in coarse resolution models.

Appendix A

GOLD has a barotropic and baroclinic time splitting method which allows the 2D barotropic equations are integrated in time faster than the 3D baroclinic equations. Thus, the model uses two types of open boundary conditions; a characteristic method for the barotropic velocities and a radiation boundary condition for the baroclinic velocities. The characteristic boundary condition for the eastern boundary is the following

$$U^{n+1}_{i+1/2} = \frac{1}{2} \left[ U^{ext} + U^* + \frac{C_E}{h} (\eta^* - \eta^{ext}) \right],$$ (15)

$$\eta^{n+1}_i = \frac{1}{2} \left[ \eta^{ext} + \eta^* + \frac{h}{C_g} (U^* - U^{ext}) \right],$$ (16)

where $C_g = \sqrt{gh}$ is the group velocity, $h$ is the total depth, $U_i^{n+1}$ and $\eta_i^{n+1}$ are the new time step barotropic velocity and the surface elevation at the eastern boundary, respectively. Incoming external velocity ($U^{ext}$) and surface elevation ($\eta^{ext}$) can be obtained from a global domain or an analytic function. Outgoing barotropic velocity ($U^*$) and sea-surface height ($\eta^*$) are computed using
\[ U' = c_iU_i^{n+1}/2 + (1 - c)U_i^{n+1}/2, \]
\[ \eta' = \eta_i + (0.5 - c)(\eta_i - \eta_{i-1}), \]
where \( c = \Delta t C_i / \Delta x \) is the Courant number. Note that Eq. (18) is slightly different than Eq. (17) since GOLD is a south-west C-grid model, therefore \( \eta \) points are located half-grid space between \( U \) points.

The Orlanski-type radiation boundary condition for the baroclinic velocities at the eastern boundary is the following

\[ \eta_i^{n+1}/2 = \eta_{i-1}^{n+1}/2 + c_{n+1}^{n+1}/2, \]
where \( u \) is the baroclinic velocity for each layer and \( c_n \) is the smoothed group velocity defined as

\[ c_n = (1 - \gamma)c_n^0 + \gamma \frac{du}{dt} \]

where \( \gamma = 0.2 \) in this study.

Appendix B

B.1. Cosine-shaped ridge

Darelius and Wahlin (2007) compute that non-dimensional downward transport of a cosine-shaped ridge as

\[ T_{\text{up}}(\gamma) = \frac{\pi^2}{4} \left[ \frac{\gamma}{(\pi^2 + \gamma^2)^{3/2}} + \frac{2}{\pi^2 + \gamma^2} \right]. \]

B.2. Cosine-shaped canyon

We follow the derivation of the transport of the cosine-shaped canyon in Darelius and Wahlin (2007). Assume that the topography is given by

\[ D(x, y) = \sum_{1}^{1} \left[ \cos(y) \right] + 1, \quad -2 \leq y \leq 0. \]

The solution to the overflow thickness in the canyon is given by

\[ h(y) = \left\{ \begin{array}{ll} \frac{\pi^2}{2(\pi^2 + \gamma^2)} \left[ e^{-\gamma} - \cos(\pi y) - \frac{\gamma}{2} \sin(\pi y) \right], & Y_1 \leq y < 0 \\ 0, & y < Y_1 \end{array} \right. \]

where \(-2 \leq Y_1 \leq -1\) and \( h(Y_1) = 0 \). The downward transport cannot be found analytically, thus we computed numerically from

\[ \lim_{y \to -\infty} h(y) u. \]

References


