
1.  Introduction
Vertical mixing parameterizations used in ocean general circulation models (OGCM) represent the effects of 
unresolved processes on the mean state. These parameterizations have theoretical deficiencies due to the lack of 
understanding of inadequately represented or missing processes. To overcome this deficiency, parameterizations 
often require ad hoc/empirical modifications either to approximate the missing processes or to fit data. Verti-
cal mixing schemes can be constructed with various assumptions and different schemes are calibrated differ-
ently. These inconsistencies cause the schemes to disagree among themselves (Li et al., 2019) and are a major 
source of model uncertainty (Fox-Kemper et al., 2019; Gutjahr et al., 2021; Hawkins & Sutton, 2009; Huber & 
Zanna, 2017; Todd et al., 2020). Poorly parameterized mixing can result in errors that accumulate over time, 
leading to biases in the OGCM.

New approaches are emerging to improve various parameterizations in ocean and atmosphere models using 
machine learning. We have applied neural networks, a type of machine learning, to improve a vertical mixing 
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scheme. The modified vertical mixing scheme predicts the eddy diffusivity profile through online inference 
of neural networks and maintains the conservation principles of the standard ocean model equations, which 
is particularly important for its targeted use in climate simulations. We describe the development and stable 
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Plain Language Summary  The upper region of the ocean is highly energetic and is responsible 
for transferring mass, energy and biogeochemical tracers between the atmosphere and the deeper regions of 
the ocean. This transport takes place because of turbulent swirling motions, which are found to be of varying 
sizes. Climate models cannot represent all of these motions because smaller-scale swirls are complex and 
require additional computational resources. As we cannot neglect those small swirls, we try to approximate 
their effects on larger-scale motions using mathematical models. These models have a few ad hoc or empirical 
assumptions that lead to uncertainty when these climate models are used to project the future climate. To 
reduce this uncertainty, we augment an existing model of turbulent swirling process with machine learning, 
which replaces some ad hoc approximations with data-driven neural networks. Neural networks can learn those 
missing processes more accurately than a traditional physics-based model. The neural networks are shown to 
improve physics in climate simulations. Although we only touch on one component in an ocean climate model, 
this approach can be replicated to improve any other component that was using ad hoc assumptions and replace 
them with data-driven models using techniques from machine learning.
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parameterization of the ocean surface boundary layer (OSBL). OSBL is a vital region of turbulence in the ocean. 
It acts as an interface between the atmosphere and the deeper ocean and it is important to accurately represent 
mixing in the OSBL. The atmosphere energizes the ocean through the OSBL. Mass, tracers, and momentum are 
transferred between the atmosphere and deep ocean via the OSBL, and inaccuracies in vertical mixing parameter-
izations can give rise to uncertain estimates of heat transport, sea level rise, ocean carbon uptake, etc. Including 
missing processes in upper ocean vertical mixing schemes impact large-scale phenomena, for example, account-
ing for Langmuir turbulence and submesoscale effects in the OSBL improves simulations of the Indian monsoon 
(Orenstein et al., 2022).

1.1.  Modeling Vertical Diffusivity Within Ocean Surface Boundary Layer (OSBL) Parameterizations 
and the Assumption of a “Universal” Shape Function

We focus on the energetic Planetary Boundary Layer (ePBL) scheme, a first-order OSBL turbulent mixing param-
eterization as described in Reichl and Hallberg (2018) (see Section 2). The variation of the vertical diffusivity 
profile κϕ (of arbitrary scalar, ϕ) within the OSBL in ePBL and similar first order schemes can be expressed as a 
diffusivity scale 𝐴𝐴 (𝜅̂𝜅𝜙𝜙) multiplied by a prescribed normalized diffusivity profile (i.e., shape function):

𝜅𝜅𝜙𝜙(𝜎𝜎) = 𝜅̂𝜅𝜙𝜙𝑔𝑔(𝜎𝜎),� (1)

where 𝐴𝐴 𝐴𝐴𝐴𝜙𝜙 is often decomposed into a velocity and length scale (Large et  al.,  1994), g(σ) is a dimensionless 
shape-function, and σ = z/h is a dimensionless vertical coordinate, where z is the vertical coordinate and h is the 
depth of the boundary layer. OSBL parameterizations that follow this approach traditionally assume that g(σ) is a 
universal function or has a fixed component such as a cubic polynomial that does not change (Large et al., 1994; 
O'Brien, 1970), and therefore is ad-hoc. In the K-profile-parameterization (KPP) scheme of Large et al. (1994), 
there is a cubic polynomial which is multiplied by a vertically varying turbulent velocity that sets the structure 
of κϕ. The cubic polynomial is universal, whereas turbulent velocity mostly affects the surface layer defined by 
the region 0 < σ < 0.1, making the cubic structure dominant below the surface layer. In ePBL scheme (Reichl 
& Hallberg, 2018), κϕ follows similar design. However, there is no physics-based justification for a universal or 
ad-hoc profile to exist, and it is widely understood that characteristics of boundary layers can vary considerably 
with forcing conditions (Li et al., 2019). We hypothesize that capturing variations of the shape function that are 
not considered in first-order OSBL schemes such as ePBL will improve the overall representation of vertical 
mixing in ocean models. In the subsequent text, our usage of the term “universal shape function” will include 
shape functions which involve some ad-hoc components or approximations such as used in the ePBL scheme (see 
Section 2).

1.2.  Second Moment Closure and an Alternative to the “Universal” Shape Function

Second Moment Closure (SMC) is an alternative approach to predict vertical diffusivity profiles within the OSBL 
(Rodi, 1987; Umlauf & Burchard, 2005). SMC does not require a shape function because it instead predicts the 
diffusivity from the turbulent kinetic energy (k) and the turbulent length scale (lt). Various SMC approaches exist 
to predict k and lt and a general formulation to infer diffusivity is expressed as:

𝜅𝜅𝜙𝜙(𝑧𝑧) = 𝑐𝑐𝜙𝜙 𝑘𝑘1∕2(𝑧𝑧) 𝑙𝑙𝑡𝑡(𝑧𝑧),� (2)

where cϕ represents the model stability functions (Umlauf & Burchard, 2005).

SMC predicts a profile of vertical diffusivity based on models of physical processes that drive turbulent fluxes 
within the OSBL. SMC does not prescribe a shape function a priori. However, since SMC directly evaluates 
a diffusivity profile, the implied shape function and diffusivity scale can be diagnosed from the output. The 
implied shape function differs significantly from a universal shape function, as seen in Figure 1. The diagnosed 
shape-function and diffusivity scale from SMC can then be used to build a model for use in ePBL. We selected 
SMC over large eddy simulation as our “truth” because it is inexpensive compared to the latter, leading to effort-
less creation of training data set spanning a wide range of forcing regimes. This is required for machine learning 
applications as they are hungry for a large amount of data.

A natural question is why SMC is not directly used instead of ePBL in OGCM. It remains impractical to 
directly use SMC for vertical mixing in climate simulation due to the sensitivity of their predictions to long 
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time steps and coarse vertical grids often used in climate models (see Reichl 
& Hallberg, 2018). However, using the framework described in this article, 
ePBL can yield a closer approximation to the vertical diffusivity from the 
SMC scheme without sensitivity to the model's vertical resolution and time 
step. Our neural network approach allows ePBL to consider the physics-based 
variation in the shape function seen in SMC due to solving k and lt. This vari-
ability in the shape function will lead to different profiles of vertical mixing 
within ePBL than using a prescribed universal profile.

1.3.  Machine Learning Is an Emerging Tool to Improve OGCMs

Consider a physics-based parameterization that gives an output Ψ as some 
functional relationship 𝐴𝐴  between physical quantities x:

Ψ =  (�).� (3)

Finding 𝐴𝐴  is an optimization problem. It can be set as an optimal linear 
fit to some combination of x, but the fit might not work for different 
regimes or might implicitly depend on higher-order combinations of terms 
in x (nonlinearity) or some other neglected terms. 𝐴𝐴  can be assumed to 
be a function of non-dimensional parameters requiring onerous fitting. 
With machine learning, 𝐴𝐴  can be a function of multiple combinations of 
parameters:

 (𝐱𝐱) = 
𝐰𝐰(𝐱𝐱),� (4)

where 𝐴𝐴   is a machine-learning function, x = (x1, x2, …) is the input vector 
and w are parameters (weights and biases). Machine learning involves deter-
mining (learning) the correct values of w by tuning the hyperparameters 
that give the optimal 𝐴𝐴   (Brenner et al., 2019), which is becoming routine 
due to advances in training algorithms. The machine learning approach 
provides an avenue to include as many relevant parameters as desired in the 
vector x, which has been a significant challenge in traditional physics-based 
approaches.

Machine learning is favorable for the development and application of climate models due to the abundance 
of optimization algorithms and hardware (Balaji et al., 2022; Christensen & Zanna, 2022). Studies show that 
neural networks can be used in idealized model configurations, and recently, the use of machine learning has 
emerged in realistic GCMs. Artificial neural networks (ANNs) have been shown to improve sub-grid momentum 
transport in atmospheric models (Yuval & O'Gorman, 2023), predict precipitation (Shamekh et al., 2023) and 
fluxes (Shamekh & Gentine, 2023), while in ocean models they have been used to improve the parameterization 
of free convection (Ramadhan et al., 2023). Liang et al. (2022) applied deep neural networks to predict temper-
ature and salinity evolution in the OSBL at a weather station (Station Papa). Partee et al. (2022) trained a deep 
neural network to learn subgrid kinetic energy of oceanic mesoscale eddies from a high resolution OGCM to 
improve their representation in a lower resolution OGCM. Convolutional neural networks (CNNs) have been 
used to predict parameterizations of ocean momentum backscatter in a variety of models (Bolton & Zanna, 2019; 
Guillaumin & Zanna, 2021; Zanna & Bolton, 2020) and have been implemented in an ocean primitive equation 
model (Zhang et al., 2023). Gregory et al. (2023) recently employed CNNs to learn data assimilation increments 
for sea-ice and showed that networks could be used to reduce biases in sea-ice.

Apart from neural networks, techniques considered part of the machine learning toolbox show potential to improve 
GCMs. The random forest algorithm has been used to parameterize moist convection (O'Gorman & Dwyer, 2018) 
and to learn small-scale processes from a high resolution atmospheric model (Yuval & O'Gorman,  2020). 
Mansfield and Sheshadri  (2022) used Gaussian Process emulator to tune gravity wave parameterization in 

Figure 1.  Shape functions derived from various forcing conditions from 
a Second Moment Closure (SMC) (blue, shaded region) plotted against a 
universal shape function (brown, dashed line) used in general circulation 
model vertical mixing schemes. The observed discrepancy between them 
reveals a limitation in existing vertical mixing schemes. However, this 
deficiency can be effectively addressed through the application of neural 
networks, which have the potential to predict the shape function and diffusivity 
associated with second moment closures.
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an intermediate complexity atmospheric GCM. Souza et al.  (2020) use a Bayesian technique to fine-tune the 
non-local flux terms of the KPP parameterization of Large et al. (1994).

The aforementioned examples show the potential of enhancing conventional physics-based schemes using 
machine learning techniques. This article draws inspiration from these demonstrations, recognizing the promise 
of machine learning in advancing ocean model parameterizations and prompting further investigation in this area.

1.4.  Outline to Use Neural Networks and Output From SMC to Improve ePBL

ANNs are trained using output from SMC that directly predicts the profile of vertical diffusivity and do not rely 
on ad hoc shape functions. As neural networks are powerful approximators, they can model the variability in the 
vertical diffusivity profiles of the SMC, but we formulate the ANNs to fit within the simplified framework of the 
first-order ePBL approach. Our procedure has the following advantages:

1.	 �We use the neural networks to modify the vertical diffusion term within ePBL instead of directly predicting 
turbulent flux time tendencies (e.g., temperature and salinity), guaranteeing that the scheme conserves phys-
ical quantities.

2.	 �The neural networks are introduced in a manner that does not interfere with the potential energy-based mixing 
constraints of the original ePBL scheme, and therefore ePBL's robust numerical implementation is preserved.

3.	 �The ANNs predict quantities used to compute the diffusivity: the non-dimensional structure (shape func-
tion) and a turbulent velocity, which simplifies training, implementation, and interpretability versus directly 
predicting the diffusivities.

4.	 �ANNs yield strictly positive values of the vertical diffusivity, an important consideration for numerical stabil-
ity (see Section 3.4.2).

5.	 �Our ANNs are as small as possible to balance accuracy and computational costs, as they will be used in 
climate timescale OGCM simulations.

We structure the article as follows. Section 2 describes the ePBL scheme and briefly addresses a calibration/
tuning problem. Section 3 gives details of the network structure and describes the data used to train networks 
with estimates of uncertainty. Section 4.1 provides details on implementing the enhanced ePBL scheme, hereafter 
called ePBL_NN. The new improvements in ePBL_NN are demonstrated online using free-running single-column 
model experiments (Section 4.2), and their impact on biases in an existing ocean-ice climate model is assessed in 
Section 4.3. We conclude with a summary and discussion of the broader implications of this work for applying 
machine learning to improve parameterizations in ocean climate models.

2.  A Physics-Based Vertical Mixing Framework: The Energetic Planetary Boundary 
Layer (ePBL)
The ePBL framework, as described by Reichl and Hallberg (2018), is designed for climate applications of OGCMs 
and emphasizes robust solutions to changes in model time stepping and vertical resolution. The scheme is simple 
enough to implement efficiently within implicit diffusion solvers often used in OGCMs while maintaining impor-
tant physical constraints on ocean mixing. The ePBL scheme performs with high skill in idealized models and 
OGCMs (Li et al., 2019; Reichl & Li, 2019), and has been implemented in NOAA—Geophysical Fluid Dynam-
ics Laboratory (GFDL)'s MOM6-based climate models: OM4, CM4, and ESM4 (Adcroft et al., 2019; Dunne 
et al., 2020; Held et al., 2019).

ePBL builds on the paradigm of bulk mixed layer models (Kraus & Turner, 1967; Niiler, 1977), which constrain 
the boundary layer depth (h) via energetic implications of vertical mixing. The scheme therefore constrains the 
mixing based on parameterizing the rate by which turbulent kinetic energy is converted to potential energy within 
the OSBL:

integrated PE conversion
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
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Here, h is the (positive) depth of the boundary layer as defined in Reichl and Li  (2019), 𝐴𝐴 𝑤𝑤′𝑏𝑏′ is the vertical 
turbulent buoyancy flux, overbar represents an averaging procedure (e.g., over ensembles), and 𝐴𝐴  is a rela-
tion that depends on the Coriolis parameter f, surface friction velocity u*, surface buoyancy flux 𝐴𝐴 𝐴𝐴0 = 𝑤𝑤′𝑏𝑏′0 , 
boundary layer depth h, and integrated release of potential energy by convective buoyancy fluxes. Reichl and 
Hallberg  (2018) find 𝐴𝐴  using simulations from single column models using SMC under a range of forcing 
scenarios. Later, this function was enhanced to include Langmuir turbulence using large eddy simulations (LES) 
(Reichl & Li, 2019).

ePBL extends the bulk mixed layer formulation to resolve vertical structure within the OSBL by applying a 
down-gradient flux profile using the vertical diffusivity given by

𝑤𝑤′𝜙𝜙′ = −𝜅𝜅𝜙𝜙

𝜕𝜕𝜙𝜙

𝜕𝜕𝜕𝜕
,� (6)

where κϕ is the variable diffusivity of a scalar ϕ. The diffusivity varies with depth and is given in the following 
form:

𝜅𝜅𝜙𝜙(𝜎𝜎) = 𝐿𝐿(𝜎𝜎)𝑣𝑣0(𝜎𝜎),� (7)

where L and v0 are length and velocity scales. In the present implementation of ePBL (Reichl & Hallberg, 2018), 
the turbulent Prandtl number is assumed to be one and hence the diffusivity and viscosity are identically modi-
fied. Both L and v0 are expressed as functions of position σ within the boundary layer. The length scale in Equa-
tion 7 is set as (following O'Brien, 1970; Large et al., 1994):

𝐿𝐿(𝜎𝜎) = (𝑧𝑧𝑜𝑜 + |𝑧𝑧|)(1 − 𝜎𝜎)𝛾𝛾 .� (8)

By assuming a fixed constant for γ, the expressions given by Equations 7 and 8 may be expressed in the same form 
as Equation 1, which reveals the role of the shape function as g(σ) = σ(1 − σ) γ. γ should not be a fixed constant. 
Constructing γ as a data-driven function is challenging and the form σ(1 − σ) γ does not have a physical basis. The 
velocity scale 𝐴𝐴 𝐴𝐴(𝜎𝜎) uses a similar formulation motivated to generally agree with the model k − ϵ (see Equations 
43–45 in Reichl & Hallberg, 2018).

Although the integrated mixing in ePBL is constrained via the function 𝐴𝐴  , the stratification resulting from the 
mixing is sensitive to the assumptions for γ and v0 that set the diffusivity profile within the boundary layer. Differ-
ences in the diffusivity profile mean that even when the energetic constraints are accurate, inconsistent OSBL 
evolution and stratification can emerge when comparing ePBL with SMC such as k − ϵ (see Figures 6 and 7). In 
this article, we enhance the physics-based ePBL approach by improving these velocity- and length-scale formu-
lations with ANNs (see Section 3).

3.  Artificial Neural Networks and Training Procedures
ANNs are one of the most widely used forms of machine learning models. ANNs are universal approximators 
and can find hidden nonlinear relations between quantities (Cybenko, 1989; Hornik, 1991; Hornik et al., 1989). 
In this section, we describe the fundamentals of ANNs and provide details describing the training procedures for 
the neural networks used to supplement ePBL's eddy diffusivity model.

3.1.  Fundamentals

ANNs consist of nodes arranged in layers. Nodes are elements of a vector x that constitute a layer. See Figure 2 
for a schematic. Each vector is connected to its adjacent vector via a transformation that involves multiplying with 
coefficients, called weights w, and adding an offset, called biases b. After transforming the vector with weights 
and biases, a nonlinear operation yields the next vector (or layer). The nonlinear operator is an activation function 

𝐴𝐴  . For an input layer consisting of a vector x1, one hidden layer x2 and an output layer y, ANN can be written as2 
and an output layer y, ANN can be written as

𝐱𝐱2 = (𝐰𝐰1𝐱𝐱1 + 𝑏𝑏1),

𝐲𝐲 = (𝐰𝐰2𝐱𝐱2 + 𝑏𝑏2).
� (9)
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Deeper networks are expanded versions of the above Equation set 9 and are obtained by adding additional layers. 
ANNs can capture nonlinear relationships within certain tolerances and can interpolate with high accuracy within 
the range of training data. We employ ANNs to learn the nonlinear relationship between chosen input parameters, 
described below, and the vertical diffusivity profile predicted using SMC.

3.2.  Learning Diffusivity Using Two Neural Networks 𝑨𝑨 𝟏𝟏 and 𝑨𝑨 𝟐𝟐

To train the ANN model to predict the diffusivity profile, we use the sigma coordinate defined as σ = z/h. There-
fore, at the surface σ = 0, and at h, σ = 1. We define the diffusivity in the sigma coordinate in terms of a velocity 
scale, v0, the boundary layer depth, h, and the nondimensional shape function, g:

𝜅𝜅𝜙𝜙(𝜎𝜎) = 𝑔𝑔(𝜎𝜎) ⋅ ℎ ⋅ 𝑣𝑣0,� (10)

where g(σ) is defined to give values between [0,1]. We could have introduced vertical structure in few or all of 
the terms on the right hand side in Equation 10. Instead we use only g(σ) to provide vertical structure as we found 
out that it was convenient to train one profile than two or more. The benefit of adopting the sigma coordinate is in 
removing the dependence on the vertical coordinate (e.g., grid spacing in z) that varies in different ocean models. 
This allows us to train and infer (feed-forward) without depending on the model's vertical grid, which makes it 
practical to implement in an ocean model with an adaptive vertical grid (e.g., Bleck, 2002).

The velocity scale v0 in Equation 10 does not vary with σ. The entire vertical structure of κϕ is captured by g(σ) 
alone. This is in contrast to Equation 7 where both the length scale and the velocity scale vary in vertical direction 
and contribute to the vertical structure of κϕ. We made this choice to simplify the approach so that only one neural 
network is needed to capture the vertical structure of κϕ.

We choose to obtain the shape function and velocity scale using two separate neural networks:

𝑔𝑔(𝜎𝜎) = 1(𝑓𝑓𝑓 𝑓𝑓0, 𝑢𝑢∗, ℎ),

𝑣𝑣0 = 2(𝑓𝑓𝑓 𝑓𝑓0, 𝑢𝑢∗),
� (11)

where 𝐴𝐴 1 and 𝐴𝐴 2 represent two distinct neural networks that are trained independently. 𝐴𝐴 1 requires inputs f, B0, 
u*, and h, while 𝐴𝐴 2 is found to depend on f, B0, and u*. We chose this strategy rather than combining the two 
outputs into one ANN for a couple of reasons. First, it is straightforward to cleanly diagnose g(σ) and v0 from the 
data, as will be explained in Sections 3.4 and 3.5. Second, we anticipate that having separate networks will make 
the individual networks easier to interpret, which allows us to better understand physical processes modeled by 
the network.

Both neural networks 𝐴𝐴 1,2 are trained using the Pytorch package (Paszke et al., 2019). Rectified Linear Unit 
(Nair & Hinton, 2010) has been used as the activation function due to its simplicity and rapid convergence in 
training.

Figure 2.  (a) Neural network 𝐴𝐴 1 . It requires four inputs (f, B0, u*, h) and output layer consists of 16 nodes giving values 
of g(σ) at those locations. (b) Neural network 𝐴𝐴 2 requires three inputs (f, B0, u*) and output is a scalar velocity scale v0. 
Diffusivity is obtained by: κ(σ) = g(σ) · h · v0. Here, h is the boundary layer depth which is evaluated in the vertical mixing 
parameterization of ocean surface boundary layer in ocean general circulation model using physical arguments.
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3.3.  Data for Training

The SMC data used to train the networks is generated using the single column model framework implemented in 
the General Ocean Turbulence Model (GOTM; Umlauf & Burchard, 2005; Umlauf et al., 2014). GOTM provides 
numerous SMC options to predict the fluxes of turbulence and the vertical diffusivity. We employ a two-equation 
model: k − ϵ, with stability function closure following Schumann and Gerz (1995). The choice of this specific 
SMC parameterization is made to be consistent with Reichl and Hallberg (2018). Vertical mixing parameteriza-
tions remain an active research topic, and currently used schemes, including SMC, can exhibit biases in different 
forcing regimes and regions (Damerell et al., 2020; Li et al., 2019; Peters & Baumert, 2007; Sane et al., 2021; 
Tirodkar et al., 2022). Any biases in the training data are inherited by the neural networks. However, our neural 
networks can be trained using the output of different mixing schemes, including the improved schemes developed 
in future research.

The GOTM column model consists of a vertical grid with forcing applied at the surface grid point. It is appli-
cable for flows with horizontal homogeneity, that is, horizontal fluxes are zero or constant. GOTM simulations 
are performed by changing the following parameters: latitude (Coriolis), surface wind stress (surface friction 
velocity), and surface heat flux (surface buoyancy flux). Salinity is kept constant and temperature is the only 
active tracer, though the results are general for any combination of buoyancy fields and forcing. Our initial anal-
ysis indicates that the diffusivity of k − ϵ, κkϵ, depends on the Coriolis parameter f, the surface buoyancy flux B0, 
the surface friction velocity u* and the depth of the boundary layer, h. We can only specify f, B0, and u* in single 
column simulations, and h is diagnosed from the time evolution simulated by GOTM.

Each GOTM case runs with a set of constant forcings. The time step is set at 60 s, and the vertical grid spacing is 
1 m. The depth of the column is 800 m. The simulation results for the k − ϵ model are converged at this time step 
and resolution (see Figure 1 in Reichl & Hallberg, 2018). The initial conditions consist of zero horizontal veloc-
ity, the surface temperature is set at 20°C, and the initial temperature stratification is set at 0.005°C/m. Data was 
saved at hourly intervals. For every f, B0, and u*, we included one hundred instantaneous profiles of diffusivity at 
each hour from day 2 to day 6 in the training data set.

We found (f, B0, u*, h) to strongly affect diffusivity compared to the background stratification established by the 
initial conditions. Stratification acts as a barrier to the deepening of the mixed layer, and therefore it is challeng-
ing to obtain deeper layers with strong stratification at the bottom of the mixed layer, and this limits the generation 
of training data spanning a wide range of h. Therefore, we choose a weak initial stratification. The effects of strat-
ification on diffusivity in k − ϵ most directly impact the rate of deepening of the boundary layer (which is already 
captured by the energetic constraint of the ePBL), compared to the shape function itself.

Table 1 shows the range of forcing parameters of the training data. Forcing range is different for 𝐴𝐴 1 and 𝐴𝐴 2 
because we found that the shape function does not vary significantly outside the range stated in Table 1. Hence 
we do not train on data outside that range, and the inputs to the network can be capped inside the mixing 
scheme in MOM6. For example, if the wind stress is 1.3 N/m 2, capping prevents the wind stress from going 

Inputs 𝐴𝐴 1  𝐴𝐴 2 

Surface heat flux −600 to 600 W/m 2 −2,000 to 2,000 W/m 2

Wind stress 0–1.2 N/m 2 0–20 N/m 2

Surface friction velocity 0 to 0.034 m/s 0 to 0.034 m/s

Latitude −90° to 90° −90° to 90°

Boundary layer depth 20–300 m –

Reference density 1,027 kg/m 3 1,027 kg/m 3

Specific heat capacity 3,985 J kg −1K −1 3,985 J kg −1K −1

Equation of state Linear Linear

Stratification at initial conditions 0.005°K/m 0.005°K/m

Note. We have added additional details about GOTM runs to Supporting Information S1.

Table 1 
Range of Parameters Used to Generate Training Data
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beyond 1.2  N/m 2 as the shape function does not vary significantly beyond 1.2  N/m 2. A similar argument 
can be made about the surface heat flux. The range selected to perform the sweep has been informed using 
the observed forcings in the JRA atmospheric reanalysis data set (Tsujino et al., 2018). The range shown in 
Table 1 covers most of the forcing space certainty as explained in Appendix B. For h, maximum variations 
for g(σ) were observed between 20 and 300 m and beyond 300 m g(σ) is found to vary marginally. Randomiz-
ing the training data and splitting it into two sets (train and validation) could result in very similar elements 
from similar experiments being present in both the train and the validation data. This is undesirable since a 
fully independent validation data set is required to monitor overfitting when training a neural network. To 
prevent this issue, a validation data set is independently generated having 10% the size of the training data 
using a fully independent set of forcing parameters. No single element between (f, B0, u*) is common between 
the training data set and the validation data set to strictly ensure the independence between the training and 
validation sets.

3.4.  Training 𝑨𝑨 𝟏𝟏

The parameters f, B0, u*, and h are inputs to 𝐴𝐴 1 , while the output consists of a vector having values of g(σ) at 16 
evenly distributed nodes, as shown in Figure 2. For each set of forcing (i.e., latitude, heat flux, and surface stress), 
the GOTM output consists of the evolution of the initial conditions into a developed boundary layer. The bound-
ary layer deepens and variations in κkϵ emerge. Ignoring the initial ≈2 days of data, h is diagnosed for each model 
output with a frequency of 60 min by analyzing the profile of the vertical buoyancy flux. Here, h is defined by 
the depth at which 𝐴𝐴 𝑤𝑤′𝑏𝑏′ reaches and stays close to zero. This is the maximum extent to which the effect of surface 
forcing penetrates the upper layer through turbulent buoyancy flux. The diffusivity profile, κkϵ(σ), is normalized 
by its maximum to find the shape function:

𝑔𝑔(𝜎𝜎) = 𝜅𝜅𝑘𝑘𝑘𝑘(𝜎𝜎)∕max(𝜅𝜅𝑘𝑘𝑘𝑘(𝜎𝜎)).� (12)

The neural network cannot learn a continuous profile in σ, but instead we train it to learn on a subsampled g(σ) 
grid that consists of 18 equally spaced σ points (0, 1/17, 2/17, …, 16/17, 1). σ at 0 and 1 is ignored in the training 
because g(σ) = 0 at the surface (σ = 0). At σ = 1, g(σ) → 0 and hence is assumed to be zero for training purposes. 
Therefore, the network predicts g(σ) at the 16 interior locations. Subsampling g(σ) to 18 evenly distributed points 
was found to be sufficient to capture essential features of g(σ) while maintaining a small enough network to later 
implement in an OGCM.

3.4.1.  Overcoming Limitation in h Using Synthetic Data

ANNs show high prediction skill when input is within the range of training data. GOTM experiments can cover a 
wide range of data points that span latitude, heat flux, and surface wind stress, such as those historically observed 
in the real ocean. However, this is not true for h as it evolves prognostically and we cannot set its range for each 
run. We have chosen h to vary from 20 to 300 m (see Table 1) for training purposes, but for some surface heating 
conditions the boundary layer depth will saturate toward the Monin-Obukhov length LMO, which might be less 
than 300 m. As h is an input to the network and if for a particular case LMO < h < 300 m, then profiles will not 
exist and the network will have to predict outside the range of the training data set. The network might end up 
predicting spurious profiles.

We address this issue by supplementing the training with synthetic data. For a particular case, if h saturates to, for 
example, 200 m, then an additional 10 profiles are added to cover the missing range of 200–300 m in the training 
data. The shape function for these synthetic profiles is assumed to be the same as when h = 200 m, that is, g(σ) 
for h ∈ (200, 300) will have the same values as g(σ) for h = 200 m. This assumption is reasonable, since g(σ) was 
found to vary little for deeper boundary layers with surface heating.

Strong convection can cause a related issue due to quick deepening of the boundary layer within the spin-up phase 
of the turbulent OSBL. This gap is filled in the same way as described for deep boundary layer gaps. If the lowest 
value of h is, for example, 100 m, then 10 profiles are added that cover 20–100 m. The shape function for these 
10 profiles is assumed to be the same as that when h = 100 m. This fill-up of gaps in h is necessary to stabilize 
ANNs trained with our existing data sets. Knowing the exact bounding box of the training data set is imperative 
for a successful and stable implementation in a GCM.
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3.4.2.  Forcing 𝑨𝑨 𝟏𝟏 to Be Strictly Positive

The network 𝐴𝐴 1 consists of 4 input nodes, 2 hidden layers, and 16 output nodes (sensitivity to network hyperpa-
rameters is described in the next subsection). The four input nodes correspond to 𝐴𝐴 (𝑓𝑓𝑓 𝑓𝑓0, 𝑢𝑢∗, ℎ) . The output nodes 
predict the shape function as described above. The output of 𝐴𝐴 1 , g(σ), is a vector of length 16. If g(σ) predicts 
a negative value of the shape function for any σ, it would lead to negative diffusivity values. We prevent this by 
training on the logarithm of g(σ). 𝐴𝐴 1 predicts log(g(σ)) and, while inferring, the exponential function is used. This 
ensures that the shape function is strictly positive.

The four inputs to the network (f, B0, u*, h) are normalized by their respective mean and standard deviation of the 
training data. For the 16 output nodes, each output was normalized by its own mean and standard deviation. For 
output node i, log(g(σi)) was transformed into

log(𝑔𝑔(𝜎𝜎𝑖𝑖)) →
log(𝑔𝑔(𝜎𝜎𝑖𝑖)) − log(𝑔𝑔(𝜎𝜎𝑖𝑖))

⟨log(𝑔𝑔(𝜎𝜎𝑖𝑖))⟩
� (13)

before training. The overbar denotes the mean, and the angled brackets denote the standard deviation.

3.4.3.  Network Skill and Hyperparameter Sweep

To train 𝐴𝐴 1 two hyperparameters need to be tuned: the number of hidden layers and the number of nodes in those 
layers. For simplicity, we chose the same number of nodes in each hidden layer. A sweep was performed to test 
the accuracy of different networks. We varied the number of hidden layers from 2 to 4 and the number of hidden 
nodes in each layer from 2 to 512. Training data was randomized and provided as a single batch to train networks.

To measure the network's performance, linear correlation coefficient between the validation data and its predic-
tion was calculated (see Figure 3a). The linear correlations for the 16 nodes were weight averaged with the mean 
value of g(σ) at the corresponding node. The weight-averaged correlation is a better estimate of the network's 
skill for the given set of hidden nodes, as it reduces the influence of noisy values at the bottom of the boundary 
layer. The noisy values might be due to interpolation of the shape function profiles from the GOTM data. Based 
on hyperparameter sweep, we chose 2 hidden layers with 32 hidden nodes for 𝐴𝐴 1 , for which average correlation 
≈0.9, and it is reasonably close to more expensive networks. For a deeper and wider network than 32 nodes, the 
average correlation score does not vary significantly, but the cost of using the network in an OGCM increases.

Figure 3b shows the loss curves for training the network. Training loss (magenta) and validation loss (green) 
decrease with the training epoch. The validation loss is higher than the training loss, but both eventually plateau. 

Figure 3.  (a) Average linear correlation coefficient between network output and the true values from data. Averaging has 
been done over all the 16 nodes. Different color represent different number of layers and x-axis shows the nodes in each 
hidden layer. (b) L1 loss curves for training and validation.
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The difference between validation and training loss, shown in blue, remains constant in later epochs, signifying 
when training should be stopped. The validation loss does not increase, ensuring that the network is not overfit-
ting the training data. The performance of the network is further tested by comparing it with the validation data. 
Strong agreement with validation data can be seen through the average correlation scores in Figure 3a and the 
error statistics in column (d) of Figure 4.

Figure 4 displays the performance of 𝐴𝐴 1 . The first column (a) shows the error statistics between the validation 
data and the network's prediction in the normalized space for each output node. The boxes show the interquantile 
range, while the whiskers show the 5th and 95th percentiles of the error. The second column (b) shows the same 
percentile range as in column (a) but in the physical space of g(σ). The medians are superposed over the mean 
g(σ) profile of the entire data set. This helps to visualize the skill of 𝐴𝐴 1 with respect to each σ value. Nodes 11 and 
12 have a high error variance compared to other nodes. The error variances in column (a) are different from those 
in column (b) because the data have different variances along the nodes. The last node 16 has a high variance in 
(a) but because the g(σ) values at that node are small, poor performance at that node does not penalize the overall 
performance of 𝐴𝐴 1 . Node 16 is in the transition layer, which may have a large gradient of the tracer that might 
amplify the error in diffusivity at node 16. However, implementing this version of the network in ePBL yields an 
acceptable improvement in overall performance, suggesting that the error in node 16 is acceptable. Sensitivity in 
the transition layer will be investigated in more detail in future work. Column (c) has histogram plots of the vali-
dation data and its prediction. The network performs reasonably well and only shows inaccurate behavior when 
the data is multimodal. Column (d) shows the error histogram. The error has the highest variance at node 12, and 
is approximately Gaussian everywhere implying randomness.

For the neural network 𝐴𝐴 1 , Figure 4 shows the ability to predict the shape function offline. In general, the network 
shows high skill, as seen by the scores in Figure 3. The network 𝐴𝐴 1 shows some inaccuracies in predicting multi-
modal distributions for output nodes 10–15. A single network predicts the value of the shape function at all the 
nodes, and it could compensate for the accuracy at one node over the other. Increasing the size of the network (i.e., 

Figure 4.  Performance of 𝐴𝐴 1 for all the 16 sigma points. (a) Difference between network prediction and data. (b) Difference between network prediction and data 
in the physical space. Percentile ranges have been superimposed over the mean shape function from the training data set. (c) Probability density histogram between 
network prediction and data. (d) Histogram of error defined by differences between the network prediction and data. For nodes 10, 11, and 12 networks exhibits poor 
performance. This could be due to the strong multi-modal nature of data at those locations.
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number of layers and nodes in them) slightly reduces this error, but the cost of computation increases significantly 
with size rendering them unusable for longer time-scale simulations.

𝐴𝐴 1 is trained in all of the forcing regimes: surface heating, neutral, and convection. Perhaps, this adds a limitation 
to the network, which falls short of having very high skill for all the regimes. In our training experiments (not 
described in this article), training and predicting separately on the stable and unstable regimes gave higher skill 
than training on all regimes at once. Having two networks to predict g(σ) alone could lead to higher skill without 
increasing the number of hyperparameters. This might be a cost-effective way to increase the overall accuracy of 
ePBL_NN without expanding the size of the network. Increasing the number of hidden nodes in the hidden layers 
increases the cost of forward computation, while switching between the networks based on the forcing regime 
has a similar cost to using a single network. For simplicity, in this work we prefer to train all data using a single 
neural network and have not pursued this any further.

We used the L1 loss function (mean absolute error) for training, as it gave better training performance than the 
L2 (root mean square error [RMSE]). We also increased the convergence of the network parameters (weight and 
biases) by tweaking the loss function. The loss values at nodes 8 to 13 were amplified by a factor of 100. This 
made the loss gradients steeper at the nodes that show the highest variance (seen in columns 1 and 2). This forces 
the network to put more weight on reducing errors on the nodes that are otherwise difficult to learn. The ADAM 
optimization algorithm (Kingma & Ba, 2014) has been used to train the weights and biases of the network with 
a learning rate of 10 −3.

3.5.  Training 𝑨𝑨 𝟐𝟐

The second neural network 𝐴𝐴 2 as shown in Figure 2 predicts the characteristic velocity, v0. Velocity is diagnosed 
from the training data using the following jugaad:

𝑣𝑣0 =

(
max(𝜅𝜅𝑘𝑘𝑘𝑘(𝜎𝜎))

ℎ

)

� (14)

where the overbar denotes the average of all the values of v0 for a set (f, B0, u*). The spread of max(κkϵ(σ))/h for 
a constant (f, B0, u*) is small, and averaging assists the neural network in training to predict the mean value (see 
Appendix A).

Similarly to 𝐴𝐴 1 , network is trained on logarithm of v0 and exponential function is used while inferring to ensure 
that the predicted v0 is strictly positive. The data is divided into 80%–20% to train and test the performance of 
the network. As seen in Table 1, the training data cover a wide range compared to that of 𝐴𝐴 1 , including extreme 
forcing conditions anticipated in a realistic OGCM. When the network sees conditions outside this range, the 
input is capped at the nearest extremum data point. This is to prevent the network from extrapolating, which is 
less skillful than interpolation. The trained network has high skill (linear correlation of 0.99) as seen in Figure 5.

4.  Evaluating Impacts in a Prognostic OGCM
Training, testing, and validation data provide one method for testing the network and its ability to reproduce 
training data. However, to fully test the network's potential for OGCM experiments the neural networks must also 
be implemented in free-running, prognostic models. Our implementation does not cause simulation to fail due 
to any spurious effects or instabilities which is a known problem with implementing neural networks in a GCM 
(see Brenowitz et al., 2020 and references therein). Stability might result because we implement neural networks 
as a component within the existing ePBL framework. We demonstrate the success of our implementation using 
both free running column model experiments and forced ice-ocean global OGCM climate model experiments.

4.1.  Implementation of Neural Networks in MOM6

We now describe the implementation of our networks in the MOM6 ocean model. The weights and biases of the 
network are generated offline and stored in NetCDF files. Feedforward (inference) calculation of the network 
involves matrix multiplications and activation functions. These have been coded as subroutines in MOM6's verti-
cal mixing module (ePBL). A flag activates the neural networks to predict g(σ) and v0. All inputs to the network 
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are readily available within the ePBL module. The neural networks require the depth of the boundary layer h, 
which is provided by the ePBL scheme as described in Reichl and Hallberg (2018). The neural networks function 
alongside the algorithm by which ePBL derives h and therefore they do not interfere with any energy constraints 
set by the original scheme. Additionally, in MOM6, the diffusivity derived from ePBL and the neural network 
subroutines is passed to a main diabatic mixing module which combines diffusivities from various mixing param-
eterizations (such as Jackson et al., 2008) within MOM6. More details can be found in Reichl and Hallberg (2018). 
g(σ) is obtained at 16 points between the surface and h. At the surface, g(σ = 0) = 0 to satisfy zero diffusivity. At 
h, g(σ = 1) is set as a small number by assuming g(σ = 1) = c · g(σ = 16/17), where c is a small positive constant 
set as 0.1. GCM and single column runs were found to be insensitive to small and non-zero values of c.

Shape function on σ is converted to the model's vertical grid by linear interpolation. The use of the sigma coor-
dinate makes our scheme grid independent of the vertical coordinate. The shape function on the model grid is 
multiplied by v0 · h according to Equation 10 to recover the diffusivity profile of the k − ϵ model. The subroutines 
pass on the diffusivity profile to the ePBL module. In MOM6, there are other parameterizations active along with 
ePBL to incorporate strong shearing regions found at the equator and also that handle background diffusivity. 
Both networks 𝐴𝐴 1 and 𝐴𝐴 2 are shallow, as they have 2 hidden layers with 32 nodes in each. OM4 model with 
ePBL_NN requires ≈5%–10% more runtime than ePBL. This cost may not warrant a need for graphical process-
ing units (GPUs) to speed-up the inference in this version of the scheme, but this option will be explored in the 
future.

Figure 5.  Performance of 𝐴𝐴 2 . (a) Loss curves. (b) Histogram of difference between network's prediction and data. (c) 
Predicted versus true values for the training data set. (d) Predicted versus true values for the validation data set.
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Figure 6.  Time series comparison for single column model configuration. Latitude is set to 40°, surface heat flux is 50 W/m 2, and wind stress is 0.2 N/m 2. The upper 
row compares diffusivity and the bottom row compares stratification. In both the cases, ePBL_NN is in better agreement to the second moment closure scheme k − ϵ 
than energetic Planetary Boundary Layer (ePBL).

Figure 7.  Time series comparison for single column model configuration. Latitude is set to 1°, surface heat flux is 50 W/m 2, and wind stress is 0.2 N/m 2. The upper 
row compares diffusivity and the bottom row compares stratification. In both the cases, ePBL_NN is in better agreement to the second moment closure scheme k − ϵ 
than energetic Planetary Boundary Layer (ePBL).
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The inputs to the neural network are also capped inside the subroutine to ensure the networks do not make predic-
tions outside their training range. For 𝐴𝐴 1 , if any of the inputs (f, B0, u*, h) are outside the known range, then the 
subroutine limits the inputs and changes them to the nearest point in the four-dimensional hypercube formed by 
the four inputs. Our training data covers a reasonable space of the forcing parameter regime as observed among 
realistic present conditions (as it will be applied in this study). Data points outside the range are less probable, 
allowing the network to perform effectively for nearly all of the tested forcing conditions (see Appendix B). 
Capping the inputs prevents the network's output from being unphysical. If the network is applied for simula-
tions in substantially different climate regimes (e.g., paleoclimate or for other planetary bodies) the training data 
could be enhanced. If the network receives inputs outside the known range, the shape function can have spurious 
values with irregular vertical structure. Capping the inputs ensures that this spurious behavior is prevented. The 
training on logarithm and using exponential function while inferring described in the earlier sections prevents 
non-positive behavior for both 𝐴𝐴 1 and 𝐴𝐴 2 .

4.2.  Single Column Model Results

We compare three schemes to examine the performance of the network in single column model: GOTM k − ϵ, 
ePBL, and ePBL_NN. MOM6 in single column configuration (as in Reichl & Hallberg, 2018) is used to run ePBL 
and ePBL_NN, while GOTM is used for the k − ϵ experiments. The column models are forced at the surface 
grid interface with constant buoyancy forcing (surface heating of 50 W/m 2) and constant wind surface stress 
(0.2 N/m 2). Stratification is constant throughout the column in the initial conditions. To have the same entrain-
ment in all the three cases, the m* value is diagnosed from the k − ϵ output and imposed in MOM6. The  quantity 
m* is the non-dimensional integral of the entrainment flux and is given by 𝐴𝐴 ∫

0

−ℎ
min

(

0, 𝑤𝑤′𝑏𝑏′
)

𝑑𝑑𝑑𝑑 = 𝑚𝑚∗𝑢𝑢∗3 for 
surface heating conditions. In Reichl and Hallberg (2018), m* has been parameterized using a function G as in 
Equation 5. Instead of using the parameterized m* from Reichl and Hallberg (2018) and Reichl and Li (2019), 
we use a diagnosed and time varying m* from k − ϵ to perform a controlled comparison with identical forcing 
conditions. This prevents deficiencies in the parameterized m* from causing any disagreements between MOM6 
and GOTM. By matching the surface forcing and integral of the entrainment flux, the differences between all the 
three cases can only be due to diffusivities.

Two latitudes are compared: Latitude 40° (Figure  6) and 1° (Figure  7). The figures show the time series of 
diffusivity and temperature stratification. For both latitudes, the diffusivity and stratification in ePBL_NN are in 
closer agreement with the k − ϵ model than the original ePBL model, showing the ability of the neural networks 
to match k − ϵ. ePBL_NN has a diffusivity profile closer to k − ϵ than ePBL throughout the OSBL. In k − ϵ (SG), 
the turbulent diffusivity is computed from the simulated turbulent kinetic energy and turbulent length scale, using 
stability functions that relate the Prandtl number to the Richardson number (Schumann & Gerz, 1995). The neural 
networks have “learned” those relationships (without direct knowledge of either parameter) that set the structure 
of diffusivity and hence show high skill in predicting the profile.

The upper ≈20% of the diffusivity profile is able to learn traditional constraints, such as the law of the wall 
scaling, since they are features of the training data. The bottom ≈40% of the OSBL shows more variability and 
is an important region for the entrainment process. In deepening of the boundary layer, the entrainment process 
mixes the higher density water masses (usually cold) from below the mixed layer with the lower density mixed 
layer above it (usually warmer). Outside of the polar regions, this process cools the mixed layer along with the 
sea surface temperature (and warms the interior) and has implications for ocean-atmosphere energy exchange 
and feedbacks.

4.3.  Ice-Ocean JRA Forced Model Results

We next tested the ePBL_NN scheme using the GFDL's OM4.0 ocean/sea ice model. The model has a nomi-
nal 1/4° resolution and is forced using the JRA forcing product (Tsujino et al., 2018). JRA forced simulations 
constrain the atmospheric fields that force the ocean model with the observed/reanalysis atmospheric data. This 
is different from the atmosphere-ocean coupled model as there is no feedback from the ocean response to the 
atmosphere. However, this approach is beneficial for testing parameterizations since two experiments can be 
more carefully compared without considering the complications of those feedbacks. Future work will examine 
the performance of these schemes in fully coupled climate models.
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Two sets of OGCM experiments have been performed: one using the ePBL scheme as a control run (e.g., as 
described by Adcroft et al. (2019)) and the second with the neural networks active to replace the shape function 
and velocity scale in ePBL. The simulations were performed for a period of 1958–2017.

In this study, we compare the two runs with observations to analyze the impact on: (a) Ocean heat uptake, (b) Sea 
surface temperature, (c) Mixed layer depth, and (d) Upper ocean temperature stratification in the Tropical Pacific. 
For sea surface temperature, data from the World Ocean Atlas (Boyer et al., 2018; Locarnini et al., 2019) has been 
used to compare the two schemes. For the subsurface comparison: mixed layer depth and stratification, ARGO 
float measurements have been utilized (Argo, 2023).

4.3.1.  Ocean Heat Uptake and Sea Surface Temperature Comparison

Figure 8 shows the global ocean heat content for the three runs: one with ePBL_NN shown in red-solid line, and 
the other two with ePBL by setting γ from Equation 8 as 1 and 3 shown as blue-dashed line and green-dotted line 
respectively. ePBL_NN shows more heat uptake than the original scheme, and rate of warming is between ePBL 
runs with γ set as 1 or 3. This highlights the sensitivity of the total ocean heat content to the shape function and 
to boundary layer mixing schemes.

Figure 9 shows the sea surface temperature (SST) bias averaged over the years 2003–2017 for each 1° grid point. 
SST biases are similar in the two runs with minimal differences, which is expected since the atmospheric fields 
are prescribed and not coupled. SST around the eastern Pacific and Atlantic equatorial regions shows a slightly 
warmer bias for the ePBL_NN run than for the ePBL. In the Indian Ocean, the bias is slightly colder. The SST 
bias in the Gulf Stream and Kuroshio current is slightly warmer in ePBL_NN by about 0.5°C. The response of 
the SST to ePBL_NN in the boundary current regions indicates that changes in the vertical viscosity or diffusivity 
also impacts the circulation in certain regions.

Changes in the patterns of SST can be due to changes in the mixed layer depth and the surface heat fluxes. 
The heat fluxes are computed as a function of SST, surface ocean velocity and ice cover as stated in Adcroft 
et al. (2019) and Griffies et al. (2016).

4.3.2.  Mixed Layer Depth Comparison

Summer and winter mixed layer depths (MLD) are compared, a metric usually used to indicate the depth at which 
atmospheric influences are directly felt in the ocean. Here, winter (summer) mixed layer depth is the maximum 
(minimum) of the monthly averaged MLDs for each grid point over the period 2003–2017. The MLD depends on 
the definition, and we evaluate it using two criteria: Reichl et al. (2022) and de Boyer Montégut et al. (2004). The 
criterion from de Boyer Montégut et al. (2004) uses a threshold potential density of 0.03 kg/m 3 whereas Reichl 

Figure 8.  Total ocean heat content compared between energetic Planetary Boundary Layer (ePBL) and ePBL_NN for the 
duration of 1958–2017. Initial 30 years (1958–1988) can be considered as spin up. For ePBL, γ from Equation 8 has been 
set to 1 and 3. For ePBL_NN, the tunable parameter γ does not exist. We can observe that the ocean's total heat content 
is sensitive to the vertical diffusivity set by the ocean surface boundary layer mixing scheme. ePBL_NN replaces ad-hoc 
diffusivity of ePBL with a physics informed data-driven neural network.
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et al. (2022) uses a threshold potential energy anamoly of 25 J/m 2 to define the MLD. Figures 10 and 11 show the 
MLD using the potential energy anomaly criterion and the potential density respectively.

Figures 10 and 11 show summer time MLD. The summer time MLD bias has reduced significantly in ePBL_NN 
as compared to ePBL. The average bias reduced from 7.22 to 5.73 m as seen in Figure 11. Between −20° and 
20° latitude, the average RMSE for MLD bias in ePBL was about 7.94 m. In ePBL_NN, the bias was reduced 
to 5.18 m. We have shown the latitude dependency of RMSE between model and observations in Supporting 

Figure 10.  Summer time (shallow) mixed layer depth biases using the Potential anomaly criterion of Reichl et al. (2022). (a) Mixed layer depths (MLD) from energetic 
Planetary Boundary Layer (ePBL), (b) Difference of MLD between ePBL and ePBL_NN. (c) Bias of ePBL with respect to ARGO data, (d) Bias of ePBL_NN with 
respect to ARGO data. We can notice the bias reduction from (c) to (d).

Figure 9.  Sea surface temperature and biases. (a) Sea surface temperature (SST) from model runs using ePBL_NN. (b) SST difference between energetic Planetary 
Boundary Layer (ePBL) and ePBL_NN. (c) SST bias between ePBL and observations (Obs). (d) SST bias between ePBL_NN and observations. Bias plots also show 
mean and standard deviation. Observations are from World Ocean Atlas data set (Locarnini et al., 2019). SST biases are similar for ePBL and ePBL_NN. At the 
equatorial region, ePBL_NN shows slightly colder bias than ePBL.
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Information S1 (see Figures S1 and S2 in Supporting Information S1). The ePBL_NN scheme performs better 
under stable surface heating conditions than the ePBL scheme. The shallow MLD bias reduction has implications 
for equatorial oceanic regions and its effect on large-scale ocean-atmosphere feedbacks (Adcroft et al., 2019). 
Winter MLD biases (Figures 12 and 13) are very similar for both runs. The ePBL_NN predicts diffusivity close 
to a second moment scheme but does not significantly impact the winter time bias simulated by the model with 
the original ePBL scheme. This is likely because other model physics and factors can dominate in setting the deep 
convective mixed layers and water properties.

Figure 11.  Summer time (shallow) mixed layer depth biases using the density criterion of de Boyer Montégut et al. (2004). (a) Mixed layer depths (MLD) from 
energetic Planetary Boundary Layer (ePBL), (b) Difference of MLD between ePBL and ePBL_NN. (c) Bias of ePBL with respect to ARGO data, (d) Bias of ePBL_NN 
with respect to ARGO data. We can notice the bias reduction from (c) to (d) and is consistent with that observed in Figure 10.

Figure 12.  Winter time (deep) mixed layer depth biases using the Potential anomaly criterion of Reichl et al. (2022). (a) Mixed layer depths (MLD) from energetic 
Planetary Boundary Layer (ePBL), (b) Difference of MLD between ePBL and ePBL_NN. (c) Bias of ePBL with respect to ARGO data, (d) Bias of ePBL_NN with 
respect to ARGO data. Biases are similar in (c) and (d) and ePBL_NN does not significantly worsen any biases.
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Although ePBL_NN has been trained on all the regimes including surface cooling, a different scheme or process 
might be compensating the effects of improved diffusivity. This could also be due to higher sensitivity of shallow 
mixed layers to changes in surface forcing than deep mixed layers. For shallow mixed layer depth, any perturba-
tions in the atmospheric forcing will reach the base of the boundary layer quicker than it would reach in deeper 
layers. In Reichl and Hallberg  (2018), the rate of conversion of turbulent kinetic energy to potential energy 
within the boundary layer (left hand side in Equation 7) uses a parameterization that depends on h. Changing 
the diffusivity can alter h which in turn modulates the rate of energy conversion. This can lead to changes in 
the  MLD.

The winter time MLD biases are similar for both runs. The summer time MLD bias shows a further reduction 
when evaluated using de Boyer Montégut et al. (2004) than with Reichl et al. (2022). It is not unusual to get differ-
ent values of MLD using different definitions. For both definitions, winter biases in ePBL_NN are not worsened. 
Qualitative agreement of the reduction in summer bias in ePBL_NN using two different criteria provides strong 
evidence of ePBL_NN performing better than ePBL in terms of MLD bias reduction under fixed atmospheric 
forcing conditions.

4.3.3.  Comparison of Upper Ocean Stratification in the Tropical Pacific

The final comparison we use to assess the impact of the neural network diffusivities on the model result is the 
upper ocean temperature stratification (∂Θ/∂z, where Θ is the potential temperature) in the Equatorial Pacific 
region. The thermocline in the Equatorial Pacific region plays an important role in El Niño Southern Oscilla-
tion dynamics with implications for the Earth's climate system (for example) (Jin & An, 1999). The temperature 
stratification is shown for a vertical cross section along the equator spanning −220° to −80°E. Figure 14c shows 
the observational data from ARGO floats (Roemmich & Gilson, 2009). Figure 14b is the ∂Θ/∂z from the original 
ePBL and shows lower stratification as compared to ARGO observations. The ∂Θ/∂z from ePBL_NN, as seen in 
Figure 14a, shows significant improvements in the stratification of the upper 50 m of the ocean. Stratification in 
ePBL_NN is closer to ARGO data in the equatorial region of the Pacific Ocean. The neural network predicted 
diffusivities help to increase the stratification and make it closer to observations than the simulation with the 
original ePBL with the ad hoc shape function for diffusivity.

Stratification acts as a barrier to mixing, this warrants further investigation into how ePBL_NN changes transport 
pathways of heat through the OSBL in different regions of the world's oceans. Overall, the MLD bias is reduced, 

Figure 13.  Winter time (deep) mixed layer depth biases using the density criterion of de Boyer Montégut et al. (2004). (a) Mixed layer depths (MLD) from energetic 
Planetary Boundary Layer (ePBL), (b) Difference of MLD between ePBL and ePBL_NN. (c) Bias of ePBL with respect to ARGO data, (d) Bias of ePBL_NN with 
respect to ARGO data. Biases are similar in (c) and (d) and ePBL_NN does not significantly worsen any biases. This observation is consistent with that observed in 
Figure 12.
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and stratification has improved for the upper ≈50 m suggesting that ePBL_NN works to fix these two biases in 
conjunction.

5.  Concluding Remarks
5.1.  Summary

In this study, we apply neural networks to improve the parameterization of the vertical diffusivity in the OSBL. 
The data used to train the neural networks is obtained using second-moment closure simulations by running 
single-column model under various forcing scenarios, spanning the possible range of present-day and future 
conditions. The neural networks are implemented within the existing physics-based parameterization from 
the ePBL framework of Reichl and Hallberg (2018). The neural networks augment the method to determine 
the vertical diffusivity in the ePBL scheme with data-driven relations but maintain the physically motivated 
energetic constraints on mixing from the original scheme. A benefit of our approach is that it yields a stable 
implementation in the OGCM (MOM6). This enables us to perform decade-scale simulations spanning 1958 
to 2017.

Atmospherically forced Ice-Ocean experiments using the GFDL's MOM6 1/4° model suggest an overall 
improved performance due to the enhancements in ePBL_NN relative to the original scheme. There is 
a reduction in biases of summer-time MLD and no exacerbation of the winter-time biases compared to 
ePBL. The stratification of the upper ocean in the tropical pacific shows improvements in the thermocline 

Figure 14.  Temperature stratification at a transect along the equator in the Pacific Ocean. (a) Energetic Planetary Boundary Layer (ePBL) output, control run. (b) 
ePBL_NN output. (c) ARGO data (d) ePBL—ePBL_NN. Note that (b) is closer to (c) than (a). ePBL_NN has been instrumental in enhancing the stratification of the 
upper ocean.
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compared to the ARGO float observations. This analysis indicates that the resulting scheme is suitable for 
implementation in future OGCM configurations and experiments and is expected to reduce biases in climate 
simulations. Further analysis using a wider range of diagnostics in additional model configurations will be 
particularly beneficial.

The ePBL framework is already optimized for GCMs, providing larger time stepping capabilities (≈O(1) hr) and 
ePBL_NN leverages these advances with improved diffusivity profiles. It is computationally expensive to run a 
second-moment scheme in a GCM due to time-stepping restrictions (≈O(10 − 100) s), but ePBL_NN can yield 
eddy diffusivity profiles more consistent with a SMC within the original ePBL framework. This is significant for 
GCMs as we are achieving closer results to a model having a second-order turbulence closure scheme, but able 
to maintain coarse resolutions and long time steps needed for climate scale simulations. We note that the longer 
implicit time step used in the numerics of ePBL (see Reichl & Hallberg, 2018) can lead to a smoothing effect 
which can complicate resolving small-scale structure, but we observe that the large-scale evolution is tracked 
accurately.

While the results of this work are promising, numerous aspects remain important for future work. For example:

1.	 �ePBL, ePBL_NN, and the SMC considered here assume downgradient diffusion and hence have no nonlocal 
flux terms. The representation of nonlocal fluxes could improve the scheme further and potentially affect 
convective regions and Langmuir turbulence (e.g., Chor et al., 2021). In this application we do not explicitly 
consider the impact of Langmuir turbulence within ePBL (though it is part of setting the energy available for 
entrainment, see Reichl & Li, 2019).

2.	 �The neural networks can be made larger to capture more complex relationships in the data by increasing the 
number of hyper-parameters (hidden nodes). In this work we chose small networks for initial investigation. 
The successful use of small neural networks as efficient surrogate models of SMCs proves that we can repli-
cate the behavior of complex models with high fidelity. Increasing the network size will be explored in the 
future and will likely require using GPUs for implementation in OGCM (Zhang et al., 2023).

3.	 �The performance of the modified vertical mixing scheme in a coupled model (atmosphere-ocean-ice) may 
not show the same impact on model bias as observed in this forced ocean-ice model. The atmosphere-ocean 
feedbacks will require exploration in future work.

4.	 �Improving the representation of the diffusivity profile has implications for many quantities that have gradients 
within the boundary layer. For example, changing the diffusivity of nutrients within the euphotic layer has 
implications for biogeochemical processes such as primary production. The implications of improved diffu-
sivity for ecological modeling will be explored in future work.

5.	 �Finally, we have trained on one SMC, the k  −  ϵ model with stability functions following Schumann and 
Gerz (1995). This parameterization was chosen for consistency with Reichl and Hallberg (2018), but alterna-
tive SMC models may yield different results. In future work this process will be repeated with different SMC 
schemes to understand the influence of SMC diffusivities on the performance of GCMs. One disadvantage is 
that SMCs have been assumed to be the “truth” but it might lack realism and hence future work will focus on 
including data from LES studies and observations.

5.2.  Applications for First Order Ocean Surface Boundary Layer Parameterizations

One key achievement of this work is that it establishes a relationship between the shape function of upper ocean 
vertical mixing and the forcing parameters. Previous work in similar first-order upper ocean mixing parameteri-
zations assumes that the shape function is fixed, or was set by ad-hoc approximations. This work further suggests 
that models that consider this variation in the shape function are more skillful at simulating upper ocean stratifi-
cation and ocean mixed layers. The physics-informed function (network) developed in this work for determining 
the shape function from the forcing parameters is applied here in ePBL as an example. However, the function is 
not specific to ePBL and can also be used within other first order OSBL parameterizations (such as KPP, Large 
et al., 1994; Van Roekel et al., 2018).

It is also important to consider that the neural network based model used in this work is not the only approach 
to find a relationship between the forcing terms and the vertical mixing profile. The neural network is able 
to establish the existence of a relationship between its input and outputs, which is learned during the training 
process. While the neural network can be applied in ocean models as-is to improve simulations, we also desire 
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an in-depth understanding of the patterns in the inputs that the network used to make its skillful predictions. 
In future work, we seek to relate the network's findings to the processes that govern the OSBL's behavior (e.g., 
with equation discovery). This may ultimately lead to a simpler, interpretable and computationally low-cost 
physics based model for the shape function that can be learned from the neural network and applied in ocean 
models.

5.3.  Implications for Augmenting Ocean Parameterizations With Machine Learning

A second implication of this work is demonstrating the potential for neural networks to improve parameteriza-
tions in ocean models. This implication is in agreement with several similar previous studies in earth system 
modeling (e.g., O'Gorman & Dwyer, 2018; Yuval & O'Gorman, 2020). As neural networks are not limited to 
individual processes, future avenues of research on ocean parameterizations will benefit from their usage. For 
example, neural networks can be applied to incorporate different mixed layer processes such as non-local fluxes 
during convection, entrainment, Langmuir turbulence, symmetric instability, surface wave effects, etc. into a 
single neural network model. Further improvements can be made which incorporate time history to improve 
predictions under transient forcings. Many existing ocean/atmosphere parameterizations have a physics based 
parent scheme with a few ad-hoc components or approximations. These components can be replaced or re-tuned 
using our approach or other emerging approaches such as Ensemble Kalman methods, posteriori criteria match-
ing, etc. (e.g., Frezat et al., 2022; Lopez-Gomez et al., 2022, and references therein). Parameterizations in the 
form of weights and biases are advantageous because they can be re-tuned and further optimized to train as addi-
tional data, observations, and processes are presented.

The successful application of neural networks in an OGCM simulation unlocks the potential to test the importance 
of improving a certain process/parameterization in the model. For example, consider a case where the process 
studies' data exist, but a physics-based parameterization might be challenging to develop. Neural networks can 
parameterize that process and its impacts in an OGCM can be explored before going into a detailed parameteri-
zation development, which can be resource-consuming.

One of the major sources of uncertainty in climate models arise from parameterizations due to their inadequate 
representation of sub-grid physics. Perhaps, high resolution or shorter time-steps can attenuate the effects of 
structural uncertainties in sub-grid parameterizations. Computational limitations often impose constraints on 
factors such as resolution, ensemble size, and integration time scales within models. These limitations underscore 
the need for improving the current generation of climate models, while steering away from relying on higher 
resolution models or shorter time steps. Combining traditional process-oriented studies with the emerging field 
of machine learning offers the potential for synergistic advancements, leading to the refinement of sub-grid 
models. We have established a pipeline whereby an existing parameterization is augmented to harness the capa-
bilities of neural networks. The successful integration of neural network within the ePBL, and its application to 
an ocean model, introduces opportunities for enhancing parameterizations that govern upper ocean mixing in 
climate models.

Appendix A:  Why Does v0 Change Due To Coriolis Parameter, f ?
In general, turbulent velocity scales are related to turbulent kinetic energy and depend on boundary forcing, u* 
and B0. Here, in addition to u* and B0, we find a dependency of the bulk turbulent velocity scale v0 on f. The bulk 
velocity is diagnosed by using diffusivity and boundary layer depth from the training data as per Equation 14. To 
predict v0 using 𝐴𝐴 2 , the Coriolis parameter f has been used because we found the model improves in its ability to 
predict variations in v0 in the training data. This is evident from Figure A1.
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Figure A1 shows the variation of v0 with respect to latitudes and h under surface heating and cooling conditions. 
This indicates that f is a useful input for accurately predicting v0. Physically, the inclusion of f is related to the 
role of rotation in limiting the wind-input of energy and the shear production of turbulence in the boundary 
layer through Ekman effects. The variation due to h is smaller than due to f, around 5% of the mean value of v0 
for any particular set of forcing (f, B0, u*). Since the implementation and generalization is significantly easier if 
the network only depends on external forcing parameters, we choose to include f as an input to the network and 
neglect h.

Appendix B:  Quantifying Uncertainty Range Covered in the Forcing Data
Table 1 gives the range of the forcing parameters covered in the training data set. A natural question is how 
much of the variability observed in GCM simulations is covered in the training data. We can estimate this 
using Shannon entropy (Shannon, 1948) which measures the amount of uncertainty and variability in a variable 
(Carcassi et al., 2021; Sane et al., 2020, 2021).

Shannon entropy of an event xi is given by 𝐴𝐴 𝐴𝐴(𝑥𝑥) = Σ𝑁𝑁

𝑖𝑖=1
𝑝𝑝𝑖𝑖log2(1∕𝑝𝑝𝑖𝑖) (Cover, 1999) and measures the average 

amount of information or surprise related to the event. We only use discrete probability distributions. Low 
probability events have high Shannon entropy because they cause more surprise compared to high probability 
events. It is a non-parametric measure and does not make any assumption about the distribution. u* and B0 are 
non-Gaussian (Figure B1).

For u*: H(u* > 0.03 m/s) ≈ 95.5% and for B0: H(|B0| > 2.1 × 10 −7 m 2/s 3) ≈ 86%. This can be interpreted as the 
values u* > 0.03 have 95.5% uncertainty associated with them. So leaving out values of u* for which u* > 0.03 
removes 95.5% uncertainty from the training data. This is a simplistic estimate and assumes u* and B0 are inde-
pendent. These estimates show that our training data covers 95.5% variability for u* and 86% of B0 as observed 
under realistic conditions in a GCM.

The training data points are uniform and although they cover most of the range seen in realistic conditions, the 
training data does not follow the same marginal probability distribution of u* and B0 as well as the joint proba-

Figure A1.  Variation of normalized v with respect to its mean value. v0 varies due to heat flux, surface stress, latitude. Variations due to h are within 5% of the mean 
value of v0 and hence it is reasonable to exclude h from being an input to 𝐴𝐴 2 . Note that v0 is a diagnosed quantity from the output of k − ϵ solely used to reconstruct the 
diffusivity profile.
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bility distribution between u*, B0. For machine learning application of parameterization development the conse-
quence of sampling from joint distribution of variables from realistic conditions versus having uniformly spaced 
forcing is unknown as of now and will be left for future study.

Appendix C:  List of Symbols and Abbreviations
See Table C1.

Figure B1.  Left: Probability density curve of surface friction velocity u*. Right: Probability density curve of surface buoyancy flux Bo. The arrows denote the range 
covered in the training data set.

Symbol Description Units (if applicable)

Ψ Generic output –

𝐴𝐴   Generic Function –

𝐴𝐴    Neural Network function –

w Hyperparameters in a Neural Network –

f Coriolis parameter s −1

w Vertical velocity m/s

u* Surface friction velocity m s −1

b Buoyancy m s −2

B0 Surface Buoyancy Flux 𝐴𝐴 𝐴𝐴0 = 𝑤𝑤′𝑏𝑏′0 m 2 s −3

h Boundary layer depth m

ϕ Generic tracer –

κϕ Diffusivity of a variable ϕ m 2 s −1

b Buoyancy m s −2

L Length scale used in diffusivity m

z z co-ordinate, aligned with the local gravitational acceleration m

σ Sigma co-ordinate, defined by z/h –

Table C1 
List of Symbols
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Data Availability Statement
The code and the data can be obtained from https://doi.org/10.5281/zenodo.8293998. The code includes scripts 
for generating the training data, training the neural network model, and code for vertical mixing scheme which 
has been modified to use neural networks. We have also provided code and data for plotting.
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