
1. Introduction
The presence of sea ice in the polar oceans has a profound effect on ocean-atmosphere interaction and 
global climate (e.g., Chiang & Bitz, 2005; Curry et al., 1995; Screen & Simmonds, 2010). The thickness of the 
sea-ice cover is a key factor controlling the summer sea-ice extent (e.g., Bushuk et al., 2017; Day et al., 2014; 
Lindsay et al., 2008), but remains difficult to observe remotely and predict accurately with numerical sea-ice 
models (e.g., Blanchard-Wrigglesworth et al., 2016; Haas, 2003; Holland et al., 2010). Internal stresses in sea 
ice floes and drag from the ocean and atmosphere can build up ice in thick ridges under compression, or 
form leads during extension that increase ocean-atmosphere energy exchange (e.g., Batrak & Müller, 2018; 
Haas, 2003; Parmerter & Coon, 1973; Thorndike et al., 1975). During ice rafting, one ice floes overrides 
another with limited brittle failure (e.g., Hopkins et al., 1999; Parmerter, 1975; Tuhkuri & Lensu, 2002). Ice 
ridging, a different deformation mode, occurs when ice floes break into smaller pieces and create a chaotic 
and thick rubble (e.g., Hopkins, 1998, 1994). The subaerial ice rubble produced by the ridging process is 
called a sail, and the subaqueous part a keel. Due to the difference in ice and water density, sea ice keels 
are deeper than their corresponding sails. It is crucial to understand ridging, as it provides the fundamental 
control on the ice-thickness distribution (e.g., Thorndike et al., 1975). The ice thickness distribution of real 
ice packs shows an exponential decrease with thickness due to ridging (e.g., Godlovitch et al., 2011; Toppa-
ladoddi & Wettlaufer, 2015). Furthermore, the presence of keels and sails increase the form drag of the ice 
pack against ocean and atmosphere (Tsamados et al., 2014).

The study of ice strength is motivated not only by the perspective of sea-ice modeling, but also from the need 
to understand ice clogging of rivers, lakes, and marine passages (e.g., Damsgaard et al., 2018; Herman, 2013; 
Rallabandi et al., 2017; Shen & Liu, 2003), and mechanical resistance and wear against ships and other artifi-
cial structures (e.g., Heinonen, 2004; Timco et al., 2000). Coulomb failure is a general and scale-independent 
measure of ice strength (e.g., Weiss & Schulson, 2009), and has served as the constitutive basis for a range of 
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mechanical analyses. Mellor (1980) constrained analytical solutions for the mechanical resistance felt by sim-
ple ship-like geometries moving through brash ice with Mohr-Coulomb plasticity. The role of ice thickness on 
ridging and rafting processes was investigated in laboratory experiments by Tuhkuri and Lensu (2002). They 
found that the ice-thickness ratio, and not the absolute thickness, was the dominant parameter that deter-
mined whether sea ice undergoes ridging versus rafting. Small differences in ice-floe thicknesses tended to 
result in rafting with relatively little plastic failure, while ice floes with very different thickness experienced in-
tense failure and ice ridge formation during compression. Furthermore, they observed that the compressional 
strain had to exceed an initial threshold value with linear resistance before actual ridging started. However, the 
resistive forces during ridging appeared to follow a non-linear relationship.

In most widely used large-scale continuum sea-ice models, the ice pack in each cell is described by thick-
ness distribution functions (e.g., Flato & Hibler, 1995; Lipscomb et al., 2007; Thorndike et al., 1975; Unger-
mann et al., 2017). Ridge building modifies the thickness distribution, and is determined by the required in-
crease in potential energy and associated frictional losses (Coon, 1974; Hopkins et al., 1991; Hopkins, 1998; 
Pritchard, 1975; Roberts et al., 2019; Rothrock, 1975). The ice strength is parameterized to scale with ice 
thickness (e.g., Hibler, 1979; Lipscomb et al., 2007). However, current ridge-building models lead to biases in 
the ice-thickness distribution, compared to observations (e.g., Amundrud et al., 2004; Flato & Hibler, 1995; 
Ungermann et al., 2017). Fractures in the sea-ice cover are known to relax internal stresses (Dansereau 
et al., 2016, 2017), and inclusion of resultant brittle deformation in large-scale models improves the cor-
respondence between model and observations (Girard et al., 2011; Rampal et al., 2019). Wider adaption in 
traditional Eulerian sea-ice models may be hindered by numerical instabilities caused by rapid changes in 
ice strength (Lipscomb et al., 2007). Furthermore, current models are formulated under the continuum 
assumption where model cell sizes by far exceed the size of individual ice floes. While Roach et al. (2018) 
extended a continuum sea-ice model to prognostically determine the floe size distribution, ridging was not 
included due to the lack of a suitable physical description. Roberts et al. (2019) demonstrated with a varia-
tional principles and granular mechanics for the ice-rubble that macroporosity in ice ridges influences ridge 
mechanics and state.

As model resolutions increase, and potentially approach the size of large individual sea-ice floes, it be-
comes relevant to consider the physical basis for ridging on the ice-floe scale. Lagrangian particle-based 
sea ice models may be feasible alternatives to continuum models at high resolutions (e.g., Damsgaard 
et al., 2018; Gutfraind & Savage, 1997; Herman, 2016; Hopkins et al., 1991; Li et al., 2014), but still require 
model development for handling the multitude of involved physical phenomena. Lagrangian numerical 
models have been particularly effective at simulating the discontinuous evolution during ice ridging. Hop-
kins et al. (1991) simulated the compressive behavior of ice rubble with a particle-based numerical model, 
and concluded that the resultant increase in potential energy during ridge formation is a suitable metric 
for treating riding in large-scale models as long as the associated frictional losses were accounted for. Hop-
kins (2004) included a parameterization of ridging in a Lagrangian sea-ice model for the Arctic ocean. In 
this model, compressional strength linearly relaxes after ridging failure, and the internal stress distribution 
is reset every 24 h. However, the approach does not conform to physical principles of elasticity, plastic fail-
ure and frictional sliding.

Particle-based sea ice models are a useful tool for revisiting the idea of different failure stages in sea ice (Fla-
to & Hibler, 1995; Tuhkuri & Lensu, 2002), as ice-floes are distinctively represented and can carry material 
properties along without problems of advective diffusion (e.g., Flato, 1993). In this study, we simulate the 
mechanics of two ice floes that undergo compressional strain and investigate the mechanical behavior be-
fore and after ridging is initiated. The transition between states is compared against an established threshold 
criterion (Amundrud et al., 2004). Based on these results, we derive a parameterization for larger-scale sea-
ice models, and demonstrate how ridging mechanics influence larger-scale stress and strain distribution.

2. Methods
We model the sea-ice mechanics with a Lagrangian formulation based on the discrete-element method 
with breakable bonds (e.g., Cundall & Strack, 1979; Damsgaard et al., 2018; Potyondy & Cundall, 2004; Her-
man, 2016). The model is two-dimensional, with a horizontal (x) and a vertical axis (z). Each simulated ice 
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floe consists of many “ice particles,” which are cylindrical units with separate kinematics. The translational 
momentum balance on each ice particle i is defined as,

m
t

m
i

i

j
ij ij

i i iD

D

n t

Contact forces

o b

2

2

x f f f g f     
  

.
 (1)

The particle mass is m, and the vector x denotes spatial position of the particle center. Index j denotes 
other ice particles with mechanical interaction to particle i. Contact interaction is divided into force com-
ponents normal (fn) and tangential (ft) to the contact orientation. Besides contact forces, a range of other 
components are included as body forces, here fo is ocean drag, g is gravitational acceleration, and a= ρwVs is 
buoyant uplift in water with density ρw. Ocean drag and buoyant uplift apply only to particles that are fully 
or partially submerged, and scale with relative submerged volume (Vs).

Similar to the translational momentum balance, the angular momentum balance for particle i is:
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Here, Iy is the particle moment of inertia perpendicular to the simulation plane, Ω is the angular position, 
n is a normal vector to the plane of contact, and r is the particle radius. Drag torque to arises if the particle 
rotates relative to ocean vorticity. See Damsgaard et  al.  (2018) for further information on the force and 
torque components.

The momentum balance equations for ice-particle translation and rotation are explicitly integrated through 
time (t). The simulated ice-particle dynamics includes the full kinematic range from elastic wave propaga-
tion to plastic rearrangements.

2.1. Bonded Ice-Particle Mechanics

Interactions of bonded particles are simulated as elastic-plastic, that are based on beam theory, the 2D for-
mulation of which was developed by Potyondy and Cundall (2004). Yield in ice is scale independent and 
can be described by Coulomb friction (e.g., Weiss & Schulson, 2009). We neglect ice viscous deformation 
as the characteristic Maxwell time for ice (MacAyeal & Sergienko, 2013; Maxwell, 1867) is several orders of 
magnitude longer than the duration of our two-floe compression experiments. The contact-normal force fn 
is given by:

 n n ,ij ij ijA Ef δ (3)

where δn is the relative displacement between ice particles, which can be compressive or tensile. E is Young's 
modulus of the contact, and Aij is the contact cross-sectional area between the cylindrical elements, defined 
as:

 min( , ),ij ij i jA R h h (4)

where Rij = 2r ir j/(r i + r j) is the geometrical mean of the ice-particle radii, and h is particle thickness. The con-
tact-tangential (parallel) force ft is defined as,
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where t
ijδ  is the tangential displacement vector on the contact interface. This displacement vector is incre-

mentally calculated and corrected for contact rotation, in the same manner as done for unbonded-particle 
mechanics (Damsgaard et al., 2018). The magnitude of the bond-tangential force is limited by the Coulomb 
friction:
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t n
ij ij‖ ‖ ‖ ‖f f (6)

The elastic-plastic bond formulation resists relative rotation, shear, and tension between ice particles, but 
bond can fail based on a strength criterion for each kinematic degree of freedom. The tensile stress on a 
particle-particle bond is limited by the ultimate tensile strength (σuts):

  n t
uts

| | ,
ij ij ij

ij ij
M R

A I
‖ ‖f (7)

where Mt is the bending momentum on the bond:




t t .ij ij ij
i j

EM I
r r

 (8)

Iij is the particle-pair moment of inertia, approximated as,

 32 min( , ),
3

ij
ij i jI R h h (9)

and θt is the total relative rotation distance of the contact (   t ( )ij j i
t dt), with ω being particle angular 

velocity. The bond shear stress is limited by its shear strength σs:

  t
s .

ij

ijA
‖ ‖f (10)

If the bond stresses (right-hand sides of Equations 7 and 10) exceed the prescribed strengths (σuts and σs), 
the bond fails and is removed from the simulation. Any further interaction between the ice-particle pair is 
governed by the cohesion-less and elastic-frictional mechanics described in Damsgaard et al. (2018).

3. Ice-Floe Compression Experiments and Limitations
3.1. Experiment Design

We simulate the mechanical interaction of two floating ice floes that are subjected to compression with 
a constant speed (Figure 1a). Each ice floe is constructed of many layers of ice particles arranged in a 
triangular packing, connected by elastic-plastic bonds. Ice viscosity can be neglected on the time scale 
of ridging, as the characteristic Maxwell time t′ = η/E, with η being viscosity, is on the order of 100 days 
(Dansereau et al., 2017; MacAyeal & Sergienko, 2013; Maxwell, 1867). The outer edges of the ice floes are 
fixed horizontally but not vertically. The sea level is constant and the water is motionless. We vary the ice-
floe geometries, compressional velocity, and numerical resolution between experiments. While our simu-
lations do not include thermodynamics, we perform an additional experiment where we approximate the 
effects of instantaneous refreezing by forming new bonds between ice particles upon immediate contact. 
For comparison to existing analytical solutions used for sea-ice strength (Amundrud et al., 2004), we also 
model compressive mechanics of a floating, elastic sheet, as well as purely elastic-frictional ice floes with 
unbreakable bonds. The mechanical properties are in all cases uniform throughout the domain. The sim-
ulation parameters are listed in Table 1. We note that the chosen elastic modulus E actually relates to ice 
elasticity (Schulson, 1999), and is different to the elastic term in EVP-based continuum sea ice models that 
is included for numerical efficiency (e.g., Hunke, 2001; Lipscomb et al., 2007). Our compressional velocity 
is much faster than ridging in real sea-ice packs, but serves to decrease the computational costs for each 
experiment. It is common practice for discrete-element method simulations to use an accelerated forcing, 
as long as the acceleration keeps the elastic-frictional response rate-independent and pseudo static (e.g., 
Damsgaard et al., 2013; GDR-MiDi, 2004). Initial tests show that the inertial contribution to deformation 
is low, meaning that we can afford to use the shorter simulation duration while still obtaining the correct 
behavior.
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3.2. Compression Experiment Results and Discussion

Figures 1b–1d shows the evolution of geometry and stresses during ice-floe compression. We divide the 
observed deformation behavior into two distinct states of pre and post-failure. The pre-failure state is char-
acterized by elastic deformation through ice-floe internal stresses and geometric deflection (Figure 1b). At 
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Figure 1. One of many ice-floe compression experiments with two elastic-plastic ice floes, each represented by a bonded grid of ice particles. The ice floes are 
seen from the side and colored according to the bond stresses. Time and compressive strain increases from panel (a) to (c), and the magenta horizontal lines 
denote sea level. (a) Ice floes are initialized so buoyancy equals gravitational pull, and are compressed with a constant velocity cv. Compression causes elastic 
buckling (b) that under continued strain and brittle failure evolves to active ridging (c). The no-rotation boundary condition at the outer edges keeps the left ice 
floe submerged in (c) due to friction against the ice rubble in the center. (d) Measured stress during compression experiment compared to our parameterization 
(Equations 12–18).

Parameter Symbol Value

Ice particle radii r 0.010 m

Young's modulus E 2.0 × 107 Pa

Poisson's ratio ν 0.285

Coulomb friction coefficient μ 0.30

Maximum bond tensile strength σc 400 kPa

Maximum bond shear strength σs 200 kPa

Compressive velocity cv [0.05, 0.10, 0.2] m/s

Ice particle density ρi 934 kg/m3

Water density ρw 1,000 kg/m3

Length in no. of ice particles for left ice floe nx,1 100

Length in no. of ice particles for right ice floe nx,2 100

Thickness in no. of ice particles for left ice floe nz,1 [3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

Thickness in no. of ice particles for right ice floe nz,2 [3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

Gravitational acceleration gz −9.8 m/s2

Numerical time step length Δt 8.48 × 10−6 s

Simulation length ttotal ,1 ,2

v

2
2

x xn n r
c

Table 1 
Simulation Parameters for Ice-Floe Compression Experiments
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this point there is no plastic failure due to bond breakage, and the defor-
mation is entirely elastic and reversible. Both ice floes experience large 
internal stresses during buckling, and compressive stress increases to a 
peak value (Figure 1d). Buckling is common when slender or thin mate-
rials are subjected to compressive stress, causing out-of-plane deflection 
and a reduction in elastic rigidity. While the applied forcing at the ice-floe 
scale is purely compressive, the ice-floe contact undergoes both compres-
sion and shear as a result of the buckling. The thinner ice floe buckles 
upwards, as the ice-floe contact center is situated above the midpoint of 
the thicker ice floe due to flotation. The geometric configuration creates 
a rotational moment at the floe-floe interface that bends the thinner ice 
floe up.

As compressive strain continues to increase, yield failure occurs in the 
zone of maximum curvature and tensile stress, here located at the top of 
the thinner ice floe (Figure 1b). After this point of peak stress, the floes 
enter a post-failure state where the ice floes are broken into smaller pieces 
in a disorganized pressure ridge (Figure 1c). The contact forces between 
ice particles in the pressure ridge are caused by gravity and buoyancy. 
Further compressional strain faces resistance by Coulomb frictional slid-
ing in the ice rubble, which increases the potential energy during keel 
and sail construction. However, the bulk frictional resistance is during 

onset of the post-failure state smaller than the peak elastic stresses in the pre-failure state (Figure  1d). 
We note that structural weaknesses in the ice floes may dominate the failure patterns observed in our ex-
periments containing uniform bond strength. Similarly, strength and geometrical variations in the third 
dimension may provide more gradual yield failure, but this is outside of our current simulation capabilities.

The modeled bond elasticity and strength scales with ice-particle size (Equation  4), and we verify that 
the observed behavior is not dependent of numerical resolution in the ice floes (Figure 2). Instantaneous 
refreezing between ice particles does not influence the peak stress values during the pre-failure state, but 
causes larger compressive strength in the post-failure state as the ice-rubble quickly gains cohesion (Fig-
ure 3). However, the structural rigidity is still much lower than in the pre-failure state, at least for the com-
pressive distance modeled here.

For each ice-floe compression experiment, we plot the maximum ob-
served compressive stress at the transition between pre and post-failure 
states (Figure  4). The maximum compressive stress increases with the 
thickness of the thinnest ice floe with a weak non-linearity. With uni-
form bond strength and elastic properties, the thickness of the thinnest 
ice floe controls the magnitude of the peak compressive stress with a 
weak non-linearity. When simulating an elastic sheet with unbreakable 
bonds instead of two elastic-plastic ice floes, our model reproduces the 
analytical ice-sheet buckling solution by Amundrud et  al.  (2004) (Fig-
ure 4). However, compared to the elastic-plastic ice floe compression ex-
periments, our results show that the buckling solution for an elastic sheet 
is an overestimation of the ice rigidity. Therefore, we propose an empiri-
cal formulation for the maximum compressive strength in sea ice models 
that fits our experiments,


3/2

max Ic
min( , )

,i j
ij

h h
N K

A
 (11)

where Nmax is the maximum compressive stress before transitioning to 
the post-failure state, KIc is the fracture toughness of sea ice, min (hi, hj) is 
the thinnest ice thickness participating in the ridging, and A is the trans-
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Figure 2. Analysis of simulation sensitivity to numerical resolution in 
two-floe compression experiment.

Figure 3. Comparison between regular two-floe compression experiment 
with no refreezing and experiment where ice-particle pairs instantaneously 
refreeze by gaining full bond strength upon contact.
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verse contact area (Equation 4, Figure 7a). The relationship implies that 
thinner ice floes in a multi-thickness assemblage are likely to ridge before 
thicker floes. Moreover, the relationship between ice thickness and ridg-
ing participation is not linear, as is commonly assumed (e.g., Hibler, 1979; 
Lipscomb et al., 2007), but with a exponent of 3/2, as suggested by Hi-
bler (1980) and Hopkins (1998).

We fit Equation  11 to ice-floe peak strength from our compression ex-
periments in Figure 4. A fracture toughness of 3.96 × 106 Pa m1/2 pro-
vides the best correspondence to our simulation parameters (Table  1). 
In comparison, a commonly used value for sea-ice fracture toughness is 
1.285 × 106 Pa m1/2 (Hopkins, 2004), so our choices of bond shear and 
tensile strength are on the right order, but can be adjusted to approximate 
observed ridging dynamics.

Our initial compression simulations (Table 1, Figures 1–4) are by their 
geometry limited in cumulative compressive strain. We therefore perform 
an additional ice-floe compression experiment with six initial ice floes 
for the purpose of analyzing the resultant ice-thickness distribution with 
a more evolved ridge (Figure 5). The ice-thickness distribution displays 
exponential decrease (Figure  6), as characteristic for ridging-mechan-
ics in real sea-ice packs (Godlovitch et  al.,  2011; Toppaladoddi & Wet-
tlaufer, 2015). The thickness trend serves as a first-order validation of the 
model, but a thorough comparison to observations of ice distributions is 
not included due to the omission of thermodynamical processes.

4. Ridging Parameterization for Large-Scale Simulations
Large-scale particle sea-ice models have the potential to improve simulation of the marginal ice zone 
and other places where granular mechanics dominate the deformation (e.g., Damsgaard et  al.,  2018; 
Feltham, 2005; Gutfraind & Savage, 1997; Herman, 2016, 2017; Hopkins, 2004). On this scale, each particle 
typically represents a single ice floe, but a physically motivated ridging scheme is missing. We now parame-
terize the ice-contact mechanics observed in our two-floe compression experiments so that it can be applied 
to larger-scale particle models. Our parameterization does not include ice-thickness redistribution (e.g., 
Godlovitch et al., 2011; Roberts et al., 2019), but the mechanical parameterization is an important first step 
for particle sea-ice models.

Our simulated ice-floe interactions transition from an elastic and reversible pre-failure state, to a ridged or 
rafting post-failure state when mechanical failure and vertical redistribution of the ice mass changes the 
physics of interaction. We use the same model framework as for the two-floe compression experiment, but 
oriented the simulation space to plan view at the sea surface. Ice floes are defined to have constant vertical 
position, so we neglect the balance between gravitational pull and buoyancy (Equation 1). However, we in-
troduce a compressive failure limit on the contact force between two ice floes i and j, based on the observed 
transition to pre and post-failure states (Equation 11 and Figure 4):

  3/2
n t Ic min( , )ij ij i jK h h‖ ‖f f (12)
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Figure 4. Peak compressive stresses in elastic (-plastic) ice floe and elastic 
sheet simulations, compared with analytical solutions for buckling stresses 
in elastic sheets (full lines, Equation 6 in Amundrud et al., 2004). The 
bending mode in the analytical solution is denoted m.

Figure 5. Ridge geometry at a compressive strain of ϵc = 0.33 in an ice-floe compression experiment with six initial floes.
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Note that the orthogonal normal (fn) and tangential contact forces (ft) 
both can contribute to the compressive stress on the contact, which 
allows ridging to occur through both compression and shear (e.g., 
Schulson,  2004). The 3/2-order dependency between thickness and 
strength is consistent with some previous parameterizations of ridging 
failure (e.g., Hopkins, 1998; Rothrock, 1975), but not the commonly used 
linear relationship (e.g., Hibler, 1979).

Different from usual discrete-element methods, the compressive failure 
criterion (Equation 12) limits the compressive stresses between particles. 
If failure occurs, the contact mechanics on the ice-floe pair are replaced 
by elastic resistance to relative motion, limited by Coulomb friction on 
the contact surface. The contact surface is determined from the overlap 
extent and ice-floe shape, and the ice floes are assumed to undergo stack-
ing as a means of vertical mass rearrangement (Figure 7b). The normal 
stress on the contact interface σn is determined by the hydrostatic re-
sponse due to density differences and buoyancy:

   n w i( )( ) ,ij
i jh hσ g (13)

where ρw and ρi are the densities of water and ice, respectively, and g is the gravitational acceleration. The 
interficial tangential stress σt is sub-horizontal, and is determined by the horizontal sliding distance δs and 
the interface area A (Figure 7b):

  1
t t s .ij ij

ijk Aσ δ (14)

The tangential contact stiffness kt is found from the elastic parameters and contact-surface size (Obermayr 
et al., 2011):


 




 

2

t
2 (1 ) ,
(2 )(1 )

ijEAk (15)

where ν is Poisson's ratio. We uphold the Coulomb-frictional limit on the contact interface:

t n ,ij ij‖ ‖ ‖ ‖σ σ (16)

and excess elastic energy is recorded as frictional heat loss. Increases in contact strength by freezing can be 
added to the right-hand side of the above equation through a time and temperature-dependent cohesion 
term (e.g., Azarnejad & Brown, 2001), but is not included here. The normal and tangential forces on the 
ice floes for the momentum equations (Equations 1 and 2) are found by decomposing the tangential stress 
according to the contact orientation:

 n t( ) ,ˆij ij ij ijAf σ n (17)

and

 t t( ) ,ˆij ij ij ijAf σ t (18)

where n̂ and t̂  are unit-length normal and tangential vectors for the i and j particle pair. The above sliding 
forces grow non-linearly during compression as the overlap distance increases (Figure 7b).

We compare the ridging parameterization to the detailed elastic-plastic compressional experiments (Fig-
ure 1d), and the proposed parameterization captures the pre to post-state stress transition and stress magni-
tude in an adequate manner. The non-monotonic stress-strain behavior introduced here agrees with labora-
tory observations (Tuhkuri & Lensu, 2002), but is in contrast to the conventional approach where ice-pack 
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Figure 6. Points denote the modeled ice-thickness distribution in the 
ice-floe experiment in Figure 5. The blue line shows a fitted function of 
exponential decrease (α exp (−h/β) where α = 0.68 m−1 and β = 0.22 m).
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thickness alone governs the compressive sea-ice strength where no distinction is made between intact and 
actively ridging ice (e.g., Hibler, 1979; Rothrock, 1975).

4.1. Large-Scale Ridging Simulation Results

To assess the influence of the observed ridging dynamics on the bulk properties of an assemblage of many 
ice-floes, we generate cylindrical ice floes with diameters randomly chosen between 40 and 200 m. In these 
larger-scale experiments, each ice particle represents a single ice floe, and all ice floes have a thickness of 
1 m. The elastic and frictional parameters are identical to the two-floe compression experiment (Table 1). 
We vary the fracture toughness (KIc) in the parameterized riding criterion (Equation 12) with two orders of 
magnitude, from 1.285 × 105 Pa m1/2 to 1.285 × 107 Pa m1/2. The right boundary (−y) of each run is moved 
at a constant velocity cv = 0.1 m/s toward the left. The left boundary (+y) is fixed, and the top and bottom 
(x) boundaries are periodic.

Figure 8 shows the deformation behavior across the population of ice floes for three values of fracture tough-
ness. At the onset of each experiment, the ice-floe assemblage is loosely packed, and the bulk compressive 
stress is here contributed by drag between ice and ocean. As a dense contact network forms at a compressive 
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Figure 7. Simplified contact geometry for ice-floe pairs in particle-based sea-ice models, including transition from an original, pre-failure state (a), to an 
actively ridging mode in the post-failure state (b).

Figure 8. Uniaxial compression experiments at a compressive strain of ϵc = 0.45. Ice floes are colored according to their thermal energy increase contributed 
by pre and post-failure contact sliding. Contacts between ice floes are marked by straight lines. White lines denote contacts in the pre-failure state, while black 
lines denote failure and active ridging. KIc is the fracture toughness value for each experiment, and cv is the compressive velocity.
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strain of 0.1, elastic and frictional interactions from floe-floe collisions 
greatly increase the bulk compressive stress. The bulk compressive stress 
is in each case limited through the onset of ridging, scaled by the fracture 
toughness. With low fracture toughnesses (KIc = 1.285 × 105 Pa m1/2), the 
deformation is distributed and the majority of ice-floe contacts are active-
ly ridging in the post-failure state. With higher fracture toughnesses, less 
contacts ridge and deformation is more localized. The frictional energy 
losses are higher and constrained to a few ice floes experiencing ridging. 
Larger ice floes are more likely to ridge than smaller ice floes, due to their 
larger circumference and role in the granular stress network. Stress local-
ization in large grains is well known from simple granular materials (e.g., 
Voivret et al., 2009).

The bulk compressive strength of each ice-floe assemblage is heavily 
influenced by the magnitude of the fracture toughness (Figure 9). Low 
fracture toughness values cause a low bulk compressive stress as ice floes 
soon reach the relatively weak post-failure state with active ridging. The 
bulk assemblage strengthens with higher fracture toughness values, and 
individual ridging events cause significant temporary reductions in the 
bulk compressive stress. Failure events between ice floes cause stick-slip 
dynamics due to the rapid loss in contact strength.

5. Discussion and Conclusions
Sea ice ridging increases ice-pack thickness, and plays an important role 
in the formation of multi-year ice. Present sea-ice models use an assump-

tion that compressive stress monotonically increases during compression. However, results of a high-res-
olution Lagrangian model used in this study show that the deformation is characterized by two distinct 
states, as also observed in laboratory ice compression experiments (Tuhkuri & Lensu, 2002). One is revers-
ible elastic deformation, and the other one is irreversible brittle failure and ridge building. When ridging is 
initiated the compressive stress decreases by more than two orders of magnitude. The low compressional 
failure during ridge building is controlled by Coulomb sliding, buoyancy, and potential energy increase. The 
transient mechanical interactions are in direct contrast to sea-ice models that determine compressive stress 
from ice thickness alone, without distinguishing between ridging and non-ridging mechanics. Based on re-
sults of the Lagrangian-particle model simulations we propose to parameterize the observed behavior based 
on fracture toughness and Coulomb sliding, suitable for simulating ridging in particle-based sea-ice models. 
Elastic strength before failure depends on the ice thickness to a power of 3/2. In assemblages of many ice 
floes the mechanical transition and associated weakening causes stick-slip dynamics and strain localization, 
particularly with higher fracture toughness values. The proposed parameterization of elastic deformation 
and brittle failure effects on strength can be implemented in large-scale particle and continuum based sea-
ice models. In particular, it is a step toward including ridging as a mechanism influencing not only sea-ice 
thickness and strength, but also the floe-size distribution (Roach et al., 2018). The parameterization poten-
tially improves formation and dynamics of damaged zones, and consequently fidelity in representation of 
sea-ice state in climate models.

Data Availability Statement
Code availability simulations are performed with Granular.jl version 0.4.3, permanently archived at 
doi:10.5281/zenodo.4023858 (Damsgaard, 2020). Granular.jl is further developed at https://src.adamsgaard.
dk/Granular.jl. All figures can be reproduced from the simulation scripts permanently archived at 
doi:10.5281/zenodo.3471354 (Damsgaard, 2019).
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Figure 9. Bulk strength during uniaxial compression experiments with 
different fracture toughness (KIc) values.
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