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a b s t r a c t

In this study, we investigate the dynamics of a dense gravity currents over different sizes of ridges and
canyons. We employ a high resolution idealized isopycnal model and perform a large number of exper-
iments changing the aspect ratio of a ridge/canyon, the Coriolis parameter, the reduced gravity, the back-
ground slope and initial overflow thickness. The control run (smooth topography) is in an eddy-regime
and the frequencies of the eddies coincide with those of the Filchner overflow (Darelius et al., 2009).
Our idealized corrugation experiments show that corrugations steer the plume downslope, and that
ridges are more effective than canyons in transporting the overflow to the deep ocean. We find that a cor-
rugation Burger number (Buc) can be used as a parameter to describe the flow over topography. Buc is a
combination of a Froude number and the aspect ratio. The maximum downslope transport of a corruga-
tion can be increased when the height of the corrugation increases (Buc increases) or when the width of
the corrugation decreases (Buc increases).

In addition, we propose a new parameterization of mixing as a function of Buc that can be used to
account for unresolved shear in coarse resolution models. The new parameterization captures the
increased local shear, thus increasing the turbulent kinetic energy and decreasing the gradient Richard-
son number. We find reasonable agreement in the overflow thickness and transport between the models
with this parameterization and the high resolution models. We conclude that mixing effects of corruga-
tions can be implemented as unresolved shear in an eddy diffusivity formulation and this parameteriza-
tion can be used in coarse resolution models.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Deep and intermediate water formation is crucial for the large
scale ocean circulation and plays an important role for the merid-
ional overturning circulation. These dense waters originate in mar-
ginal seas and form overflows that flow out through narrow
channels and settle in the open ocean at levels determined by
entrainment. Important examples of overflows are the Weddell
Sea (Foldvik et al., 2004), Ross Sea (Gordon et al., 2004), Denmark
Strait (Macrander et al., 2007), Faroe Bank Channel (Mauritzen
et al., 2005), Mediterranean Sea (Baringer and Price, 1997) and
Red Sea (Peters et al., 2005) overflows. Observations show that
only Antarctic overflows sink to the bottom of the ocean while
other overflows equilibrate at intermediate depths.

Overflows are bottom-trapped gravity currents and are there-
fore controlled by the topography (Özgökmen et al., 2004; Ilıcak
et al., 2008a). In general, the continental slopes are not smooth
and consist of many ridges, canyons and topographic corrugations.
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The steering of dense gravity currents by corrugations has been
observed in oceanic overflows. Sherwin et al. (2008) describe that
a significant part of the Faroe-Shetland Channel Bottom Water
appears to be channelled through a canyon that leads southward
down the southern flank of the Faroe Bank into the Ellett gully.
Foldvik et al. (2004) show that the Weddell Sea overflow is direc-
ted by two ridges to the deeper ocean after it leaves the continental
shelf and is influenced by planetary rotation. Muench et al. (2009b)
suggest that corrugations at the Drygalski Trough in the Ross Sea
might be responsible for the enhanced downslope overflow trans-
port that feeds Antarctic Bottom Water (AABW), the dominant
abyssal water mass in the world (Johnson, 2008).

There are several approaches to investigate the effects of ridges
and canyons on gravity currents. The first is to conduct laboratory
experiments (Davies et al., 2006; Darelius, 2008; Wahlin et al.,
2008). Their main advantage is that large ensembles of experi-
ments can be performed with known parameters and real fluid.
Davies et al. (2006) perform idealized rotating fluid tank experi-
ments to replicate and quantify the main structures of the steady
Faroe Bank Channel overflow which flows in a divergent canyon.
Darelius (2008) shows that laminar, dense gravity currents are
steered downslope by V-shaped ridges and canyons. She observes
that the corrugations can transport all the overflow water
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downslope when the transport of the overflow is less than the
maximum corrugation transport defined by an analytical theory.
Wahlin et al. (2008) perform a set of laboratory experiments in a
rotating tank to investigate the effect of small-scale topography
on plume mixing. They also find that the dense overflow is directed
downslope when a ridge or canyon is present. The total mixing and
the entrainment rate of the overflow increases when the flow
meets an obstacle (Wahlin et al., 2008). However, the disadvan-
tages of laboratory experiments are that the effective Reynolds
number is orders of magnitude smaller (Darelius, 2008) and the
topographic slopes are typically much larger than those in the
ocean (Wahlin et al., 2008).

An alternative approach to investigating the effects of corruga-
tions on overflows is with high resolution numerical simulations
(Jiang and Garwood, 1998; Özgökmen and Fischer, 2008;
Wilchinsky and Feltham, 2009; Wang et al., 2009). The Filchner
overflow in the Weddell Sea is modeled by Wilchinsky and
Feltham (2009) and Wang et al. (2009). The former found that
the plume of Ice Shelf Water runs into two ridges when it travels
along the slope of the continental shelf. They argue that the tempo-
ral variability of the overflow observed by Darelius et al. (2009) can
be due to the dome-like structures of the plume. Wilchinsky and
Feltham (2009) employ numerical simulations with and without
the ridges and find that their presence strongly affects the plume
shape. Wang et al. (2009) perform numerical simulations for the
Weddell Sea overflow. They find that the eddies formed by the
overflow have typical scales of 20–40 km, and a temporal scale of
about 3 days. They also show that two ridges shape the details of
the overflow structure. Ridges not only split and steer the overflow
but also generate strong mixing. Matsumura and Hasumi (2010)
also conduct realistic numerical simulations to study the effect of
the ridges on Weddell Sea overflow. They find that ridges have
two different mechanisms of inducing offshore transport: a strong
downslope current at the upstream side of the ridge and offshore
transport by eddies that are induced when the overflow passes
over the ridge. Numerical simulations in Muench et al. (2009b)
suggest that the Ross Sea overflow might be directed downslope
by multiple fine scale corrugations (Height � 10 � 100 m with
Wavelength � 1 km).

Observations and numerical studies therefore show that two
well-known deep water formation sites (Ross Sea and Weddell
Sea overflows) are influenced by the effect of corrugations. How-
ever, the small-scale nature of these corrugations prevents their
explicit resolution in global ocean general circulation models
(OGCMs) used in climate models. Typically, OGCMs have a resolu-
tion of 1� � 100 km in the horizontal direction, which is much lar-
ger than the length-scale of the corrugations. Thus, the effect of the
corrugations has to be parameterized. In this study, we study the
interaction between a single corrugation (canyon or ridge) and a
gravity current. Our main goal is to address the following
questions:

(a) How is the dense water transported and mixed over a
corrugation?

(b) Is there a single parameter that describes the flow for differ-
ent corrugations?

(c) Can we develop a parameterization of the effects of the cor-
rugation on the overflow for use in OGCMs?

To investigate the effects of a corrugation, we systematically
perform idealized experiments with different aspect ratios of the
corrugation. Our focus is on the pathway of the overflow in the
presence of a canyon or a ridge. The overflow transport and mixing
in different simulations are computed for quantitative comparison.
We also propose a new numerical parameterization based on phys-
ical properties to reproduce the effect of a corrugation in a coarse
model. To our knowledge, this is the first time that a set of detailed
and systematic numerical simulations have been conducted to
understand the interaction between the overflow and a single
corrugation.

Our main findings are the following. Ridges steer the overflow
plume off-shore more effectively than canyons with the same
aspect ratio. When the height (width) of the obstacle increases,
the downslope transport of the plume increases (decreases). This
is consistent with the analytical theory developed by Wahlin
(2002). We find that the corrugation Burger number (Buc) can be
used to define the flow over rough topography. We also propose
a new parameterization as a function of Buc that can be used to
represent the effect of unresolved shear on mixing in coarse reso-
lution models. There is a reasonable agreement in the overflow
thickness and transport between the coarse models with parame-
terization and the high resolution models without the parameter-
ization. The outline of this paper is as follows: The numerical
model and setup of the experiments are introduced in Section 2.
The main results are presented and discussed in Section 3, then
we summarize and conclude in Section 4.

2. Model setup

In this study, the Generalized Ocean Layer Dynamics (GOLD)
model is employed. GOLD is a free-surface, hydrostatic, primitive
equation ocean model that uses isopycnal (density) coordinates
in the vertical (Adcroft et al., 2008; Hallberg and Adcroft, 2009;
Gnanadesikan and Anderson, 2009). The most obvious advantage
of an isopycnal model is that there is no spurious mixing due to
the advection schemes in rough topographies unlike in geopoten-
tial and terrain-following coordinates (Griffies et al., 2000). Density
models have to parameterize the diapycnal mixing explicitly. Here,
GOLD uses a new parameterization for bottom boundary and shear
induced mixing depending on the local balance of turbulent kinetic
energy and shear (Jackson et al., 2008). In this shear-driven param-
eterization the eddy diffusivity (j) is computed as

@2j
@z2 �

j
L2

d

¼ �2SFðRiÞ; ð1Þ

where S is the vertical shear and Ld is a vertical decay length scale
defined as Ld = 0.82Lb. Here, Lb ¼

ffiffiffi
k
p

=N is the buoyancy length scale
where k is the turbulent kinetic energy. The function (F(Ri)) on the
right hand side of Eq. (1) is the mixing function and depends on the
gradient Richardson number, Ri, as

FðRiÞ ¼ Fomax 0;
1� Ri=Ric

1þ aRi=Ric

� �
: ð2Þ

Note that for this parameterization to be effective, the shear causing
the mixing must be explicitly resolved. In this study, a = �0.97 and
Ric = 0.25, as calibrated against 3D direct numerical simulations of
stratified shear instability by Jackson et al. (2008).

The computational domain is similar to the Dynamics of Over-
flow Mixing and Entrainment (DOME) setup (Legg et al., 2006)
but with a negative Coriolis parameter appropriate to the Southern
Hemisphere. The domain is 150 km long in the x-direction and
85 km wide in the cross-slope y-direction (Fig. 1(a)). A dense in-
flow is injected into the northern end of a flat-bottom channel of
depth 600 m, width 10 km and 2 km long. The horizontal resolu-
tion of 500 m is smaller than the Rossby deformation radius
(LRD � 3 � 4 km). All experiments use 25 isopycnal layers. A single
corrugation (ridge or canyon) is placed 35 km east of the opening
of the channel (Fig. 1(b)), so that when the overflow encounters
the corrugation, the flow is already geostrophically adjusted (recall
f < 0). The channel opens into an idealized open ocean with a
uniform slope, s = 0.08, and a maximum depth of 7000 m. The



Fig. 1. (a) Plan view of the model geometry without a corrugation. Section locations to compute the entrainment are also shown as black lines. S1 and S2 are the station
locations to compute the power spectra. (b) 3D view of the model geometry with s = 0.08 and a ridge.

Table 1
Experimental setup for ridges and canyons with different height, H, and width, W
using s = 0.08, f =�1.4 � 10�3 s�1, g0 = 1.9 � 10�3 m/s2 and Hin = 150 m.

Exp Height [m] Width [m] Aspect ratio (H/W)

1 50 2000 0.025
2 150 2000 0.075
3 300 2000 0.15
4 600 2000 0.3
5 800 2000 0.4
6 1000 2000 0.5
7 1200 2000 0.6
8 50 4000 0.0125
9 150 4000 0.0375
10 300 4000 0.075
11 600 4000 0.15
12 800 4000 0.2
13 1000 4000 0.25
14 1200 4000 0.3
15 50 6000 0.00833
16 150 6000 0.025
17 300 6000 0.05
18 600 6000 0.1
19 800 6000 0.1333
20 1000 6000 0.1666
21 1200 6000 0.2

M. Ilıcak et al. / Ocean Modelling 38 (2011) 71–84 73
idealized ocean is deep enough to minimize the reflection of the
open boundary conditions at the southern side of the domain. A
quadratic bottom drag formulation is used with a drag coefficient
of Cd = 2 � 10�3 which is comparable to the overflow observations
(Muench et al., 2009a). In this study, an f-plane approximation
with the Coriolis parameter f = �1.4 � 10�4 s�1 is employed. The
characteristic method boundary conditions of Blayo and Debreu
(2005) are applied to the east, west and south boundaries (see
Appendix A for equations). In addition to open boundary condi-
tions, a sponge layer is also used at x > 140 km to damp the density
structure back toward the initial condition and remove the passive
tracers that mark the overflow. The model is integrated for 40 days
after the dense water is released from the north. This integration
time is sufficient for the gravity current to reach the eastern
boundary and achieve a quasi-steady state. The overflow reaches
the boundary 10 days after the initial release, thus statistical data
analysis are performed between 15 and 35 days. Surface stresses
and buoyancy fluxes are set to zero everywhere in order to focus
only on the variability of the flow due to corrugations.

Injection of the inflow in the channel is as follows. The dense
overflow has its maximum thickness, Hin and velocity at the left-
hand wall (when looking downstream) with a transport of

Tin ¼ g0H2
in=ð2f Þ; ð3Þ

where g0 ¼ g Dq
q0

is the reduced gravity. Initially, there is no stratifica-

tion in the ambient water and the injected outflow is 0.2 kg m�3

denser than ambient water which leads to g0 = 0.0019 m s�2. A par-
abolic profile is chosen for the inflow so that the minimum gradient
Richardson number Rig ¼ � g
q0

@q
@z =ð@u

@z Þ
2

� �
is equal to 1/3 between

the overflow and the ambient water. This condition minimizes the
mixing in the channel and keeps the structure of the inflow
constant. For further information about the inflow conditions, the
reader is referred to Legg et al. (2006).
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A reference experiment with no topographic corrugation
serves as a control case. A total of 42 perturbation experiments
are conducted with 7 different heights, H, and 3 widths, W
(Table 1), for a ridge and a canyon (21 simulations each). This
set of experiments provides information about the modification
of transport, along-slope location and entrainment of the over-
flow due to corrugations with different aspect ratios. Fourteen
additional experiments are performed with different Coriolis
accelerations, f, different reduced gravities, g0, and different ini-
tial thicknesses of the inflow, Hin. These latter experiments help
us understand the effect of ridges when the upstream properties
of the overflow change.
3. Results

3.1. The initial propagation of the modeled overflow

A passive dye is injected with the overflow in the channel. A
plan view of the vertically integrated passive tracer concentration
for the reference case (i.e. no corrugation) is shown in Fig. 2. After
the overflow is released, the gravity current flows downslope and
to the left due to the Earth’s rotation (recall f < 0). The dense over-
flow never reaches its neutral buoyancy since there is no ambient
stratification. However, the overflow becomes geostrophically
adjusted and follows the isobaths (Fig. 2(b)). Cenedese et al.
(2004) described three regimes for a dense current flowing down
a sloping topography depending on the Froude, Fr, and the Ekman,
Ek, numbers. The first regime is laminar flow which was observed
for Fr < 1. The second regime is the so-called roll-wave regime
which was observed for Fr P 1 and 0.05 < Ek < 5. The last regime
is the eddy regime which occurs for Fr < 1 and 0.01 < Ek < 0.1. In
our control run, Fr ¼ u=

ffiffiffiffiffiffiffiffiffiffiffi
g0Hin

p
� 0:6 and the Ekman number is

Ek = (dE/Hin)2 � 0.01 where dE = Cdg0a/f2 is the bottom Ekman depth

and a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðH=WÞ2

q
(Wahlin, 2002) where s is the background
Fig. 2. Plan view of the vertically integrated passive tracer concentration for the control
lines.
slope. Three distinctive cyclones in Fig. 2(c) indicate that the flow
is indeed in the eddy regime. After 10 days, the overflow follows
the topography and reaches the eastern boundary (Fig. 2(d)). Pre-
vious studies (Spall and Price, 1998; Ezer, 2006; Ilıcak et al.,
2011) also show cyclogenesis in overflow systems. Spall and Price
(1998) argue that the potential vorticity (PV) conservation might
be responsible to generate cyclonic vortices. The exact mechanism
to generate eddies in the gravity currents is beyond the scope of
this paper.

Next, we look at the frequencies of the eddies formed by the
overflow. Two different stations, S1 and S2, are selected away from
the inflow area (see Fig. 1(a) for location of the stations). Fig. 3(a)
and Fig. 3(c) display the time series of tracer concentration at sta-
tion S1, 50 meter above bottom (mab) and S2, 70 (mab) respec-
tively. There is strong temporal variability not only in tracer but
also in velocities (not shown). Power spectra are computed for
both time series. Fig. 3(b) and Fig. 3(d) clearly indicate three dis-
tinct signals in the overflow; (i) 14 h, 30 h and 60 h of oscillations
for the station S1, (ii) 13 h, 30 h and 75 h of oscillations for the sta-
tion S2. These three signals can be seen at all depths (not shown),
thus the oscillations are close to barotropic. Darelius et al. (2009)
describe that the Filchner overflow also has three different oscilla-
tions; 35 h, 70 h and 140 h in addition to the tides. They observe
that oscillations in temperature are accompanied by oscillations
in velocity and they are both barotropic. They propose three possi-
ble mechanisms for these temporal variabilities: (i) eddies gener-
ated by vortex stretching (ii) eddies generated by baroclinic
instabilities and (iii) continental shelf waves due to atmospheric
forcing. However, Wilchinsky and Feltham (2009) argue that the
variability is not related to the continental shelf waves since the
variability is observed for both the temperature and the velocity.
The latter should be oscillated if the shelf waves were responsible
for the fluctuations.

However, our control run is not intended to simulate the Filch-
ner overflow exactly since the latter encounters two ridges after it
run at a time (a) 1.25, (b) 2.5, (c) 5, (d) 10 days. Depth contours are shown in black
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Fig. 3. (a) Tracer concentration in time at station S1 and 50 meter above bottom
(mab) for the control case. (b) Power spectra of tracer vs. frequency for the control
case at station S1. (c) Tracer concentration in time at station S2 and 70 meter above
bottom (mab) for the control case. (d) Power spectra of tracer vs. frequency for the
control case at station S2.
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Fig. 4. (a) Plan view of the vertically integrated passive tracer concentration at
time = 60 days. S3, S4, S5 and S6 are the station locations to compute the power
spectra. (b) Tracer concentration in time at station S3 (100 mab) and S4 (100 mab).
(c) Power spectra of tracer vs. frequency at station S3 and S4. (d) Tracer
concentration in time at station S5 (50 mab) and S6 (50 mab). (e) Power spectra
of tracer vs. frequency at station S5 and S6.
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flows out from the continental shelf. To this end, we performed an
additional experiment with an idealized bathymetry of the Wed-
dell Sea. Two ridges are included in the model topography; both
of them have a cosine shape with a width of 8 km. The first ridge
(on the left) has a maximum height of 300 m and starts from
1500 m depth until 3500 m depth (Fig. 4(a)). The second ridge
(on the right) has maximum height of 500 m and starts from about
800 m depth until 2500 m depth (Wang et al., 2009). The model is
integrated 120 days. Fig. 4(a) displays the vertically averaged
tracer field at time = 60 days. It is clear that both ridges steer the
flow downslope. Two cyclones are visible around x � 230 km and
x =� 270 km. We choose two stations before and two stations after
the ridges. The station locations are similar to those in Darelius
et al. (2009). Tracer fields at 100 mab and 50 mab for stations S3,
S4, S5 and S6 are shown in Fig. 4(b) and (c), respectively. Power
spectra of the tracer fields show similar magnitude oscillations as
seen in the control run (Fig. 4(d) and (e)). The same order of mag-
nitude of variability is also seen in our simulation without any
atmospheric forcing. Therefore, we believe that the observed fluc-
tuations are due to the eddies generated by the vortex stretching
described above. This result is also consistent with the one de-
scribed by Wang et al. (2009).
3.2. The steering of the overflow by ridges and canyons

In this section, ridges and canyons with different aspect ratios
are investigated. Figs. 5 and 6 display vertically integrated tracer
concentration for different ridges and canyons, respectively. The
tracer weighted overflow thickness for the control run is shown
in Figs. 5(a) and 6a at time = 20 days. Fig. 5(b) displays the domain
with a ridge which has a height of 150 m and a width of 6 km
(Hin = 150 m). Since the aspect ratio of the ridge is small, the flow
seems only slightly affected. There are still two eddies visible in



Fig. 5. Plan view of the vertically integrated passive tracer concentration at a time 20 days after the release of the dense overflow for different cases: (a) control run (H = 0),
(b) ridge H = 150 m; W = 6 km, (c) ridge H = 600 m; W = 6 km, (d) ridge H = 1200 m; W = 6 km. Depth contours are shown in black lines.

Fig. 6. Same as Fig. 5 but for canyons.
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the domain. However, when the height of the ridge is increased up
to 600 m, the flow is changed dramatically (Fig. 5(c)). When the
plume reaches the corrugation, the flow is steered downslope by
the ridge. The dense water becomes much wider when it passes
to the other side of the corrugation. The gravity current is trans-
ported to the deeper ocean due to the existence of the ridge. The
tracer concentration can be found as far as y = 30 km south at the
upstream side of the corrugation. The vertically integrated thick-
ness of the overflow at the downstream side of the ridge is up to
100 m. This indicates that the overflow entrains ambient fluid
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when it passes over the ridge. The overflow is even transported to
9000 m depth and reaches the southern boundary at the end of the
domain. When the height of the ridge is increased to 1200 m, the
overflow is piled up and transported to the deep ocean predomi-
nantly on the upstream side of the ridge (Fig. 5(d)). Most of the
overflow is deeper than y = 40 km at the downstream side of the
corrugation. This means that the mean path of the overflow is
shifted off-shore.

The dynamics of the overflow passing over a canyon are similar
to the dynamics of the gravity current in the ridge case. Fig. 6(b)
displays the overflow passing a canyon which has a depth of
150 m and a width of 6 km. Once again, the overflow is not affected
by the corrugation with a small aspect ratio. The steering of the
flow by a canyon is more visible when the depth of the canyon in-
creased to 600 m (Fig. 6(c)). The plume becomes much wider and
spreads to the deeper part of the ocean. Fig. 6(d) displays the can-
yon with H = 1200 m and W = 6 km. The qualitative pictures are
similar in the ridge and the canyon cases; the overflow is steered
downslope and some overflow fluid crosses over the corrugation
to the other side. The steering and mixing increase with higher
topographic aspect ratios in the gravity current flowing over the
corrugation.

The analytical theory developed by Wahlin (2002) predicts the
non-dimensional transport capacity for a given corrugation shape.
The theory predicts that corrugations have maximum transports
depending on a nondimensional parameter c = sW/dE, where s is
the background slope, W is the width of the corrugations and dE

is the bottom Ekman depth (Wahlin, 2002; Darelius and Wahlin,
2007; Darelius, 2008). When the overflow transport, To, is less than
the maximum transport of the corrugation, Tc (where Tc is a func-
tion of c, see Eqs. (21) and (24)), the theory predicts that no dense
water should cross over the corrugation. However, the theory is
developed for a steady state solution so that the flow has to be sta-
tionary for the dense water to remain in a canyon. Steady state im-
plies that the net transport across the corrugation must be zero,
which can be satisfied only if the Ekman transport in the canyon
is balanced by the geostrophic component (Wahlin, 2002). On
the other hand, in all our simulations the dense plume passes over
the corrugation even with large aspect ratios (i.e. smaller c). One
possible explanation might be that the eddies break the balance
between geostrophic and Ekman transport, and that the eddies
can carry the water past on the side of the ridges even when To < Tc.
In addition to this, the analytical theory assumes that mixing is
negligible and the Burger number, Bu = g0H/(f2W2), is small. In our
idealized experiments Bu is comparable to or larger than unity,
and there is strong mixing which will increase the overflow trans-
port and the height of the overflow while reducing g0.

Darelius and Wahlin (2007) find that the maximum transport of
the corrugation for a given c is larger for ridges than for canyons,
since the walls of a canyon limit the lateral extent of the dense flow
and the transport of the corrugation has to increase when c de-
creases. The entrainment is often a function of Richardson number
which can be defined

Ri ¼
� g

q0

@q
@z

@u
@z

� �2 �
� g

q0

Dq
Ho

U
Ho

� �2 ¼
g0Ho

U2 ¼
1

Fr2 ; ð4Þ

where Fr is the Froude number and Ho is the overflow thickness up-
stream of the corrugation. The geostrophic velocity (U) can be
scaled with the Nof speed U � g0s/f (Nof, 1983). This would give

an estimate of the Froude number: Fr ¼
ffiffiffiffi
g0

Ho

q
s
f . To compare with
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theory, we examine the maximum transport of ridges and canyons
with respect to two non-dimensional numbers: c and a corrugation
Burger number defined as

Buc ¼
1

Fr2

H
W

� �2

¼ H2

W2

1
s2

Ho

g0=f 2 : ð5Þ

Note that the corrugation Burger number, Buc, is different than the
original Bu. The former is a function of Richardson number and as-
pect ratio of the corrugation. We find that Buc is more suitable to de-
scribe and parameterize the flow (as discussed in Section 3.4).
Fig. 7(a) and (b) show the non-dimensional maximum transport
of the corrugations for different c and Buc, respectively. The trans-

port of a corrugation is normalized by bT ¼ g0

f ðsWÞ2 as described in
Fig. 9. Vertical section of averaged tracer at y = 70 km for (a) ridge with H = 600 m an
computed in geopotential coordinates. Vertical section of averaged tracer at y = 50 km fo
Averaged tracer values are computed in geopotential coordinates.
(Davies et al., 2006). In the experiments shown in Figs. 7(a) and
6(b), c and Buc are changed by changing either height (H) or width
(W) of the canyon (see Table 1). In the ridge case, an additional eight
experiments are performed changing the background slope
(s = 0.04,0.06) with a width of 6 km and different heights of
H = 50, 150, 300, 600 m, respectively (red stars in Fig. 7(a) and
(b)). It can be clearly seen that ridge transports (black stars) are lar-
ger than canyon transports (blue circles) at the same c as expected
by the theory. There is a clear correlation between the transport, T,
and c and Buc. When H of a ridge increases (holding W constant), the
non-dimensional parameter c, which can also be defined defined as

c ¼ sW

Cd
g0

f 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ ðH=WÞ2

q ð6Þ
d W = 6 km (b) canyon with H = 600 m and W = 6 km. Averaged tracer values are
r (c) ridge with H = 600 m and W = 6 km (d) canyon with H = 600 m and W = 6 km.
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Fig. 10. (a) The tracer-weighted overflow path for ridges with different heights but
constant width (W = 6 km). (b) The tracer-weighted overflow path for ridges with
different widths but constant height (H = 600 m). Note that y � axis is away from
the northern wall.
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decreases and Buc increases. This means that the ridge can steer
more dense water into the deep ocean, thus the cross-slope trans-
port of the ridge increases. On the other hand, if H is kept constant
and W increases, c increases and Buc decreases. In this case, the
maximum transport goes down since the slope of the corrugation
becomes more gentle (i.e. H/W decreases) and the ridge or canyon
carries less dense water to the deep. The theoretical values of a co-
sine shaped ridge and canyon (see Appendix B for solutions) are also
computed (black and blue lines in Fig. 7(a)). Darelius (2008) finds
that the theory overestimates the transport of the corrugations in
the laboratory experiments. We can see that canyon transports
are below the theoretical values. However, the transports of the
ridges are above the theoretical values, which indicates that the
simulated flow carries more than the analytical estimation.

We also perform fourteen additional experiments with a fixed
ridge geometry (with H = 600 m and W = 6 km) changing the Cori-
olis parameter (f =�1,�1.1,�1.2,�1.3�10�4 s�1), reduced gravity
(g0 = 0.0024,0.0029,0.0033,0.0038 ms�2) and initial overflow
thickness (Hin = 200,250,300,350,400,450 m), respectively. The
maximum transport that the ridge carries for these new experi-
ments is shown in Fig. 8. Changing f (blue points) and g0 (green
points) do not effect the non-dimensional transport significantly
since the transport is normalized by bT ¼ g0

f ðsWÞ2. On the other
hand, when the initial overflow thickness increases, the cross-slope
transport of the ridge also increases (black points in Fig. 8(a)). On
the other hand, increases in transport due to increases in Hin can
not be represented using c (black circles in Fig. 8(b)). Thus, we fo-
cus on the dependence of properties on Buc since it contains infor-
mation on the corrugation, H2/W2, and information on the
upstream properties of the overflow, Ho/(s2g0/f2).

Time-averaged vertical sections of tracer for a ridge and a can-
yon with H = 600 m and W = 6 km are shown in Fig. 9. The dense
overflow piles up on the upstream side of the ridge. The flow is
thinnest at the top of the ridge, then the thickness of the overflow
increases rapidly at the end of the corrugation (Fig. 9(a)). Deforma-
tions of the density field at x � 73 km clearly indicate a presence of
a hydraulic jump. There is strong mixing after the edge of the cor-
rugation since the tracer is diluted and the densest layer (shown in
red) disappears on the right side of the ridge. In the canyon case,
the overflow leans on the right side of the corrugation (looking
northward in Fig. 9(b)). Once again, there is a small jump in the
density field at x � 73 km. On the right side of the canyon, there
is still fluid in the densest (red) layer which indicates less mixing
with respect to the ridge case (to be discussed in Section 3.3).

The effect of corrugations can also be seen in the mean off-shore
distance of the overflow plume. We compute the mean position of
the overflow as a function of along slope distance for different cor-
rugation cases:

Ys ¼
R

ysðx; y; zÞdydzR
sðx; y; zÞdydz

; ð7Þ

where s is the passive tracer. We only consider s where it is greater
than 0.05. The mean plume locations in y-direction for different
heights of ridges are shown in Fig. 10(a). The control run plume
travels along isobaths 15 km downslope from the source (green
line). A small vertical ridge with a height of 50 m or 150 m does
not change the direction of the flow significantly and the mean
plume path is slightly below the control run plume path (black
and blue lines). However, when the height of the ridge is increased
to 300 m, the flow is steered downslope and travels along y = �20
km down from the source (red line). It can be clearly seen when the
height of the ridge increases, the flow travels to the deeper part of
the ocean (i.e. downslope in the y-direction). This is consistent with
the maximum transport of the corrugation analysis. Increasing H
leads to increased Buc, thus the ridge steers the overflow water fur-
ther downslope. Fig. 10(b) displays the tracer-weighted overflow
path for ridges of different widths. The heights of these ridges are
kept constant at H = 600 m. For the 8 km wide ridge, the plume path
is at approximately 20 km down (cyan line) from the inflow channel
since the slope of the ridge is gentler compared to the other ridges
with the same height. When the width of the ridge decreases, Buc

increases which leads to more downslope transport and a path low-
er down the slope (Fig. 10(b)).

To summarize, corrugations such as ridges and/or canyons may
steer the plume downslope. The analytic theory developed by
Wahlin (2002) and Darelius and Wahlin (2007) suggests that the
flow is governed by a single parameter c (Eq. (6)). However, we
find that the corrugation Burger number, Buc (Eq. (5)), is a better
parameter to describe the flow over topography since it includes
the dependence on overflow thickness. Our idealized simulations
show that ridges are more effective than canyons in transporting
the overflow to the deeper ocean as predicted by the theory. The
main reason behind this is that the flow in the canyon is limited
by the canyon walls. The maximum downslope transport of a
corrugation can be increased when the height of the corrugation
increases (i.e. c decreases or Buc increases) or when the width of
the corrugation decreases (i.e. c increases or Buc decreases).

3.3. Transport and mixing

The overflow thickness and alongslope transport are good indi-
cators for the mixing in gravity current simulations (Legg et al.,
2006; Ilıcak et al., 2008a). Tracer weighted overflow thickness, ho

is defined as

hoðxÞ ¼
R

hðx; y; zÞsðx; y; zÞdydzR
sðx; y; zÞdydz

; ð8Þ

where h is the height above the bottom.Fig. 11(a) displays the mean
overflow thickness as a function of along-slope distance for ridges
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Fig. 11. (a) Tracer weighted overflow thicknesses for ridges with different heights but constant width (W = 6 km). (b) Tracer weighted overflow thicknesses for ridges with
different widths but constant height (H = 300 m). (c) The eastward transport of water with s > 0.05 in the overflow for ridges with different heights but constant width
(W = 6 km). (d) The eastward transport of water with s > 0.05 in the overflow for different widths but constant height (H = 300 m). Ridge locations are shown with black lines.
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with different heights but constant width (W = 6 km). A steady in-
crease in the overflow thickness can be seen in the control case
(green line) because of the entrainment of ambient water. The tra-
cer weighted overflow thickness is around 60 m for the control case
when the flow reaches the boundary. The outflow thicknesses in all
the ridge simulations are similar to the control run until x = 60 km.
After that, the overflow encounters the ridge and piles up (ho in-
creases) and then drops suddenly (ho decreases at around
x = 69 km at the top of the crest). The second increase in ho is due
to the hydraulic jump just after the corrugation. The statistically
steady overflow thicknesses are consistent with the vertical sec-
tions described in the previous section. In all the ridge simulations,
the overflow thickness after the corrugation is larger than the one in
the control run due to the mixing that occurs at the ridge area. It
seems that the maximum overflow thickness (ho � 160 m) occurs
for the ridge with a height of 800 m (yellow line in Fig. 11(a)).
The overflow thickness starts to decrease after x = 140 km since this
is the beginning of the sponge area. The overflow thicknesses for a
constant H = 300 m and different widths are shown in Fig. 11(b).
The slope of a ridge (H/W) increases when the width of the ridge de-
creases. This leads to an increase in ho since stronger mixing occurs
in sharper corrugations. The ridge with a larger slope (W = 2 km,
H/W = 0.15, black line in Fig. 11(b)) has a thickness of 100 m. On
the other hand, the ridge with a gentle slope (W = 8 km,
H/W = 0.0375, cyan line in Fig. 11(b)) only has a thickness of 80 m.

Next, we compute the overflow transport in the along-shore
direction as

TrðxÞ ¼
Z

A
Udydz; ð9Þ

where A is the region where s > 0.05 and U is the zonal mean veloc-
ity. Fig. 11(c) displays the eastward transport for the simulations
with a constant width and different heights. The total transport in
the control run increases until the end of the domain (green line).
In all the ridge simulations, the transport suddenly increases when
the overflow meets the corrugation and the transport is always lar-
ger than the one in the control run after the corrugation. The max-
imum transport occurs at the ridge with the height of 800 m,
consistent with the maximum overflow thickness in Fig. 11(a). Note
that the decrease in the transport for the ridges with 1000 m and
1200 m heights after x � 90 km indicates that either the flow has
not reached steady-state for these cases or the water is becoming
so dilute that s < 0.05 over much of the plume. The overflow thick-
ness and transport analysis indicate that the mixing increases with
increasing height of the ridge.

Finally, we look at the entrainment rate of the overflow due to
the corrugation. An entrainment coefficient can be defined as dia-
pycnal velocity, wE, divided by the mean or characteristic velocity
(Riemenschneider and Legg, 2007). In this study, we employ bulk
computation using the transports to compute the entrainment
coefficient;

E ¼ wE

Ut
¼

Tr3
t þ Tr2

t
� �

� Tr1
t

UtSt
; ð10Þ

where wE is the bulk diapycnal velocity, T1, T2 and T3 are the trans-
ports of s > 0.05 water through Sections 1–3 (for section locations
see Fig. 1(a)). U is the mean velocity computed at the upstream of
the corrugation and S is the surface area of the s > 0.05 surface in
the region bounded by the sections. All quantities are time averaged
between 15 and 35 days after the flow has reached a quasi steady-
state.

Fig. 12 shows the normalized entrainment coefficient for differ-
ent ridge scenarios. The control case entrainment coefficient (E0) is
employed to normalize E. Note that, since the initial transport de-
pends on g0, f and Hin (Eq. (3)), a new control run has to be run
when we change those variables. There is a strong correlation be-
tween Buc and E/E0. For the ridge with W = 6000 m, E/E0 is the
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smallest for H = 50 m since the overflow can easily pass over the
ridge. The mixing is the largest when the H = 800 m (black stars
in Fig. 12). The entrainment increases when the height of the cor-
rugation increases (larger Buc) until a threshold point, after which
the entrainment starts to decrease. The reason behind this de-
crease is that the flow is directed downslope instead of crossing
over the ridge, so that it entrains less when H P 1000 m. This is
consistent with the analysis of the overflow thicknesses
(Fig. 11(a)) where ho increases up to 200 m for the H = 800 m ridge,
then h0 drops for higher ridges. The normalized entrainment values
do not change significantly when we change g0 and f (magenta and
green stars in Fig. 12). When initial thickness, Hin, is increased in
the model, the entrainment also increases since h0 increases.

3.4. Parameterization

In order to derive a function able to account for the under rep-
resentation of mixing due to unresolved corrugations in future
coarse simulations, we fit empirically the dependency of the aver-
aged normalized entrainment coefficient on the corrugation Burger
number. To derive a generic function, there are two boundary con-
ditions to be satisfied; a) in the case of no corrugation (Buc = 0), the
function has to be unity since E has to be equal to E0, b) in the case
of a vertical wall that goes all the way to the surface (i.e. Bu ?1),
the function has to go to zero. To this end, the following exponen-
tial function is proposed

E
E0
¼ f ðBucÞ ¼ a� eð�b�BucÞ þ c � eð�d�BucÞ; ð11Þ

where the best-fit coefficients are

a ¼ 14:55 b ¼ 9:2961 c ¼ �13:55 d ¼ 914:7: ð12Þ

We also try different functions (polynomial, sin, etc.), however the
exponential function is the best fit. The first boundary condition is
ensured by a + c = 1 and the second boundary condition is satisfied
since the exponential terms are bounded. In Fig. 12, the black curve
is obtained using Eq. (11) for different corrugation Burger numbers.

To implement the new function, first we have to revisit how the
model handles the mixing. Since GOLD is an isopycnic model, the
eddy diffusivity has to be converted to the diapycnal velocity
which is proportional to the entrainment. Thus, we can assume
that j in the resolved corrugation cases can be also proportional
to the j in the control case,
jcorrugation

j0
� E

E0
¼ f ðBucÞ � ð13Þ

We propose a new parameterization which is a modified version of
Eq. (1),

@2j
@z2 �

j
L2

d

¼ �2eSFð eRiÞ; ð14Þ

where eS ¼ Sf ðBucÞ is a modified vertical shear enhancing the re-
solved shear S by a factor f(Buc) to account for the unresolved shear
in a coarse resolution model. In addition to Eq. (14), the modified
vertical shear is also used to compute the gradient Richardson num-
ber and the turbulent kinetic energy, thus eRi ¼ N2=eS2 is decreased
while j is increased locally around the corrugation area. These
changes will lead to additional mixing in the model.

To investigate the performance of the new parameterization,
three experiments using Eq. (14) are performed with a coarse res-
olution model (without corrugations). Since we do not want to
change the upstream conditions, horizontal resolution is kept con-
stant (Dx = 500 m) until x = 50 km and starts to increase up to
Dx = 8 km using a hyperbolic function. Three different experiments
are employed to try to reproduce a ridge with a 6 km width and a
height of H = 150, H = 300 and H = 600 m, respectively. Fig. 13(a)
displays the vertically integrated tracer for the experiment that
simulates the ridge with H = 600 m. In the high resolution case,
the ridge was located 65.5 6 x 6 71.5 km. The new parameteriza-
tion increases mixing around the same location. The flow becomes
laminar after x = 50 km because of the coarse resolution. Since the
new parameterization effects only the vertical shear, there is no
downslope transport unlike the high resolution case. Fig. 13(b)
shows time and meridional average of the overflow thickness for
the cases with the new parameterization (i.e. no corrugation) and
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without the parameterization (i.e. resolved corrugation). The sud-
den increase of the thicknesses in the unresolved ridge cases is
clearly seen (solid lines). There is a reasonable agreement in the
H = 150 m and H = 300 m ridge cases (red and blue lines). However,
for the H = 600 m ridge, the overflow thickness is around 160 m
with a resolved corrugation and only 110 m with the parameteri-
zation. The overflow transports with the new parameterization
are also in agreement with those in the high resolution cases
(not shown).
4. Discussion and conclusion

Dense and intermediate water masses are crucial for the global
meridional overturning circulation. Many of these waters must
flow over ocean canyons/ridges or down continental slopes. The
mixing around these topographic features is an important process
determining the final properties and quantity of the overflows.

In this study, we attempt to understand the dynamics of the
overflow as it passes over a single corrugation. The main goal is
to improve our understanding of the interaction between the over-
flow and the corrugation. A set of sixty idealized experiments were
conducted with different corrugation geometries and initial condi-
tions. These include changing the aspect ratio of a ridge or a canyon
and changing the initial thickness of the overflow, the Coriolis
parameter and the density difference between the overflow and
the ambient water. Gravity currents are known to exhibit mixing
due to nonhydrostatic effects, such as Kelvin–Helmholtz instabili-
ties (Özgökmen et al., 2004; Özgökmen et al., 2006; Özgökmen
et al., 2007; Ilıcak et al., 2008b). Complex geometries can increase
the amount of mixing by inducing wave breaking and hydraulic
jumps (Ilıcak et al., 2009; Ilıcak and Armi, 2010). Large eddy simu-
lations (LES) can be employed to resolve such processes; however
LES can be quite expensive computationally. For our problem, in
which a relatively large domain is necessary in order to capture
the mesoscale eddies, O(�1010) grid points would be required for
a mixing-resolving resolution of 10 m. Thus, we use the next best
thing: an isopycnal high-resolution hydrostatic model which uses
a sophisticated mixing scheme. The vertical mixing scheme per-
forms well as long as the shear in the flow is resolved (Jackson
et al., 2008). The efficiency of these simulations allows us to carry
out a large number of simulations, covering an extensive parame-
ter space. Verification of these results by comparison with a limited
number of LES calculations is a subject for future study, but beyond
the scope of this paper.

In the control run experiment, the overflow is released without
any corrugation in the interior. Analysis of the pathways, transport
and mixing of the overflow yields the following conclusions. The
flow is in the eddy regime described by Cenedese et al. (2004).
We further investigate the frequencies of the tracer field away
from the inlet and find out that there are three distinct oscillations;
(i) 14 h, (ii) 30 h and (iii) 60 h. These oscillations are barotropic and
can also be seen in the velocity field. The same magnitude of oscil-
lations are observed in the Filchner overflow (Darelius et al., 2009).
We conclude that the observed fluctuations are due to the eddies
generated by the vortex stretching.

We performed twenty-one different experiments with different
aspect ratios for each canyon and ridge. The maximum transport of
the corrugation was compared to analytic theory (Darelius and
Wahlin, 2007). Our idealized simulations show that corrugations
steer the plume downslope and ridges are more effective than can-
yons in transporting the overflow to the deeper ocean. The theory
of Darelius and Wahlin (2007) describes that the flow is governed
by a single parameter, c. However, we found that the corrugation
Burger number (Buc) is a better parameter to describe the flow over
topography. Buc is a combination of Froude number and the aspect
ratio. Buc captures the dependence of overflow-corrugation inter-
action on the initial overflow thickness, which is not included in
c. The maximum downslope transport of a corrugation can be
increased when the height of the corrugation increases (i.e. Buc

increases) or when the width of the corrugation decreases (i.e.
Buc increases). The overflow thickness and eastward transport are
also computed for different cases. When the overflow encounters
a ridge, the gravity currents piles on the upstream side of the ridge
and then crosses over the ridge. Increasing the height of the ridge
induces a hydraulic jump and strong mixing on the downstream
side of the ridge. The entrainment starts to decrease when the
height of the corrugation passes a threshold which is around 800
m for the ridges.

A good correlation is found between Buc and normalized
entrainment rate, E/E0. We propose a new parameterization as a
function of Buc that can be used to represent unresolved shear in
coarse resolution models. The new parameterization is an expo-
nential function that increases the shear locally, thus it also in-
creases the turbulent kinetic energy and decreases the gradient
Richardson number. We perform three experiments to investigate
the performance of the new parameterization. The aim is to repro-
duce the mixing in the high resolution cases where the corruga-
tions are explicitly resolved. There is a reasonable agreement in
the overflow thickness and transport between the models with
parameterization and the high resolution models. However, the
new parameterization does not yet include an enhanced drag to
steer the flow downslope. Such a complex problem is not easily
represented by a single universal parameterization. In order to
simplify the problem we keep the shape of the corrugation con-
stant, so that the corrugation can be characterized to first-order
by the aspect ratio (H/W). A refinement to this characterization
could use the corrugation slope instead. Additionally, a single
non-dimensional parameter such as the corrugation Burger num-
ber may not be sufficient to represent the effects of both mixing
and downslope transport due to the presence of a corrugation.
Nevertheless, the proposed parameterization is a first step in rep-
resenting the effects of unresolved corrugations on gravity cur-
rents. The information on mixing over a ridge/sill from this study
may be used for future improvements and calibration of this
parameterization for use in climate models. Overall, we conclude
that mixing effects of corrugations can be implemented as unre-
solved shear in an eddy diffusivity formulation and this parameter-
ization can be used in coarse resolution models.
Appendix A

GOLD has a barotropic and baroclinic time splitting method
which allows the 2D barotropic equations are integrated in time
faster than the 3D baroclinic equations. Thus, the model uses two
types of open boundary conditions; a characteristic method for
the barotropic velocities and a radiation boundary condition for
the baroclinic velocities. The characteristic boundary condition
for the eastern boundary is the following

Unþ1
iþ1=2 ¼

1
2

Uext þ U� þ Cg

h
ðg� � gextÞ

	 

; ð15Þ

gnþ1
i ¼ 1

2
gext þ g� þ h

Cg
ðU� � UextÞ

	 

; ð16Þ

where Cg ¼
ffiffiffiffiffiffi
gh

p
is the group velocity, h is the total depth, Unþ1

i and
gnþ1

i are the new time step barotropic velocity and the surface ele-
vation at the eastern boundary, respectively. Incoming external
velocity (Uext) and surface elevation (gext) can be obtained from a
global domain or an analytic function. Outgoing barotropic velocity
(U⁄) and sea-surface height (g⁄) are computed using
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U� ¼ cUn
i�1=2 þ ð1� cÞUn

iþ1=2; ð17Þ
g� ¼ gn

i þ ð0:5� cÞðgn
i � gn

i�1Þ; ð18Þ

where c = Dt�Cg/Dx is the Courant number. Note that Eq. (18) is
slightly different than Eq. (17) since GOLD is a south-west C-grid
model, therefore g points are located half-grid space between U
points.

The Orlanski-type radiation boundary condition for the baro-
clinic velocities at the eastern boundary is the following

unþ1
iþ1=2 ¼

un
iþ1=2 þ cnþ1

x unþ1
i�1=2

1þ cnþ1
x

; ð19Þ

where u is the baroclinic velocity for each layer and cx is the
smoothed group velocity defined as

cnþ1
x ¼ ð1� cÞcn

x þ c
du=dt
du=dx

; ð20Þ

where c = 0.2 in this study.

Appendix B

B.1. Cosine-shaped ridge

Darelius and Wahlin (2007) compute that non-dimensional
downward transport of a cosine-shaped ridge as

Tcridge
ðcÞ ¼ p2

4
p2ð1þ e�cÞ
ðp2 þ c2Þ2

þ c
2ðp2 þ c2Þ

" #
: ð21Þ
B.2. Cosine-shaped canyon

We follow the derivation of the transport of the cosine-shaped
canyon in Darelius and Wahlin (2007). Assume that the topogra-
phy is given by

bDðx; ŷÞ ¼ sxþ 1
2
½cosðpŷÞ þ 1�; �2 6 ŷ 6 0: ð22Þ

The solution to the overflow thickness in the canyon is given by

ĥðc; ŷÞ ¼
p2

2ðp2þc2Þ ½e
cŷ � cosðpŷÞ � c

p sinðpŷÞ�; YL 6 ŷ < 0

0; ŷ < YL; ŷ > 0

(
;

ð23Þ

where �2 6 YL 6 � 1 and ĥðYLÞ ¼ 0. The downward transport can-
not be found analytically, thus we computed numerically from

Tccanyon ðcÞ ¼ �
Z 1

�1
ĥûdŷ; ð24Þ

where û ¼ @bD
@ŷ þ @ĥ

@ŷ derived from geostrophy.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ocemod.2011.02.004.
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