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Abstract

Conventional height coordinate models have previously represented free-surface variations by a variable
thickness upper layer. We present a rescaled height coordinate, which we call z*, that treats the time-
dependent free surface as a coordinate surface. This coordinate is isomorphic with the atmospheric 5
coordinate, sometimes known as the step-mountain coordinate. The z* coordinate has also been used in a
coastal ocean model. However, unlike both these implementations, here we use the finite volume method
within the z* coordinate framework, allowing an accurate representation of topography. The resulting
scheme provides a very accurate representation of motions over steep topography in a three-dimensional
general circulation model, even with fast and large amplitude free-surface variations.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Until recently there has been essentially three classes of ocean model based on their choice of
vertical coordinate: (i) height coordinate models such as MOM4 (Griffies et al., 2003), the MIT
ocean model (Marshall et al., 1997a) and POP (Smith et al., 1992); (ii) terrain following coor-
dinate models such as ROMS (Haidvogel et al., 2000), SCRUM (Song and Haidvogel, 1994) and
POM; and (iii) isentropic or isopycnal models such as MICOM (Bleck et al., 1992) and HIM
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(Hallberg, 1997). With the recognition that each of these coordinate systems has its advantages
and disadvantages, and that no single coordinate system is absolutely perfect for all applications,
efforts are now underway to create generalized and hybrid coordinate models that can employ the
appropriate coordinate in different regions of the ocean (Bleck, 2002; Song, submitted for pub-
lication). However, little attention is being paid to alternative coordinate systems despite the fact
that a large set of vertical coordinates could be employed in general coordinate models. As yet
only a small set of vertical coordinates have been explored. Here, we focus on a specific vertical
coordinate which is essentially height based but shares some similarity with ¢ coordinates.
However, it does not need the paraphernalia of a generalized vertical coordinate and can be
implemented very easily in existing height coordinate models.

The coordinate, which we call “z*”’, was first introduced in a coastal application (Stacey et al.,
1995). It is analogous to the meteorological 1 coordinate (sometimes known as the step-mountain
coordinate) of Mesinger et al. (1988). The 5 coordinate was presented as an alternative for
atmospheric o-coordinate models that suffer from large pressure gradient errors (Janjic, 1977).
However, it is not a terrain following coordinate and is in fact more closely related to a simple
pressure coordinate. Like o coordinates, the # coordinate does stretch with surface pressure
variations. The lower boundary (ground) of an # coordinate model is not a constant coordinate
surface (unlike in ¢ coordinates) but it is fixed in time so that the computational domain is
unchanging with time. Similarly, the z* coordinate transforms the moving boundary problem of
the oceans free surface into a fixed domain.

The z* coordinate does not address the representation of topography and so in Stacey et al.
(1995) and Stacey and Gratton (2001) the topography was represented in the step mountain
fashion of earlier height coordinate models. Use of the finite volume method for discretizing the
model allows an accurate representation of topography by means of shaped volumes (“‘shaved
cells’) or variable bottom layer thickness (partial cells) and have been demonstrated to overcome
the inadequacies of height coordinates in representing topography (Adcroft et al., 1997; Paca-
nowski and Gnanadesikan, 1998).

The essential advantage of the particular coordinate transformation employed here is that it
maps a time-dependent domain into a fixed domain. The time-dependent domain is due to the
“free” surface which has been difficult to incorporate in ocean models (Killworth et al., 1991;
Dukowicz and Dvinsky, 1993). Thus, to motivate the problem, we briefly describe the moving
domain problem that confronts height coordinate models.

In a Boussinesq model, the continuity equation takes the form

V. U +0ow=0

where ¥, = (u,v,0) is the horizontal flow vector, w is the vertical velocity and z is height. Sea
surface height evolves according to the depth integrated continuity equation,

om+V-(H+n) W) =P—E

where (V) = H#M ffH U dz is the depth averaged flow and where we have used the boundary
conditions
Wz:n:Dtn_(P_E) atz:n(x,y,t) (1>

Wo— g = —l_)'h -VH atz= —H(X,y) (2)
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Fig. 1. (a) Schematic of use of a finite volume height coordinate model to represent a non-linear free surface. To avoid
numerical instability (when the upper layer is too thin) one has to choose a nominal top level thickness larger than free-
surface variations. (b) The z* coordinate stretches the grid to follow the barotropic mode.

at the surface, z =#, and the bottom, z= —H. Here, P — E is the excess precipitation over
evaporation. Height coordinates, z, as used in models, are referenced to a time mean geoid and the
free-surface displacement, 1, moves relative to this coordinate system. If the free-surface dynamics
are unapproximated * then a height coordinate model must represent the free surface as a moving
boundary. In Griffies et al. (2001) and Campin et al. (in press), this is implemented accurately by
allowing the top model layer to vary in thickness, as shown schematically in Fig. 1. However, the
approach has a serious limitation; free-surface variations must be smaller than the top layer
thickness, Az;, to ensure that the surface layer does not vanish,

n>—Az

The model could be coded to allow the top layer to vanish (as happens in layer models) and the
second layer then take on the role of surface layer with variable thickness but when this happens
both the accuracy and stability are suspect. It is most likely difficult to make the transition of a
vanishing layer smooth enough to not generate numerical problems; conservation issues would be
a major concern and the likelihood of vanishing layers becomes more frequent with increasing
vertical resolution. Thus we are motivated to examine alternatives to the variable thickness sur-
face layer approach and in particular consider coordinate transformations as a way of treating the
moving domain problem.

In Section 2, we describe the z* coordinate, transformed equations and implementation in the
MIT general circulation model (Marshall et al., 1997a). In Section 3, we illustrate the advantages
of the z* coordinate over height coordinates for a coastal scale application, modeling internal
wave generation by barotropic tides interacting with topography. Finally, we discuss the wider
potential and possibilities for z* and related coordinates.

2. The rescaled height coordinate, z*

Following Stacey et al. (1995), the coastal coordinate is defined as

3 The rigid-lid approximation and linearized free-surface method both approximate the position of the ocean surface
as being at z = 0.
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) z—n(x,y,1)
' =0(x,y,z,)H(x,y) = H(x,y) (3)
H(x,y) +n(x,»,1)
where z = H is the location of the solid bottom, x, y are horizontal coordinate, ¢ is time and # is the
free-surface displacement. ¢ is the conventional time-dependent terrain following coordinate.
Despite the appearance of ¢ in the definition, the coordinate z* is more closely related to height
than a terrain following coordinate, as is apparent in Fig. 1.

We call the vertical velocity in this coordinate system “‘w*’” which is related to the fixed frame

vertical velocity, “w”, by the relation
H z* 5

The location of the lower boundary is
z=—-H(x,y) = z'=-H(x,y) (5)

and although this is not a constant coordinate surface, such as would be the case for a terrain
following coordinate, it is fixed in time. The no normal flow boundary condition at the solid lower
boundary becomes

Wy = —Eh -VH = W;*:fH = —Bh -VH (6)
where ¥, = (u,v,0) is the horizontal flow vector at z = —H(x, y). The upper boundary is located at
z=n(x,p,t) = z2=0 (7)

which, although the physical free surface is moving, is clearly fixed in time in the z* frame. The
overall computational domain is thus fixed in time and so the complicating issues concerning
moving boundaries and vanishing layers do not arise.

The kinematic boundary conditions at the free surface become

H
_,=Dn—(P—E g=———(P—E 8
Wy =D = (P=E) = werg ==y (P E) ®
The hydrostatic, Boussinesq equations transformed into z* coordinates are
A 1 o
Oy + Ty VT + w0Ty + [k X By - Veop +pﬁvz*qs —F 9)
0 0
1 H
—az*p+<—+”>gzo (10)
Po H Po
H+n H + 11 H+n
.. ATty ) = 11
+1.,
=P—-F 12
n+ v [ (o (12)

<H+’7> LV ( "eah>+az*<¥9w*>zwg (13)
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where ), is the horizontal component of flow, p, is a constant reference density, p is the in situ
density, @ = gz is the geopotential, p is pressure, g is the constant gravitational acceleration and 0
is any arbitrary scalar such as potential temperature, salinity or a passive tracer. F' and Q are
arbitrary forces and sources of tracers.

Both pressure and geopotential gradients appear in the horizontal momentum equations; this is
a consequence of using a coordinate other than height or pressure. The appearance of two gra-
dient terms raises the possibility of pressure gradient errors (Haney, 1991). However, unlike in
terrain following coordinates, the geopotential gradient is small since the slope of the z* coordi-
nate surface is typically very small. Indeed, for the special case of a flat free surface there are no
geopotential gradients and so no pressure gradients errors in the resting state. Thus, there will be
no spontaneous generation of motion over topography from a resting state such as is common in
terrain following coordinate models. Although potential pressure gradient errors are already
small, compared to a terrain following coordinate model, those that remain can be reduced
further by judiciously subtracting a reference state with constant density. The density is parti-
tioned into a constant part and perturbation,

p=py+pxyz,0

and associated reference pressure, py(z*), defined to be in hydrostatic balance and equal to zero at
the sea-surface, z* = 0 (not at z = 0):

H +
az*poz—g(f?)po and po(z* = 0) =0 (14)

and perturbation pressure, p’ = p — py, which must satisfy the boundary conditions:

H
0.p = —g%p’ and p'(z"=0)=p,

where p, is the atmosphere loading (pressure at the sea surface). Solving (14) for p, we find

n_,
z" = gpo(n — z) = gpolt — po®

. H+
pO(Z ) :PO(XJ’Ja t) = —&Py H

The pressure and geopotential gradient terms can now be expanded

1 1 !
Vet p) +§Vz*¢ — gV = V.o +—V. ) + 2y e
0

0 Po Po

/

I
— eV +—V.p + 2 V.0
Po Po

so that the static and unchanging parts of the pressure gradient balance are hidden. The amplitude
of the geopotential gradient term, V.-®, is now seen to be smaller by of order (p’/p,). The
geopotential, @ = gz, can be eliminated since we know the function z(z*):

H+1n z*
V. gV.z =gV, (17 + Tz ) gV. <n< +H>>

Thus the horizontal momentum equation (9) can be rewritten as



274 A. Adcroft, J.-M. Campin | Ocean Modelling 7 (2004) 269-284

R 1 / * o
O+ By - VT + W LTy + fh AT +gVn+p—VZ*p/+gpp V.. <n<1 +%>> —F (15)
0 0
or as
. 1 ' =
O+ T - Vol + Wby + kAT + L+~ + 8. E _F (16)
Po Po Po H

The difference between (15) and (16) is that the pressure gradient term is linear in (15), and is non-
linear in (16). In our case, because we use an implicit-in-time treatment of the free surface, we
choose the linear form (15).

2.1. Implementation in the MIT general circulation model

The new coordinate is implemented in the MIT General Circulation Model (MITgcm) by
means of a general vertical coordinate. In formulating MITgcm, we deliberately made the vertical
coordinate arbitrary to allow easy adoption of new coordinates but designed it to exactly recover
the height coordinate algorithm described in Marshall et al. (1997a) and Adcroft et al. (1997). The
continuous equations are derived in Appendix A. The time-dependent nature of the z* coordinate
means that the model layer thicknesses evolve in time. This evolution is analogous to the evolution
of the surface layer thickness in the pure height coordinate model with non-linear free surface.
Our algorithm then is just an extension of the free-surface method described in Campin et al. (in
press) but applied to all model levels; the time-stepping of layer thicknesses, continuity and tracer
equations are arranged so as to give accurate local and global conservation.

3. Illustration: internal wave generation by tidal flow on a continental slope

An illustrative example of how z* is more natural coordinate for modeling flows with a sig-
nificant barotropic component is the case of internal wave generation by interaction of the
barotropic tide with topography.

We define a two-dimensional domain in the x—z plane with an open boundary to the west (off-
shore) and closed to the east. The domain is 18 km wide and nominally H = 200 m deep. There
are 300 points in the horizontal with resolution varying smoothly from 70 m down to a minimum
of 35 m over the slope. In the vertical, the resolution is uniform at 10 m. At the closed boundary
there is a 40 m deep coastal shelf which is 2 km wide separated from the deeper ocean by a linear
continental slope with a 7% grade (see masked region in Fig. 2). The initial stratification is uni-
form such that NH = 20 cms~!. The model is forced with a prescribed barotropic flow at the open
boundary (initially zero and tending positive) that oscillates with amplitude 10 cms™' at the M2
tidal frequency. We use a linear equation of state with no salinity dependence. A third order direct
space time method with a Sweby flux limiter (Hundsdorfer et al., 1995; Pietrzak, 1998) is used for
buoyancy advection. Consequently explicit diffusion can be set to zero. Explicit viscosity is iso-
tropic and negligible (107> ms~2) and does not affect the solution; we integrate the model until the
internal waves reach the open boundary, after about 2 days. We use a time step of 120 s for all
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Fig. 2. Buoyancy field after five tidal periods for (a) the z coordinate model and (b) the z* coordinate model. The
vertical axis is the respective coordinate. Contour interval is 1 x 10> ms~2. Note the stronger upwelling signal over the
slope in (b) and the relatively homogenized fluid in the top layer of (a).

modes (i.e. synchronous stepping with no splitting). In the height coordinate model, the free
surface is treated as non-linear free surface as described in Campin et al. (in press).

In both the z and z* coordinate models the response to the open boundary forcing is to adjust
the barotropic model almost instantaneously; the interior flow matches the boundary flow and
diverges so that the free surface is pushed up and down. The very fast adjustment time means
there are negligible spatial gradients in the free surface so that the free surface heaves up and down
coherently across the domain. Thus, in the upper layers of the z coordinate model, there is a
vertical velocity associated with the free-surface motion which tapers to zero near the bottom. In
the z* coordinate model, motion associated with the pure barotropic mode is identically horizontal
(along coordinate surfaces) with w* = 0.

The constriction presented to the horizontal flow by the continental slope leads to a relative
acceleration of flow over the slope and shelf. During the on-shore phase of the tidal forcing this
leads to strong advection of deep water up the continental slope leading to a lateral buoyancy
anomaly. As the tidal flow relaxes, the buoyancy anomaly adjusts under gravity and thus an
internal wave is generated over the continental slope, which then propagates toward the open
boundary. Fig. 2a and b shows the buoyancy after five tidal periods of integration for the z and z*
coordinate models respectively. Although the solutions are largely similar there are two key
differences: (i) the strength of upwelling anomalies on the slope is stronger in the z* model, leading
to stronger internal waves emanating from the slope and (ii) there is erosion of stratification in the
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surface layers of the z model which is due to a combination of strong vertical flows and a
boundary effect associated with the non-linear free surface. Some differences are also apparent in
structures on the coastal shelf but here the active processes include propagating bores, triggered
by the upwelling anomalies, which are not properly resolved in this calculation.

Fig. 3 shows the evolution of buoyancy at a nominal depth of 95 m. In the height coordinate
model, the buoyancy signal includes an oscillation associated with the heave of the basic strati-
fication past the measurement point. This takes the form of the horizontal structures in panel (a)
and significantly masks the internal wave signature. By interpolating the height coordinate model
solution to a z* surface (z* = —95 m) we can effectively remove the barotropic heave signal, as
shown in panel (b). The effect of the horizontal barotropic flow on the propagating internal waves
is now obvious: while the tide is flowing on-shore the internal waves are arrested and then on the
ebb tide are carried faster off-shore. The Froude number is U/NH = 0.5. The average phase speed
of the waves, measured from the figures, is 11,000 m/2 days ~ 7 cms~! which is approximately the
same as NH /m. Panel (c) shows the z* model solution. Here, it is even more evident that the z and

2 f % =
g 1.5 Q 7 (a) z coord.
) == =® ;- 95nm
o | = i
£
= 0.5 i
0 |
-16 —14 —12 -10 -8 -6 -4 -2
2
w15 (b) z*coord. B
§ z*=-95m
o T} ]
£
~ 05 B
0 |
-2
2
Tn; 1.5 (c) z* coord. 4
g z*=-95m
0 ! b
£
F 05 B
0 |
-2
Off-shore distance (km)
Fig. 3. Hovmueller diagrams for buoyancy at z or z* = —95 m. Contour interval is 4x 107% ms~2. Panel (a) is the z
coordinate solution at z = —95 m and contains a strong signal associated with the heave of stratification past a point in
space. (b) is as for (a) but interpolated to z* = —95 m which neatly removes the barotropic heave signal. Advection of
the internal wave signal by the barotropic flow is now apparent in the coordinate frame. (c) is the z* solution at z* = —95

m which should be compared with (b). Note the stronger internal wave signal both in the interior and near the slope
region.
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z* models differ (panels b and ¢), with a stronger signal both at the source region (over the slope)
and in the interior.

When such differences arise the question is raised as to which model is to be preferred. We chose
not to embark on a prohibitive convergence study since this particular problem inherently be-
comes non-hydrostatic as the resolution is increased and we have not yet implemented the non-
hydrostatic form of the model (Marshall et al., 1997b) in z* coordinates. We will, however, offer
some simple arguments in favor of the z* coordinate model: in z coordinates the barotropic mode
has, by necessity, a vertical flow associated with it. Any cross coordinate flow must ultimately lead
to some diabatic contributions to the evolution simply due to the existence of truncation error. It
is also evident that despite careful treatment of the non-linear free surface in z coordinates
(Campin et al., in press) it is difficult to avoid a spurious boundary effect; the erosion of the
surface layers occurs uniformly across the domain, independent of the internal waves. The same
algorithm that was used to treat the variable surface layer in Campin et al. (in press) is used here
to implement variable layer thicknesses in z* coordinates. However, using z* coordinates all layers
are treated equally while using z coordinate the surface layer is special. Finally, the z* coordinate is
clearly a more natural coordinate than height for examining the interaction between barotropic
and baroclinic modes. Indeed, we suspect that z* is likely to be a more natural coordinate than z
for most applications whether the free-surface amplitudes are large or not.

4. Discussion

We have presented the z* coordinate, first used by Stacey et al. (19995), as an alternative vertical
coordinate for height-coordinate models with a free surface. Combining the use of this coordinate
with the finite volume representation of topography (Adcroft et al., 1997) yields an accurate
representation of barotropic dynamics over topography. Although the emphasis here has been on
numerical modeling, the illustration given suggests that the z* coordinate is a useful framework for
thinking more generally about 3D motions with a divergent barotropic component.

The motivation for adopting the z* coordinate was primarily driven by the moving boundary
problem represented by the free surface. Although we are quite satisfied with the non-linear free-
surface implementation of Campin et al. (in press) it does not address the issue of a vanishing
surface layer. As mentioned, this problem becomes more pressing as the vertical resolution is
increased. Adopting the z* coordinate has transformed the moving physical domain into a fixed
computational domain. Using z* also leads to a cleaner separation of the external and internal
modes of variability; the vertical advection associated with the external mode is treated in a
Lagrangian manner.

We must emphasize the close connection between z* and height; recall that z* only differs from z
when the free-surface elevation is non-zero. For a deep ocean, the slope of z* coordinate surfaces is
very small (of order (Vn)/H near the surface, linearly tapering to zero at the bottom). The
apparent connection to terrain following coordinates is only incidental; z* only looks similar to o-
coordinates for the special case of a flat bottom.

Stacey et al. (1995) called the coordinate “coastal” but we speculate that use of the z* coor-
dinate would allow the inclusion of tides in global scale circulation models without deleterious
effects; adding tides to conventional height coordinate global models would lead to spurious
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diapycnal diffusion due to the relatively large, high-frequency vertical flow associated with tides.
The case for explicitly forcing tides in coarse resolution global models is unclear. However, there is
a strong chance that at high resolutions, O(10 km), exchange processes with marginal and coastal
seas could begin to be resolved and might strongly be affected by the presence of explicit tides.

As mentioned, the oceanographic z* coordinate is isomorphic with the meteorological 7
coordinate. The MIT model takes advantage of an isomorphism between Boussinesq equations in
height coordinates and the non-Boussinesq equations in pressure coordinates (Marshall et al.,
submitted). This z — p isomorphism has allowed the same hydrodynamical kernel to be employed
to model the non-Boussinesq ocean and atmosphere (equations in p coordinates) in addition to
modeling the Boussinesq ocean (in z coordinates). For instance, Losch et al. (in press) used the
z — p isomorphism to demonstrate that non-Boussinesq effects are inconsequential in coarse
resolution models. One argument why this had to be true was the similarity between the z and p
coordinate equations (structurally the same) with one exception which was the location of the
moving boundary. The same extensions apply to the z* — p* isomorphism (given in Appendix B
for reference) allowing the model to solve the hydrostatic non-Boussinesq compressible equations
for the ocean. Here, however, because the moving domain has been mapped into a fixed com-
putational domain, the structural similarities between the z* and p* coordinate equations is
absolute. We therefore speculate that Losch et al. (in press) would find even smaller discrepancies
between the Boussinesq and non-Boussinesq models.

The MIT model in height coordinates (Marshall et al., 1997b) also has a non-hydrostatic
capability that allows one to relax the hydrostatic balance assumption in the vertical momentum
equation. The non-hydrostatic equations of motion are most naturally written in height coordi-
nates and writing them in any other coordinate introduces terms that are complicated enough to
require approximation of the equations rendering ‘“quasi-non-hydrostatic’” models (Miller and
White, 1984; White, 1989). Here, if we were to write the non-hydrostatic equations in z* coor-
dinates we expect the new terms to be proportional to the coordinate slope and thus relatively
small. By introducing these terms in our height based non-hydrostatic algorithm we hope to
produce a non-hydrostatic model in z* coordinates that would be well suited for coastal scale
applications. This is work for the future.
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Appendix A. Transforming the equations of motion into general coordinates

This derivation follows that of Kasahara (1974) and Bleck (1978a,b, 2002) but here we place the
emphasis on interpretation from the height coordinate perspective rather than a hybrid per-
spective. The hydrostatic and incompressible Boussinesq equations of motion in height coordi-
nates for the ocean are
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D,ah+f/}w,,+piovzp=ﬁ (A.1)
gp+0op=0 (A.2)
V. B4+ 0.w=0 (A.3)
DO =0y (A.4)
D,s = QO (A.S)
p=p(0:s,p) (A.6)

where D, = [0, + ¥, - V), + w0,] is the total derivative, ¥, = (u, v, 0) is the horizontal component of
flow, w = D,z is the vertical flow, p is the fluid pressure, 0 is the potential temperature, s is the
salinity, p is the (in situ) density, F are accelerations due to divergences of stresses, Oy and O
represent sources and sinks of heat and salinity. g is the constant acceleration due to gravity, p, is
a constant representing an average density, f is the Coriolis parameter and can be a function of
horizontal coordinates. In the above equations the horizontal gradient operator, V,, is used and
denoted with the subscript “A” to distinguish it from gradients taken along other coordinate
surfaces to be introduced later. The boundary conditions are as follows. At the solid bottom,
z = —H(x,y), there is no normal flow so that

w=—0,-VH atz=—-H(x,y)
and at the free surface, z = 5(x, y, t), we impose the kinematic condition
w=Dmn—(P—E)

where P — E is the net precipitation minus evaporation. The incompressible continuity equation
can be integrated over the fluid thickness, H + #, and using the top and bottom boundary con-
ditions on w yield the free-surface equation

o+ - (g +H)(@)] =P~ E

where (v),) is the depth averaged horizontal flow.

A.1. Rules of transformation

To transform the above equations into an arbitrary coordinate “7”’ we make use of the fol-
lowing relations. For an arbitrary scalar field, 4, which is invariant to a coordinate transforma-
tion, we have

A(x7y’Z7 t) = A(x?y7z(x7y7 r? t)7t)

where r = r(x, y, z, t) is the new vertical coordinate which can be expressed as a smooth function of
space, time and model state variables. Thus, in vector notation, horizontal gradient and diver-
gence operators become

V. A=V,4 — %
Oz

04

—1| V,z
- or

xyt
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. 5 or 65},
V.- 0,=V,- 0, — —| =—| -V,z
oz| ., Or
ot xyt

and the total derivative in (x,y,r,¢) coordinates is

o4 o4 o4 o
DA=—| D —1 D —1| D, —
) B A W

04
Dtt = ua—
xyr X

. 04
v@y

4 04
Pk
or

n 04
ot ot

yrt xrt yrt xrt xyr

where i = D,r is the vertical velocity in » coordinates.
A.2. Term by term transformation

Using the above relations we can transform terms in the z coordinate equations of motion as
follows. The hydrostatic balance equation becomes

0 op| or
gp+a—1: =sp+5.| 5 =0
xyt xyt xyt
which is better written
0 op
Pa| ) +5 | =0
xyt xyt
The horizontal pressure gradient term becomes
or| 0
V.p=V,p— — °p V.z=V,p+ pV,(g2)
Oz ot or ot

In the incompressible continuity equation we must transform 0,w and to do this we use the
definition of w in » coordinates:

Oz Oz Oz . ow
w=Dz=—| +u—| +v—| +r—
at xyr ax i 1 ay xrt az th
so that
ow ,ow
aZ xyt ' _@r xyt
.10 0 0 .0 ol ., 0 .
=z || z+u—| zz+v—| z+i—| z+ —| U-Vz4+z | F
:at xyr ax yrt ay xrt a}" xyt 6}’ xyt ai" xyt
o7, or
1 h
- D r ~ Vr r~_
o #r + or S or
L xyt xyt

where we use the notation z, for the thickness

Oz
or

z, =

xyt
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The non-divergence of flow leads to a continuity equation for thickness in » coordinates
z[V. B +0w] =Dz, +2(V, U, +0,7) =0

or
Oz, +V, 2,0, +0,z+=0

The use of Lagrangian derivatives (D,) has been convenient during the transformation of coor-
dinates but it is more useful to use a flux form of advection to more easily ensure global con-
servation. For an arbitrary scalar, 6, the total derivative can be transformed as follows:

z,D,0 = D,(z,0) — 0Dz, = D,(z,0) + 0z.[V, - U, + 0,7] = 0,(z,0) + V, - (z,00;) + 0,(z.0r)

Using the above relations, the hydrostatic Boussinesq equations of motion transformed to r
coordinates are

Dy + fh Aty +~V,p+ LV, (g2) = F (A7)
Po Po

p0,(g2) + 0p = 0 (A$)

0z, + V, - (z0)) + 0,(z,7) =0 (A.9)

0,(z.0) + V, - (z,00,) + 0,(z,0) = Qp (A.10)

0:(z8) + V, - (z,50,) + 0,(z,57") = O (A.11)

p=p(0,s,p) (A.12)

In the above equations, this is the scale factor, z,, that discriminates between different coordinate
systems (choices of r). If we choose » = z then z, = 1 and we recover the original height coordi-
nates equations. If we choose r = o = (z — 1) /(H + n) then z, = H + 1. The subject of this paper
is the rescaled height coordinate, r = z* = oH, for which z, = (H + ) /H leading to Egs. (9)—(13).

A.3. Free-surface equation in a general coordinate model

Note that integrating the continuity equation over the fluid depth predicts the fluid thickness

r(z=n)
/ zdr=n+H
(

r(z=—H)

and so should recover the surface elevation equation which should be independent of the vertical
coordinate system. To verify this we need the boundary conditions on 7 which may be simple for
given choices of coordinate but are non-trivial for general coordinates. First we note that for a
functional form of the vertical coordinate, z = z(r,#, H) we can relate w to 7 using the chain rule:

w = Dyz(r,n,H) =z, + z,D; + zyD,H
where Zr = ar’nﬂz’ Zy = aﬂ‘rﬁHZ and Zp = aH|
gives

zi=(1—z,)Dnp—zyDH — (P—E) atr=r,=r(z=1n)

z. Applying w = D;n — (P — E) at the surface, z = n,

rn

and applying w = —D,H at the bottom, z = —H, gives
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z, = —z,Dm— (1 +zy)D,H atr=r,=r(z=—H).

Note there is no choice of z = z(r,n, H) that can avoid the appearance of P — E in the surface
boundary condition. An optimal choice of z(r) would have z,(z = ) = 0 and zy (z = ) = 0 at the
surface and z,(z = —H) =0 and 1 4+ z4(z = —H) = z,(z = —H) at the bottom, thereby simplifying
the form of these boundary conditions.

Substituting the above boundary conditions at the top and the bottom for z,/- and using Leibniz
rule gives the familiar free-surface height equation

om+V-[(n+H)B))=P—-E (A.13)

Appendix B. Atmospheric # and oceanic p* coordinates

Through the isomorphism between oceanic and atmospheric equations of motion (Marshall
et al., submitted), the algorithm used to solve the oceanic equations (given in Appendix A) can
also be used to solve the non-Boussinesq, hydrostatic, atmospheric equations of motion in
pressure coordinates which are:

Dy + fk N +V,0=F
o+ 0,2 =0

V, U +0,w=0
D10:Q0

D =0,

o= 00,11

W wwww
I RS

(B.1)
(B.2)
(B.3)
(B4)
(B.5)
(B.6)

where II(p) is the Exner function, w = D,p is the vertical velocity in pressure coordinates, o is
specific volume, @ = gz is the geopotential and ¢ is specific humidity. The boundary conditions are

=0 at p=0 (the top) (B.7)
and
o = D,p, at p=py(x,y,t) (the ground) (B.8)

Integrating the continuity equation between top and bottom in pressure gives the surface pressure
equation:

&+ V - [py(@)] = 0 (BY)

Transforming to an arbitrary vertical coordinate, r, following the derivation given earlier for the
height-coordinate Boussinesq equations, gives:

Dy + fk NG +aV,p+ V.o =F (B.10)
0,9+ al,p=0 (B.11)
opr + V. () + 0.(pi) =0 (B.12)
%(p0) + V.- (p08,) + 0.(p.0i) = O (B.13)
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at(prq) + vr : (prql_jh) + ar(prqr) = Qq (B14)
o = 00,11 (B.15)

Now we choose the vertical coordinate to be the atmospheric 1 coordinate which we define

r=p =op =2p (B.16)
ps
Here on, we will use the symbol p* rather than the conventional symbol # for the vertical
coordinate to avoid confusion with the dependent variable used in the oceanic equations. This will
also remind us that the p* takes the same form as the rescaled height coordinate z* and at the same
time is most closely related to pressure, p. The common factor required to describe the coordinate
transformation is

Ds
a *p = —
o
so that the equations of motion using p* as the vertical coordinate becomes
Dty + fk ATy +oV,pp+V, & =F (B.17)
oy d+ali=0 (B.18)
pS pS P pS .
6—+V*-<—v>+6*(—r>:0 B.19
T\ T\ (B19)
at<& 0) +V, - (’ﬁ 05h> +0, <&0f) o) (B.20)
P P P
pS pi - pS .
0 —q>+V*-<—qv>+6*<—qr>:Q B.21
[<p§’ p P h P p;’ q ( )
a = 00,11 (B.22)

To apply these equations to the non-Boussinesq ocean (following Losch et al., in press), we simply
replace g by s and the ideal gas equation (B.22) with

o= a(s,0,p) (B.23)
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