
1.  Introduction
The majority of oceanic kinetic energy (KE) is contained in the mesoscale eddy field, at horizontal scales of tens 
to hundreds of kilometers (Storer et al., 2022). Mesoscale eddies have a profound impact on the vertical structure 
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Plain Language Summary  Ocean models are complex simulations run on large supercomputers, 
and are useful for predicting changes in ocean circulation and climate. Ocean models divide the globe into 
grid cells. Choosing many, very small grid cells is not feasible because the simulations would take too much 
time and would be too expensive. Therefore, the grid cells in most ocean models are not small enough to 
simulate mesoscale eddies. Mesoscale eddies are swirling motions that are less than 100 km wide and play 
an important role in transporting heat and carbon throughout the ocean. To still account for the effects of 
mesoscale eddies, one can use approximate “parameterizations.” Which parameterization is “best” is an 
ongoing research question. This paper compares two parameterizations that simulate the effect of mesoscale 
eddies in two distinct ways: the commonly used Gent and McWilliams (1990, https://journals.ametsoc.org/
view/journals/phoc/20/1/1520-0485_1990_020_0150_imiocm_2_0_co_2.xml) parameterization and the less 
commonly used Greatbatch and Lamb (1990, https://journals.ametsoc.org/view/journals/phoc/20/10/1520-
0485_1990_020_1634_opvmom_2_0_co_2.xml?tab_body=abstract-display) parameterization. This paper 
shows that the two parameterizations impact ocean circulation in a very similar way, and that for a certain 
class of models the Greatbatch and Lamb (1990, https://journals.ametsoc.org/view/journals/phoc/20/10/1520-
0485_1990_020_1634_opvmom_2_0_co_2.xml?tab_body=abstract-display) parameterization has advantages 
because it is more consistent with physical and mathematical theory, is easier to code, and leads to faster 
computations.
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of the oceanic flow (de La Lama et al., 2016; Kjellsson & Zanna, 2017; Yankovsky et al., 2022). Eddy interfacial 
form stress, described by correlations between isopcynal interface displacements and pressure fluctuations, trans-
fers horizontal momentum downward through layers of successively greater density (Johnson & Bryden, 1989). 
The role of interfacial form stress is perhaps most prominent in the Southern Ocean, where it mediates a govern-
ing momentum balance between the surface wind stress and topographic form stress across submarine ridges 
(Munk & Palmén, 1951; Rintoul et al., 2001).

Mesoscale eddies are not resolved in most of today's global ocean and climate models, and their effect on the 
larger-scale circulation and tracer transport needs to be parameterized. Greatbatch and Lamb (1990, hereafter 
GL90) and Greatbatch (1998) suggested that eddy interfacial form stress can be parameterized by a vertical eddy 
viscosity added to the model momentum equation. The GL90 scheme implies vertical mixing of geostrophic 
momentum, and acts as a sign-definite sink of KE. The GL90 vertical viscosity parameterization is consistent 
with a thickness-weighted average (TWA) framework (Young, 2012), in which the momentum equation solves 
for the isopycnal TWA velocity.

The TWA framework stands in contrast to the Eulerian mean and the isopycnal non-TWA frameworks. In 
the latter two frameworks, the model momentum equation solves only for the large-scale resolved velocity, 
while the eddy-induced velocity needs to be parameterized. The latter task is accomplished by the Gent and 
McWilliams (1990, hereafter GM90) scheme, with the eddy-induced velocity added to the model thickness 
and tracer equations. The GM90 parameterization mimics the effect of mesoscale eddies to adiabatically 
flatten isopycnals of large-scale currents, and acts as a sign-definite sink of available potential energy (APE) 
(Gent et al., 1995; Griffies, 1998). In spite of their formally different nature, the GL90 and GM90 parameter-
izations both mimic the restratification effect of mesoscale eddies. The two parameterizations can be linked 
via thermal wind balance: By flattening isopycnals, GM90 decreases horizontal density gradients, and thus 
reduces the vertical shear of the geostrophic flow. GL90 directly parameterizes the latter effect by mixing 
momentum in the vertical, with the baroclinicity adjusting via an ageostrophic flow. Moreover, by means 
of geostrophy, the GL90  vertical viscosity ν GL can be cast in terms of the GM90 interface height diffusivity 
κ GM  as

𝜈𝜈GL = 𝜅𝜅GM𝑓𝑓 2∕𝑁𝑁2,� (1)

where f is the Coriolis parameter and N the buoyancy frequency (McWilliams & Gent, 1994).

Even though born in the same year, the GM90 and GL90 schemes have enjoyed vastly different degrees of usage 
in ocean climate models. Shortly after being introduced, the GM90 scheme was shown to improve the representa-
tion of many flow features in global ocean circulation models, including the thermocline, water mass distribution, 
overturning circulation, and deep convection (Danabasoglu et al., 1994). Due to its great success, many modeling 
centers have adopted the GM90 parameterization (Gent, 2011), and the GM90 scheme is now employed in virtu-
ally every non-eddying ocean climate model (Griffies et al., 2016). In contrast, the GL90 scheme has seen only 
very limited use, and exclusively in models that (a) use z-coordinates and (b) are of coarse (>1°) grid spacing 
(Ferreira & Marshall, 2006; McWilliams & Gent, 1994; Saenz et al., 2015; Zhao & Vallis, 2008).

The objective of our study is to compare the GL90 and GM90 parameterizations in isopycnal coordinates, both 
from a theoretical and practical perspective, and across a range of non-eddying to eddy-permitting resolutions. 
To accomplish this goal, we work with a stacked shallow water model, which uses isopycnal coordinates in a 
fully adiabatic limit.

2.  Averaged Stacked Shallow Water Equations
The stacked shallow water equations describe the equations of motion for layer thickness hn, tracer concentration 
Cn, and horizontal velocity un = (un, vn) in each layer 1 ≤ n ≤ N of constant density (Section 3.3 of Vallis (2017)):

𝜕𝜕𝑡𝑡ℎ𝑛𝑛 + ∇ ⋅ (ℎ𝑛𝑛𝒖𝒖𝑛𝑛) = 0,� (2)

𝜕𝜕𝑡𝑡𝐶𝐶𝑛𝑛 + 𝒖𝒖𝑛𝑛 ⋅ ∇𝐶𝐶𝑛𝑛 = 0,� (3)

𝜕𝜕𝑡𝑡𝒖𝒖𝑛𝑛 + 𝒖𝒖𝑛𝑛 ⋅ ∇𝒖𝒖𝑛𝑛 + 𝑓𝑓 𝒛̂𝒛 × 𝒖𝒖𝑛𝑛 = −∇𝑀𝑀𝑛𝑛 + 𝑭𝑭 𝑛𝑛.� (4)
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Here, ∇ denotes the two-dimensional horizontal gradient operator acting on fields within layers. In Equation 4, 
f is the Coriolis parameter,

𝑀𝑀𝑛𝑛 =

𝑛𝑛
∑

𝑘𝑘=1

𝑔𝑔𝑟𝑟

𝑘𝑘−1∕2
𝜂𝜂𝑘𝑘−1∕2� (5)

is the shallow water Montgomery potential, and Fn describes the vertical stress divergence and horizontal fric-
tion terms. In the Montgomery potential, 𝐴𝐴 𝐴𝐴 r

𝑘𝑘−1∕2
= 𝑔𝑔(𝜌𝜌𝑘𝑘 − 𝜌𝜌𝑘𝑘−1)∕𝜌𝜌𝑜𝑜 and 𝐴𝐴 𝐴𝐴𝑘𝑘−1∕2 = −𝐷𝐷 +

∑𝑁𝑁

𝑖𝑖=𝑘𝑘 ℎ𝑖𝑖 denote the reduced 
gravity and the interface height at interface k − 1/2, respectively, where ρo is the reference density, and D the 
ocean depth. Fields carrying a half-layer index, k ± 1/2, live on layer interfaces.

The tracer Equation 3 and velocity Equation 4 are written in their advective form. Advective formulations lack 
conservative interpretations of both the eddy-mean field equations (as detailed in Appendix A) and numerical 
implementations. This limitation of the advective formulations is problematic since local and global conser-
vation, especially for tracers, are essential for ocean circulation models used for climate studies (e.g., Griffies 
et al., 2016). We are thus motivated to consider the thickness-weighted equations, whereby advective transport 
appears as the divergence of a flux. The thickness-weighted equations offer an ideal framework for conservation, 
such as realized using finite volume methods (e.g., Griffies et al., 2020). For that purpose, we use the thickness 
Equation 2 to transform Equations 3 and 4 to thickness-weighted tracer and velocity equations

𝜕𝜕𝑡𝑡(ℎ𝑛𝑛𝐶𝐶𝑛𝑛) + ∇ ⋅ (ℎ𝑛𝑛𝒖𝒖𝑛𝑛𝐶𝐶𝑛𝑛) = 0,� (6)

𝜕𝜕𝑡𝑡(ℎ𝑛𝑛𝒖𝒖𝑛𝑛) + ∇ ⋅ (ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⊗ 𝒖𝒖𝑛𝑛) + 𝑓𝑓 𝒛̂𝒛 × ℎ𝑛𝑛𝒖𝒖𝑛𝑛 = −ℎ𝑛𝑛∇𝑀𝑀𝑛𝑛 + ℎ𝑛𝑛𝑭𝑭 𝑛𝑛.� (7)

2.1.  Non-TWA Equations

Averaging the non-thickness-weighted Equations 2–4 leads to the following equation set:

𝜕𝜕𝑡𝑡ℎ𝑛𝑛 + ∇ ⋅

(

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 + ℎ′
𝑛𝑛𝒖𝒖

′
𝑛𝑛

)

= 0� (8)

𝜕𝜕𝑡𝑡𝐶𝐶𝑛𝑛 + 𝒖𝒖𝑛𝑛 ⋅ ∇𝐶𝐶𝑛𝑛 + 𝒖𝒖
′
𝑛𝑛 ⋅ ∇𝐶𝐶

′
𝑛𝑛 = 0� (9)

𝜕𝜕𝑡𝑡𝒖𝒖𝑛𝑛 + 𝒖𝒖𝑛𝑛 ⋅ ∇𝒖𝒖𝑛𝑛 + 𝒖𝒖
′
𝑛𝑛 ⋅ ∇𝒖𝒖

′
𝑛𝑛 + 𝑓𝑓 𝒛̂𝒛 × 𝒖𝒖𝑛𝑛 = −∇𝑀𝑀𝑛𝑛 + 𝑭𝑭 𝑛𝑛.� (10)

Here, 𝐴𝐴 𝐴𝐴  denotes an along-isopycnal Reynolds average, and primed variables represent deviations from this 
average.

The eddy term in the averaged thickness Equation 8 can be related to the bolus velocity

𝒖𝒖
bolus
𝑛𝑛 ≡

ℎ′
𝑛𝑛𝒖𝒖

′
𝑛𝑛

ℎ𝑛𝑛

,� (11)

arising from along-isopycnal correlations between thickness and horizontal velocity (Griffies, 2004; Rhines & 
Young, 1982). As anticipated at the start of this section, the eddy terms in the non-TWA tracer and velocity Equa-
tions 9 and 10 are not in the form of the divergence of a flux, and cannot be re-written in such a way. Instead, the 
eddy terms are non-conservative, which is associated with the fact that non-thickness-weighted averaging along 
isopycnal layers conserves neither tracers nor momentum (Appendix A).

2.2.  TWA Equations

We now derive the TWA stacked shallow water equations. Our derivation can be viewed as a simpler (discrete) 
version of the analysis in Young (2012), who derived the TWA equations for continuous isopycnal coordinates. 
Following the notation in Young (2012), we define a TWA via

𝐶𝐶𝑛𝑛 =
ℎ𝑛𝑛𝐶𝐶𝑛𝑛

ℎ𝑛𝑛

.� (12)

 19422466, 2023, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003518 by N
O

A
A

 G
eophysical Fluid D

ynam
ics L

aboratory L
ib -, W

iley O
nline L

ibrary on [25/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

LOOSE ET AL.

10.1029/2022MS003518

4 of 28

Deviations from this average are denoted by a double prime ′′. Since 𝐴𝐴 𝐴⋅  is a Reynolds average, so is the operator 
𝐴𝐴 𝐴⋅  , though unlike 𝐴𝐴 𝐴⋅  , the TWA 𝐴𝐴 𝐴⋅  does not commute with derivatives.

We can derive the TWA equations by applying 𝐴𝐴 𝐴⋅  to the thickness Equation 2, as well as the thickness-weighted 
tracer and velocity Equations 6 and 7:

𝜕𝜕𝑡𝑡ℎ𝑛𝑛 + ∇ ⋅

(

ℎ𝑛𝑛𝒖̂𝒖𝑛𝑛

)

= 0,� (13)

𝜕𝜕𝑡𝑡

(

ℎ̄𝑛𝑛𝐶𝐶𝑛𝑛

)

+ ∇ ⋅

(

ℎ̄𝑛𝑛𝒖̂𝒖𝑛𝑛𝐶𝐶𝑛𝑛

)

= −∇ ⋅

(

ℎ𝑛𝑛𝒖𝒖
′′
𝑛𝑛 𝐶𝐶

′′
𝑛𝑛

)

,� (14)

𝜕𝜕𝑡𝑡𝒖̂𝒖𝑛𝑛 + 𝒖̂𝒖𝑛𝑛 ⋅ ∇𝒖̂𝒖𝑛𝑛 +
1

ℎ𝑛𝑛

∇ ⋅

[

ℎ𝑛𝑛
̂

𝒖𝒖
′′
𝑛𝑛 ⊗ 𝒖𝒖

′′
𝑛𝑛

]

+ 𝑓𝑓 𝒛̂𝒛 × 𝒖̂𝒖𝑛𝑛 = −∇𝑀𝑀𝑛𝑛 − ∇̂𝑀𝑀 ′
𝑛𝑛 + 𝑭𝑭 𝑛𝑛.� (15)

In Equation  13, we have used the identity 𝐴𝐴 ℎ𝑛𝑛𝒖𝒖𝑛𝑛 = ℎ𝑛𝑛𝒖̂𝒖𝑛𝑛 . Equation  14 employs the identity 
𝐴𝐴 ℎ𝑛𝑛𝒖𝒖𝑛𝑛𝐶𝐶𝑛𝑛 = ℎ𝑛𝑛𝒖𝒖𝑛𝑛𝐶𝐶𝑛𝑛 = ℎ𝑛𝑛

(

𝒖̂𝒖𝑛𝑛𝐶𝐶𝑛𝑛 + 𝒖𝒖
′′
𝑛𝑛 𝐶𝐶

′′
𝑛𝑛

)

 , and Equation 15 the identity

𝜕𝜕𝑡𝑡𝒖̂𝒖𝑛𝑛 = 𝜕𝜕𝑡𝑡

(

ℎ𝒖𝒖𝑛𝑛

ℎ𝑛𝑛

)

=
1

ℎ𝑛𝑛

𝜕𝜕𝑡𝑡

(

ℎ𝒖𝒖𝑛𝑛

)

−
𝒖𝒖𝑛𝑛

ℎ𝑛𝑛

𝜕𝜕𝑡𝑡ℎ𝑛𝑛.�

The TWA thickness Equation 13 contains no explicit eddy terms, but it is simply a re-writing of Equation 8 using 
different notation. The following identity relates the TWA, non-TWA, and bolus velocities:

𝒖̂𝒖𝑛𝑛 = 𝒖𝒖𝑛𝑛 +
ℎ′
𝑛𝑛𝒖𝒖

′
𝑛𝑛

ℎ𝑛𝑛

= 𝒖𝒖𝑛𝑛 + 𝒖𝒖
′
𝑛𝑛 = 𝒖𝒖𝑛𝑛 + 𝒖𝒖

bolus
𝑛𝑛 .� (16)

The TWA momentum Equation 15, in turn, contains not one, but two eddy terms: besides the nonlinear Reynolds 
stress term, we identify an eddy form stress term, which can also be written as

ℎ𝑛𝑛∇̂𝑀𝑀
′
𝑛𝑛 = ℎ′

𝑛𝑛∇𝑀𝑀
′
𝑛𝑛.� (17)

We note that, strictly speaking, 𝐴𝐴 ℎ𝑛𝑛∇̂𝑀𝑀
′
𝑛𝑛 is the sum of the eddy form stress and a second term: an eddy pressure 

term (Appendix B). Greatbatch (1998) argues that this second term is negligibly small relative to the eddy form 
stress. We follow Greatbatch's assumption, and will hereafter refer to 𝐴𝐴 ℎ𝑛𝑛∇̂𝑀𝑀

′
𝑛𝑛 simply as the “eddy form stress.” 

To clarify the physical meaning of the eddy form stress, notice that 𝐴𝐴 ∇𝑀𝑀𝑛𝑛 = −𝑓𝑓 𝒛̂𝒛 × 𝒖𝒖
𝑔𝑔
𝑛𝑛 where 𝐴𝐴 𝒖𝒖

𝑔𝑔
𝑛𝑛 is the geostrophic 

velocity, and thus

−ℎ𝑛𝑛∇̂𝑀𝑀
′
𝑛𝑛 = 𝑓𝑓 𝒛̂𝒛 × ℎ′

𝑛𝑛𝒖𝒖
𝑔𝑔
𝑛𝑛

′
≈ 𝑓𝑓 𝒛̂𝒛 × ℎ′

𝑛𝑛𝒖𝒖𝑛𝑛
′,� (18)

where the approximate identity holds if 𝐴𝐴 𝒖𝒖
′
𝑛𝑛 is mostly geostrophic. The eddy form stress is therefore directly related 

to the geostrophic component of the eddy bolus velocity, 𝐴𝐴 ℎ′
𝑛𝑛𝒖𝒖

𝑔𝑔
𝑛𝑛

′
∕ℎ𝑛𝑛 .

2.3.  Consistency With Parameterizations

The purpose of this section is to connect the eddy terms in the respective equation sets Equations 8–10 and 
Equations 13–15 with commonly used eddy parameterizations in isopycnal coordinates. The discussion applies 
to isopycnal coordinate models like the Miami Isopycnic Coordinate Ocean Model (MICOM; Bleck et al., 1992) 
and the Bergen Layered Ocean Model (BLOM; Seland et al., 2020), to stacked shallow water models (Marques 
et al., 2022), and to the isopycnal coordinate regions of hybrid coordinate ocean models (e.g., Adcroft et al., 2019; 
Bleck, 2002; Ringler et al., 2013).

We first discuss the thickness equation. The bolus velocity (Equation 11) that appears in Equation 8 as part of the 
non-TWA framework is commonly parameterized by the GM90 eddy velocity (Gent et al., 1995). Therefore, the 
non-TWA thickness Equation 8 is consistent with model formulations that use the GM90 parameterization, if we 
interpret the GM90 eddy velocity as the bolus velocity.
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We next consider the tracer equation. Isopycnal coordinate models often use two distinct parameterizations in the 
tracer equation: the GM90 eddy velocity (Gent et al., 1995) to advect tracers and volume, and along-isopycnal 
diffusion. The TWA tracer Equation 14 is in line with these conventions. Indeed, the TWA velocity in the advec-
tion term can be written as 𝐴𝐴 𝒖̂𝒖 = 𝒖𝒖 + 𝒖𝒖

bolus
𝑛𝑛  (Equation 16), where the bolus velocity is parameterized by GM90. 

The eddy term on the right hand side of Equation 14 can be parameterized in terms of a tracer mixing tensor 
(Griffies, 2004):

𝒖𝒖
′′
𝑛𝑛 𝐶𝐶

′′
𝑛𝑛 = −𝐉𝐉 ⋅ ∇𝐶𝐶𝑛𝑛.� (19)

Assuming that J is a positive-definite, symmetric, and isotropic tensor, it can be related to the small slope version 
of the isopycnal diffusion tensor (Gent & McWilliams, 1990). Note that the antisymmetric component of the 
along-isopycnal mixing tensor, which also acts as an eddy-induced advection, is not identified with the GM90 
parameterization here. Whereas the TWA tracer equation is consistent with the usual treatment of along-isopycnal 
diffusion in isopycnal coordinate models, the non-TWA tracer Equation 9 is not. Specifically, the fact that the 
eddy term in the non-TWA tracer equation is non-conservative is contrary to how eddy terms are commonly 
parameterized in isopycnal coordinate models.

Finally, we turn to the momentum equation. The nonlinear Reynolds stress term in the TWA momentum 
Equation 15 conserves momentum, and corresponds naturally to commonly used viscous closures. However, 
the eddy term on the right hand side of the TWA momentum Equation 15, the eddy form stress (Equation 17), 
is currently not parameterized in isopycnal coordinate models (but could be parameterized by GL90, see 
Section  3). Considering the non-TWA momentum Equation  10, we make a similar observation as for the 
non-TWA tracer equation: the nonlinear eddy term is non-conservative, unlike commonly used viscous 
closures.

In summary, the GM90 parameterizations seen in, for example, MICOM and MOM6 are consistent with the 
non-TWA thickness equation and the TWA tracer equation, but neither the non-TWA nor the TWA momentum 
equation (see also McDougall & McIntosh, 2001). Note that all TWA Equations 13–15 are consistent with the 
stacked shallow water model equations, as long as no GM90 parameterization is used and the unresolved eddy 
form stress in the momentum equation is assumed negligible. This interpretation of the model equations is appli-
cable for eddy-resolving simulations without GM90. For non-eddying simulations, GL90 provides an avenue 
to parameterize the eddy terms in a way that is fully consistent with the TWA framework, that is, equation set 
(Equations 13–15). This perspective motivates us to formulate and test a GL90 parameterization for the stacked 
shallow water equations in Sections 3 and 4.

3.  The GM90 and GL90 Parameterizations in Isopycnal Coordinates
While previous studies have used the GL90 parameterization in z-coordinates (Appendix D), we now derive a 
GL90 vertical viscosity parameterization for the eddy form stress (Equation 17) in isopycnal coordinates. Using 
identity Equation 18, which relates the eddy form stress to the geostrophic component of the eddy bolus velocity, 
we can derive a formulation for the GL90 viscosity that makes the closure effectively equivalent to GM90 in the 
geostrophic limit.

In isopycnal coordinates, the eddy bolus transport is parameterized by GM90 as follows (e.g., Adcroft et al., 2019):

𝑁𝑁
∑

𝑖𝑖=1

ℎ′
𝑖𝑖
𝒖𝒖𝑖𝑖

′ = 0,� (20)

𝑁𝑁
∑

𝑖𝑖=𝑛𝑛

ℎ′
𝑖𝑖
𝒖𝒖𝑖𝑖

′
= −𝜅𝜅GM

𝑛𝑛−1∕2
∇𝜂̄𝜂𝑛𝑛−1∕2, 2 ≤ 𝑛𝑛 ≤ 𝑁𝑁 − 1,� (21)

where the top layer is indexed by n = 1, and the bottom layer by n = N. The scalar κn−1/2 > 0 is the interface height 
diffusivity associated with interface n − 1/2, and can vary in the horizontal and vertical. Identity Equation 20 
enforces that the GM90 streamfunction is zero at the surface. Note that this is an assumption of the parameteriza-
tion; in reality the left hand side of Equation 20 does not need to be zero.

For interior layers 1 < n < N, the eddy form stress can now be written as
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−ℎ𝑛𝑛∇̂𝑀𝑀
′
𝑛𝑛 = −ℎ′

𝑛𝑛∇𝑀𝑀
′
𝑛𝑛 ≈ 𝑓𝑓 𝒛̂𝒛 × ℎ′

𝑛𝑛𝒖𝒖
′
𝑛𝑛

� (22a)

=𝑓𝑓 𝒛̂𝒛 ×
(

𝜅𝜅GM

𝑛𝑛+1∕2
∇𝜂𝜂𝑛𝑛+1∕2 − 𝜅𝜅GM

𝑛𝑛−1∕2
∇𝜂𝜂𝑛𝑛−1∕2

)

� (22b)

=𝑓𝑓 𝒛̂𝒛 ×

(

𝜅𝜅GM

𝑛𝑛+1∕2

∇𝑀𝑀𝑛𝑛+1 − ∇𝑀𝑀𝑛𝑛

𝑔𝑔𝑟𝑟

𝑛𝑛+1∕2

− 𝜅𝜅GM

𝑛𝑛−1∕2

∇𝑀𝑀𝑛𝑛 − ∇𝑀𝑀𝑛𝑛−1

𝑔𝑔𝑟𝑟

𝑛𝑛−1∕2

)

� (22c)

≈𝑓𝑓 2

(

𝜅𝜅GM

𝑛𝑛−1∕2

𝒖̂𝒖𝑛𝑛 − 𝒖̂𝒖𝑛𝑛−1

𝑔𝑔𝑟𝑟

𝑛𝑛−1∕2

− 𝜅𝜅GM

𝑛𝑛+1∕2

𝒖̂𝒖𝑛𝑛+1 − 𝒖̂𝒖𝑛𝑛

𝑔𝑔𝑟𝑟

𝑛𝑛+1∕2

)

.� (22d)

The two approximate identities above are based on an approximate geostrophic balance: the first applies to the 
eddies (see also Equation 18), and the second one is layer-wise geostrophic balance in the TWA momentum 
equation: 𝐴𝐴 𝐴𝐴 𝒛̂𝒛 × 𝒖̂𝒖𝑛𝑛 ≈ −∇𝑀̄𝑀𝑛𝑛 . The identities in Equations 22b and 22c use Equation 21 and the definition of the 
Montgomery potential (Equation 5), respectively. Approximate geostrophic balance (used twice), together with 
Equations 20 and 21, also implies that in the uppermost and lowermost layer, we have

−ℎ1∇̂𝑀𝑀
′
1
≈ 𝑓𝑓 2

(

−𝜅𝜅GM

3∕2

𝒖̂𝒖2 − 𝒖̂𝒖1

𝑔𝑔𝑟𝑟

3∕2

)

,� (23)

−ℎ𝑁𝑁 ∇̂𝑀𝑀
′
𝑁𝑁
≈ 𝑓𝑓 2

(

𝜅𝜅GM

𝑁𝑁−1∕2

𝒖̂𝒖𝑁𝑁 − 𝒖̂𝒖𝑁𝑁−1

𝑔𝑔𝑟𝑟

𝑁𝑁−1∕2

)

.� (24)

The expressions in Equations 22d, 23, and 24 contain only TWA quantities, and are the derived parameterization. 
This parameterization is a discretization of

−∇̂𝑀𝑀 ′ ≈ 𝜕𝜕𝑧𝑧
(

𝜈𝜈GL 𝜕𝜕𝑧𝑧𝒖̂𝒖
)

,� (25)

where the GL90 vertical viscosity at interface n − 1/2 is given by

𝜈𝜈GL

𝑛𝑛−1∕2
= 𝜅𝜅GM

𝑛𝑛−1∕2

(

𝑓𝑓 2 ℎ̄𝑛𝑛−1 + ℎ̄𝑛𝑛

2𝑔𝑔𝑟𝑟

𝑛𝑛−1∕2

)

,� (26)

with stress-free boundary conditions at the top and bottom. Noting that the stratification in stacked shallow water 
is simply given by N 2 = g r/h, the expression in Equation 26 corresponds exactly to the vertical viscosity in Equa-
tion 1, as suggested in Greatbatch and Lamb (1990).

We implement the GL90 vertical viscosity scheme in MOM6's stacked shallow water configuration. Note that 
one achieves the correct top and bottom boundary conditions simply by setting the viscosities 𝐴𝐴 𝐴𝐴GL

1∕2
 and 𝐴𝐴 𝐴𝐴GL

𝑁𝑁+1∕2
 

to zero. The effect of these boundary conditions is similar to setting the GM90 streamfunction to zero at the 
boundaries. From a practical perspective, the implementation of GM90 can be delicate near in- and outcrops; 
MOM6's approach is to use limiters to avoid fluxing volume out of vanished layers. We find that special treatment 
for GL90 is not needed at the surface, but is indeed required near the bottom. To avoid spurious large bottom 
velocities over the continental slope, momentum needs to be prevented from being fluxed into vanished layers 
near the bottom, for example, through near-bottom tapering. Appendix C provides a detailed description of our 
GL90 implementation.

4.  Simulations
In this section, we present idealized MOM6 simulations that use an isopycnal coordinate and either the GM90 or 
the GL90 parameterization. For GM90, we employ the scheme that was already implemented in MOM6; it acts 
via Equations 20 and 21 in the thickness equation. For GL90, we use our newly implemented scheme that applies 
the vertical viscosity (Equation 26) in the momentum equation. We then compare the effects of GM90 versus 
GL90 on the flow, including its energy levels, vertical structure, and energy transfers.
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4.1.  Model Configuration

We work within the NeverWorld2 configuration of MOM6 (Marques et al., 2022), which was specifically devel-
oped for the study of mesoscale eddy parameterizations. With a single cross-equatorial basin and a re-entrant 
channel in the Southern Hemisphere, the NeverWorld2 geometry means to represent idealized Atlantic and 
Southern Oceans (Figure 1a). Prominent features of the NeverWorld2 topography include an idealized Scotia Arc 
which partially blocks the re-entrant channel, an idealized mid-Atlantic ridge, and a continental shelf surrounding 
the Atlantic basin.

NeverWorld2 solves the stacked shallow water thickness and velocity Equations 2 and 4, with N = 15 layers, on 
a regular spherical grid, and as discretized by the GFDL-MOM6 numerical ocean code (Adcroft et al., 2019). 
The NeverWorld2 setup does not include any tracers, so that in this section we focus on an analysis of circulation, 
flow, and energetics rather than tracer distributions. The term Fn in the velocity Equation 4 has a horizontal and 
vertical component. The horizontal component, 𝐴𝐴 𝑭𝑭

ℎ
𝑛𝑛 , consists of a biharmonic Smagorinsky viscosity (Griffies & 

Hallberg, 2000). The vertical component contains the effects of wind forcing, bottom drag, and vertical viscosity,

𝑭𝑭
𝑣𝑣
𝑛𝑛 = 𝑭𝑭

wind
𝑛𝑛 + 𝑭𝑭

drag
𝑛𝑛 + 𝑭𝑭

visc
𝑛𝑛 .� (27)

Wind forcing is applied by a prescribed surface wind stress that is distributed over the top 20 m and is fixed in 
time and zonally constant (see Figure 1 in Marques et al. (2022)). The model uses a quadratic bottom drag law 
and a background kinematic vertical viscosity of 10 −4 m 2  s −1. The shallow water layers are immiscible, thus 
facilitating a relatively rapid spin-up of the configuration. More details on the NeverWorld2 model setup can be 
found in Marques et al. (2022).

4.2.  Experiments

Marques et al. (2022) present NeverWorld2 simulations for grid spacings of 1/4°, 1/8°, 1/16°, and 1/32°, with 
these simulations using no mesoscale eddy parameterizations other than the biharmonic Smagorinsky viscosity 
and the background vertical viscosity; these simulations will hereafter be referred to as “unparameterized.” In 
this study, we perform additional experiments at horizontal grid spacing of 1/2°, 1/4°, and 1/8° that use either the 
GM90 or the GL90 parameterization.

Figure 1.  (a) Ocean depth in the NeverWorld2 configuration. (b–d) The ratio 𝐴𝐴 𝐴𝐴𝑑𝑑∕
√

(Δ𝑥𝑥2 + Δ𝑦𝑦2)∕2 , where Ld is the first 
baroclinic Rossby radius, and Δx, Δy are the zonal and meridional grid spacings for horizontal grid spacings of (b) 1/2°, (c) 
1/4°, and (d) 1/8°. The green contour line marks the case 𝐴𝐴 𝐴𝐴𝑑𝑑∕

√

(Δ𝑥𝑥2 + Δ𝑦𝑦2)∕2 = 2 .
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Figures 1b–1d show the diagnostic 𝐴𝐴 𝐴𝐴𝑑𝑑∕
√

(Δ𝑥𝑥2 + Δ𝑦𝑦2)∕2 for our three reso-
lutions of interest, where

𝐿𝐿𝑑𝑑 = 𝑐𝑐1∕
√

𝑓𝑓 2 + 2𝛽𝛽𝛽𝛽1� (28)

is the first baroclinic deformation radius (Hallberg, 2013). Here, c1 denotes 
the first-mode internal gravity wave speed, f the Coriolis parameter, and 
β = ∂yf its meridional gradient. Δx, Δy are the zonal and meridional grid 
spacings. A commonly used criterion for deeming mesoscale eddies resolved 
is 𝐴𝐴 𝐴𝐴𝑑𝑑∕

√

(

(Δ𝑥𝑥)2 + (Δ𝑦𝑦)2
)

∕2 ≥ 2 , that is, at least two grid boxes need to fall 
within the deformation radius. Regions that are bounded by the green contour 
line are eddy-resolving according to this definition. Overall, Figures 1b–1d 
suggest that the grid spacings 1/2°, 1/4°, and 1/8° span a range from 
non-eddying to eddy-permitting dynamical regimes.

For each of the three grid spacings, we present multiple experiments that 
are summarized in Table  1 and Table S1 in Supporting Information  S1. 

Each table row shows a pair of simulations that use either the GM90 or the GL90 parameterization. For each 
simulation pair, the ν GL viscosity is inferred from the κ GM diffusivity under the assumption of quasi-geostrophy 
(see Equation 1 and Section 3). Note that in the expressions for the ν GL viscosities, the multiplier f 2/N 2 is 
shorthand for the term that appears in parentheses in Equation 26. Figure 2 highlights that, even if the κ GM 
diffusivities are spatially constant (Table 1), the corresponding ν GL viscosities are spatially varying - both in 
the vertical (set by 1/N 2) and the horizontal (set by 1/N 2 and f 2). In the following, we will refer to the exper-
iments in the first row of Table 1 as “1/2° GM 800” and “1/2° GL 800,” and similarly for the experiments in 
the other rows.

We focus on the experiments shown in Table 1, in which the GM diffusivity, κ GM, is horizontally and vertically 
constant. While some ocean models still employ a spatially constant κ GM, the modeling community has mainly 
moved toward using a spatially varying κ GM coefficient that sometimes has smaller values in eddy-permitting 
than in non-eddying parts of the domain. For the purpose of simplicity, we nevertheless present our comparison 
of GM90 versus GL90 for spatially constant κ GM (and corresponding ν GL = κ GMf 2/N 2). In the Supporting Infor-
mation S1 we present additional experiment pairs where we vary κ GM spatially according to modern modeling 
approaches (Table S1 in Supporting Information S1). The main conclusions of this paper are the same, no matter 
if we draw them from the experiments in Table 1 or Table S1 of Supporting Information S1; in other words, our 
conclusions do not depend on the chosen spatial structure of κ GM.

With finer grid spacing, eddies are increasingly resolved, and the GM90 or GL90 parameterizations are needed 
less. Therefore, we choose gradually decreasing κ GM diffusivities of 800, 300, and 100 m 2s −1, as the model's 
horizontal grid is refined from 1/2° to 1/8°. These κ GM values, and corresponding ν GL values, are tuned so 
that for each grid spacing, the GL90 work matches offline energy transfer diagnostics, see Section  4.5. In 
addition, we present experiment pairs at 1/4° and 1/8° grid spacing in which κ GM is not reduced, but is kept at 
800 m 2s −1. We note that an unmodified, rather large, κ GM would be an undesirable choice in eddy-permitting 
model simulations that aim at maximum realism because a strongly enabled GM90 or GL90 parameterization 
would excessively damp existing eddies. Even so, since the purpose of our study is to compare GM90 and 
GL90, we augment our list of test cases with simulations that have grid spacing 1/4° and finer and strongly 
active parameterizations.

The 1/2° simulations are initialized from rest, and run for 77,000 days to a quasi-steady state in which KE and 
APE are no longer drifting (Figures 3a and 3b). The 1/4° and 1/8° simulations are a continuation of the 1/4° 
and 1/8° simulations presented in Marques et al. (2022) (black lines in Figures 3c–3f); that is, we initialize our 
simulations with the states that Marques et al. (2022) obtained at their final time stamp. The 1/4° simulations 
are run for a total of 77,000  days, and the 1/8° simulations for a total of 28,000  days. Whenever we report 
time-averaged diagnostics in the following, the diagnostics are averaged over the last 2,000 days of the respective 
simulation (gray shading, Figure 3).

Grid spacing (°)

GM90 GL90

κ GM (m 2 s −1) ν GL (m 2 s −1)

1/2 800 800 ⋅ f 2/N 2

1/4 300 300 ⋅ f 2/N 2

1/4 800 800 ⋅ f 2/N 2

1/8 100 100 ⋅ f 2/N 2

1/8 800 800 ⋅ f 2/N 2

Note. Each row shows a pair of simulations that use either the GM90 or the 
GL90 parameterization; here, the value of ν GL is inferred from the value of 
κ GM under the assumption of quasi-geostrophy (see Equation  1). All GM 
diffusivities κ GM are horizontally and vertically constant.

Table 1 
Experiments Performed in This Study
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4.3.  Effects on Energy

We first examine the effects of the GM90 and GL90 parameterizations on energy. The depth-integrated KE and 
APE are given by

KE =

1

2

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛

(

𝑢𝑢2𝑛𝑛 + 𝑣𝑣2𝑛𝑛
)

,� (29)

APE =
1

2

𝑁𝑁
∑

𝑛𝑛=1

𝑔𝑔𝑟𝑟

𝑛𝑛−1∕2

(

𝜂𝜂2
𝑛𝑛−1∕2

− max

(

𝑧𝑧0
𝑛𝑛−1∕2

,−𝐷𝐷
)2
)

,� (30)

where 𝐴𝐴 𝐴𝐴0
𝑛𝑛−1∕2

 is a constant nominal position for each interface. In other words, the APE in Equation 30 is defined 
as the depth-integrated PE minus the depth-integrated PE of the resting state. Each GM90 and GL90 simulation 
pair reaches very similar KE and APE levels (Figure 3). Upon averaging over the last 2,000 days of each simula-
tion, the energy levels in the respective GM90 and GL90 pairs differ by less than 5% in all cases.

For the 1/4° and 1/8° experiments, we can compare the effect of different magnitudes of κ GM and ν GL. The simu-
lations with κ GM = 800 m 2s −1 and ν GL = 800 ⋅ f 2/N 2 m 2s −1 lead to lower energy levels than the simulations with 
smaller κ GM and ν GL (Figures 3c–3f). This energy drop is expected as GM90 drains the wind-generated APE, 
where wind is the only external source of KE in these adiabatic simulations. Figure 3 suggests that GL90 has the 
exact same effect, as is expected under the assumption of quasi-geostrophy.

Figure 2.  2,000-day averaged GL90 vertical viscosity ν GL (green shading) and layer interfaces (black lines) along a south-north transect at 10°E for the five GL90 
experiments in Table 1. Note that the background vertical viscosity is 10 −4 m 2 s −1, that is, orders of magnitude smaller than the GL90 vertical viscosity except in the 
equatorial region.
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Next, we compute zonal spectra of surface eddy KE (Figure 4). We consider three latitude bands: 35–45°N, 
containing the Gulf Stream-like flow; 10–20°N, containing the energetic subtropical return flows; and 45–55°S, 
containing the ACC-like channel flow. The GM90 and GL90 simulation pairs show very similar energy spectra, 
with one exception: In the Gulf Stream region, the GL 800 experiments show lower surface KE than the corre-
sponding GM 800 experiments, at all horizontal resolutions (Figures 4a, 4d, and 4g). This difference in the Gulf 
Stream region will be further examined in the next subsection.

Figure 3.  Timeseries of domain-integrated (a, c, and e) kinetic energy (Equation 29) and (b, d, and f) available potential 
energy (Equation 30) for the (a and b) 1/2°, (c and d) 1/4°, and (e and f) 1/8° simulations in Table 1, during spin-up and 
equilibration. The black lines depict the energy levels of the unparameterized 1/4° (in (c and d)) and 1/8° (in (e and f)) 
NeverWorld2 simulations presented in Marques et al. (2022). For the sake of clarity, (a, c, and e) show 100-day rolling 
averages that smooth out high-frequency variability. The gray shading marks the 2,000-day windows that are used for 
time-averaged diagnostics in other figures.
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4.4.  Effects on Flow Vertical Structure

The Gulf Stream is the only region in which we noted significant differences between the GM90 and GL90 
simulations in Section 4.3. Figure 5 investigates this region further; it shows snapshots of the zonal flow in the 
northwestern Atlantic, along a south-north transect at 7°E. This transect contains the separated Gulf Stream. 
We first focus on the 1/2° simulations. At first glance, the GM90 simulation (Figure 5a) appears to have 
deeper reaching (albeit weak) jets than the GL90 simulation (Figure 5b), indicative of a more barotropic flow. 

Figure 4.  Zonal spectra of surface eddy kinetic energy for the (a–c) 1/2°, (d–f) 1/4°, and (g–i) 1/8° simulations from 
Table 1, and for three latitude bands (left to right): 35–45°N, 10–20°N, and 45–55°S. The spectra are computed from surface 
eddy velocities u′ and v′, defined as deviations from the 2,000-day averaged velocities. Within each latitude band, the 
one-dimensional zonal spectrum is computed at each latitude: 𝐴𝐴

(

|𝑥𝑥(𝑢𝑢
′)|2 + |𝑥𝑥(𝑣𝑣

′)|2
)

∕2 , where 𝐴𝐴 𝑥𝑥 denotes Fourier transform 
in the x-direction, and then averaged across the latitude band and 2,000 days. For the bands of 35–45°N and 10–20°N, a Hann 
smoothing window is applied to make u′ and v′ periodic in the x-direction. Linear detrending is used in all cases. The black 
and gray lines show spectra from unparameterized NeverWorld2 simulations described in Marques et al. (2022). The dotted 
black line marks the wavenumber kD corresponding to the first baroclinic deformation radius.
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The next figure will investigate the barotropic fraction of the flow more 
systematically, that is, for the full domain and beyond a single snapshot.

A second notable feature in the 1/2° simulations is the difference in the surface 
flow. The surface velocity in the GM90 simulation has a checkerboard pattern 
(Figure 5c), while the surface flow in the GL90 simulation is much smoother 
(Figure 5d). We suggest that the noisy surface velocities in the GM90 simu-
lation are a numerical artifact of how the GM90 parameterization treats in- 
and outcropping layers: limiters are required to avoid fluxing volume out of 
vanished layers. In contrast, the GL90 parameterization does not require extra 
or ad-hoc treatment near the surface, and leads to a more realistic surface flow 
distribution (at least in the horizontal). The noisy surface velocities seen in the 
1/2° GM90 simulation also explain why the GM90 simulation has a surface KE 
spectrum that is elevated compared to that of the GL90 simulation (Figure 4a). 
In summary, the higher KE values that we noticed for the 1/2° GM90 simu-
lation in the Gulf Stream region (Section 4.3) are due to numerical artifacts.

The 1/4° simulations (Figures 5e–5i) are characterized by a stronger and more 
barotropic flow than the 1/2° simulations. Intensity and barotropic fraction of 
the flow are further increased in the 1/8° simulations (Figures 5j–5n). This 
increase is expected since more vigorous eddy activity energizes and baro-
tropizes the flow. For the 1/4° and 1/8° experiments, the GM90 and GL90 
simulation pairs do not reveal systematic differences in their flow structure. It 
is worth noting that the 1/4° and 1/8° GM 800 simulations show a somewhat 
noisy surface flow further east in the North Atlantic (not shown), similar to 
that seen for the 1/2° GM90 simulation. Again, the noisy surface velocities 
for the GM 800 simulations explain the fact that the surface KE spectra are 
raised compared to those of the GL 800 simulations (Figures 4a, 4d, and 4g).

To further assess the effect of the GM90 and GL90 parameterizations on the 
flow vertical structure, we follow Yankovsky et al. (2022) and consider the 
fraction between the barotropic (BT) and total KE:

KEBT

KE
=

(

∑𝑁𝑁

𝑛𝑛=1
ℎ𝑛𝑛

)

(

𝑢𝑢2
BT

+ 𝑣𝑣2
BT

)

∑𝑁𝑁

𝑛𝑛=1
ℎ𝑛𝑛

(

𝑢𝑢2𝑛𝑛 + 𝑣𝑣2𝑛𝑛
)

,� (31)

where the barotropic velocity is computed as

𝒖𝒖BT =

∑𝑁𝑁

𝑛𝑛=1
ℎ𝑛𝑛𝒖𝒖𝑛𝑛

∑𝑁𝑁

𝑛𝑛=1
ℎ𝑛𝑛

.� (32)

If the BT KE fraction (Equation 31) is equal to 1, the KE is fully contained in the barotropic mode, while a value 
of 0 indicates that the KE is fully contained in the baroclinic modes.

Figure 6 shows the zonally and 2,000-day averaged BT KE fraction for all experiments in Table 1. With finer reso-
lution, the flow becomes increasingly barotropic because more resolved eddies and baroclinic instability barotropize 
the flow (Kjellsson & Zanna, 2017; Salmon, 1980; Scott & Wang, 2005; K. S. Smith & Vallis, 2001). The two 
experiments in each GM90 and GL90 simulation pair show an almost identical vertical structure (Figures 6a–6e), 
with one minor exception: for a horizontal grid spacing of 1/2°, the GM90 and GL90 simulations show differences 
in their BT KE fraction within the 25°S–25°N latitude band. This discrepancy may be associated with the break-
down of the geostrophic assumption at low latitudes. For horizontal grids of 1/4° and 1/8°, however, GM90 and 
GL90 do not lead to significantly different vertical structures near the equator (Figures 6b–6e).

Finally, we note that the 1/4° GM90 and GL90 simulations have a more barotropic flow than the unparameterized 
1/4° simulations (Figures 6b and 6c). This result is anticipated because the GL90 parameterization explicitly mixes 
momentum downward, thus pushing KE into the barotropic mode. Figure 6 suggests that the GM90 parameter-

Figure 5.  Snapshots of zonal velocity (shading) and layer interfaces (black 
lines) along a south-north transect at 7°E for all experiments in Table 1. 
Panels (c and d) are identical to (a and b), but zoomed into the upper 500 m. 
The snapshots in (e) and (j) are from the unparameterized NeverWorld2 
simulations presented in Marques et al. (2022).
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ization has the exact same effect, as is expected under the assumption of quasi-geostrophy. At a horizontal grid 
spacing of 1/8°, GM90 and GL90 do not lead to a significant barotropization compared to the unparameterized 1/8° 
simulation (Figures 6d and 6e). Figure 6e also exemplifies that choosing high κ GM and ν GL values at eddy-permitting 
resolution can make the flow more baroclinic rather than more barotropic (here: north of 30°N), possibly because 
exaggerated κ GM and ν GL coefficients damp existing eddies that would otherwise barotropize the flow.

4.5.  Effects on Energy Budgets

In this section, we investigate the effects of the GM90 and GL90 parameterizations on the KE and PE budgets. 
The dynamic component of depth-integrated PE excludes the bottom contribution and is given by

PE =
1

2

𝑁𝑁
∑

𝑛𝑛=1

𝑔𝑔𝑟𝑟

𝑛𝑛−1∕2
𝜂𝜂2
𝑛𝑛−1∕2

.� (33)

The budgets for the KE and PE reservoirs are

𝜕𝜕𝑡𝑡(KE) = −

𝑁𝑁
∑

𝑛𝑛=1

∇ ⋅ (𝒖𝒖𝑛𝑛KE𝑛𝑛) −

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ ∇𝑀𝑀𝑛𝑛 +

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ 𝑭𝑭
wind
𝑛𝑛

+

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ 𝑭𝑭
drag
𝑛𝑛 +

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ 𝑭𝑭
visc
𝑛𝑛 +

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ 𝑭𝑭
ℎ
𝑛𝑛 + GL work,

� (34)

Figure 6.  Zonally and 2,000-day averaged ratio of the barotropic kinetic energy (KE) to the total KE (Equation 31) for all 
experiments in Table 1. The black and gray lines depict ratios from the unparameterized NeverWorld2 simulations presented 
in Marques et al. (2022).
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𝜕𝜕𝑡𝑡(PE) = −

𝑁𝑁
∑

𝑛𝑛=1

∇ ⋅

(

ℎ𝑛𝑛

(

𝒖𝒖𝑛𝑛 + 𝒖𝒖
GM
𝑛𝑛

)

𝑀𝑀𝑛𝑛

)

+

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝒖𝒖𝑛𝑛 ⋅ ∇𝑀𝑀𝑛𝑛 + GM work,� (35)

where 𝐴𝐴 𝒖𝒖
GM

𝑛𝑛  is the GM90 bolus velocity and the energetics associated with the GM90 and GL90 parameterizations 
are the negative-definite terms

GM work = −

𝑁𝑁−1
∑

𝑛𝑛=0

𝜅𝜅GM

𝑛𝑛+1∕2
𝑔𝑔𝑟𝑟

𝑛𝑛+1∕2
|∇𝜂𝜂𝑛𝑛+1∕2|

2,� (36)

GL work = −𝑓𝑓 2

𝑁𝑁−1
∑

𝑛𝑛=1

𝜅𝜅GM

𝑛𝑛+1∕2

𝑔𝑔𝑟𝑟

𝑛𝑛+1∕2

(𝒖𝒖𝑛𝑛 − 𝒖𝒖𝑛𝑛+1)
2
,� (37)

see Marques et al. (2022) and Loose et al. (2022) for a derivation.

Note that the first term on the right hand side of Equations 34 and 35 is an advection term, which integrates to 
zero over the domain (and will therefore not be considered in the following). The second term on the right hand 
side of Equation 34 is identical to the second term on the right hand side of Equation 35, but of opposite sign; 
this term describes conversion between KE and PE. The remaining terms on the right hand side of Equation 34 
are the wind work, dissipation by bottom drag, dissipation by the background vertical viscosity, and dissipation 
by horizontal viscosity.

The first two columns of Figure 7 show the domain-integrated and 2,000-day averaged KE budgets, diagnosed 
online for six experiments from Table 1. From left to right, the terms are in the same order as they appear in 
Equation 34. For reference, we also show the work done by the GM90 parameterization (gray with dots), even 
though this term is part of the PE budget (Equation 35) rather than the KE budget. Note that the KE tendency term 
(on the left hand side of Equation 34) is negligible over long time averages, and the budgets shown in Figure 7 
therefore close.

We can now compare the KE budget for each GM90 and GL90 simulation pair. Wind work (green bars) acts as 
a large KE source with comparable magnitudes across the GM90 and GL90 experiments in each simulation pair. 
In the GM90 simulations, the majority of this KE gets converted to PE (red bars), from where it gets extracted by 
the GM90 parameterization (gray bars with dots). In contrast, the GL90 simulations show no conversion to PE 
(in the domain integral). Instead, GL90 extracts a comparable amount of energy directly from the KE reservoir 
through dissipation via the GL90 vertical viscosity (pink bars). Bottom drag, background vertical viscosity and 
horizontal viscosity all act as KE sinks, and each of these sinks has comparable magnitudes across the GM90 and 
GL90 experiments in each simulation pair (with slightly more negative values in the GM90 simulations).

The third column of Figure 7 shows the “true” KE budget, diagnosed from the 1/32° NeverWorld2 simulation 
via an offline filtering approach (Loose et al., 2022). Here, we assume that the filter scale reflects the effective 
grid spacing of a model and that the model's effective spacing is four times larger than the model's grid scale 
(Kent et al., 2014; Loose et al., 2022; Skamarock, 2004; Soufflet et al., 2016). In short, the bars in Figures 7c, 7f, 
and 7i (corresponding to model grid scales of 1/2°, 1/4°, and 1/8°) reflect the mean kinetic energy (MKE) budg-
ets from Figures 8b–8d in Loose et al. (2022) (corresponding to filter scales of 2°, 1°, and 1/2°). The offline KE 
budget (third column) is diagnosed within a TWA framework and can therefore only be compared to the online 
KE budget of the GL90 simulations (second column). The pink hatched bar is the diagnosed MKE extraction 
(and eddy KE production) through eddy form stress in the TWA framework, so should be compared to the GL90 
work in the parameterized simulations in this work. For each horizontal resolution, the online GL90 work (pink 
bar) and its offline diagnosed counterpart (pink hatched bar) agree to within 4%. In fact, the values of κ GM and 
corresponding ν GL in Table 1 were tuned with the goal to achieve this match.

The offline diagnosed nonlinear KE exchange term (blue hatched bar) is due to eddy momentum fluxes, and can 
be seen as the sum of two terms: a (here dominating) positive-definite term, which reflects gain of large-scale 
KE through an inverse cascade, and a negative-definite term, which reflects extraction of large-scale KE by baro-
tropic instability. In the simulations in this work, the nonlinear KE exchange term is to be parameterized. One 
could argue that the positive-definite contribution (representing the effect of a KE inverse cascade) can be param-
eterized through backscatter (e.g., Bachman, 2019; Jansen & Held, 2014; Jansen et al., 2019; Juricke et al., 2020; 
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Zanna et  al.,  2017), and the negative-definite term (representing barotropic instability) can be parameterized 
by horizontal viscosity. Our simulations only use a horizontal viscosity but no backscatter parameterization. 
Subtracting the horizontal viscosity work (brown bars) in the second column from the nonlinear KE exchange 
term (blue hatched bars) in the third column makes clear that our simulations would benefit from a backscatter 
parameterization. For each horizontal resolution, the missing backscatter parameterization would require to add 
a similar amount of KE as is extracted by GL90. This result suggests that although the 1/2° degree simulations 
here are non-eddying, backscatter would still be energetically appropriate.

Figure 7.  Domain-integrated and 2,000-day averaged kinetic energy (KE) budget (Equation 34) for the GM90 simulations 
(first column) and GL90 simulations (second column) in the (a and b) 1/2°, (d and e) 1/4°, and (g and h) 1/8° simulation 
from Table 1. For reference, the third column shows the “true” KE budget, diagnosed from the 1/32° NeverWorld2 
simulation via an offline spatial filtering approach (Loose et al., 2022). The offline budget (third column) is diagnosed for a 
thickness-weighted averaged framework, and can therefore only be compared to the GL90 simulations (second column). In 
the first column, we also show the GM work term even though it is part of the potential energy budget (Equation 35) rather 
than the KE budget.
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Finally, we note that the parameterized simulations in this work dissipate too little energy via bottom drag (purple 
bars). This shortcoming is caused by too weak bottom velocities in our parameterized simulations, which in turn 
could be due to two reasons: (a) a flow that is generally too weak, that is, not energetic enough; (b) a flow that is 
not barotropic enough so that bottom velocities stay weak. We suggest that (a) is the main player because the 1/8° 
GL 100 simulation has the same barotropic KE fraction as the 1/32° “truth” simulation (Figure 6d) but neverthe-
less dissipates less than half the KE via bottom drag compared to the 1/32° simulation. We suggest that adding a 
backscatter parameterization to our simulations would remedy (a), and ameliorate the problem of too little bottom 
drag dissipation. This hypothesis should be tested in future work.

Before concluding this section, we compare the GM work and the GL work more closely for our 1/2° simulations. 
We re-emphasize that the GM work acts as a sink for the PE reservoir (Equation 35), while the GL work acts 
as a sink for the KE reservoir (Equation 34). However, despite their inherently different energetic pathways, the 
horizontal distributions of the depth-integrated GM versus GL work show a very similar large-scale structure 
(Figures 8a and 8b). Upon inspecting their difference, we find that the GM and GL work differ on smaller scales, 
where the GL work tends to be of slightly greater magnitude (Figure 8c).

4.6.  Computational Performance

We are interested in comparing the GM90 and GL90 parameterizations in terms of their computational needs. To 
this aim, we analyze the runtime for three GM90 and GL90 simulation pairs from Table 1, one for each horizontal 
grid (Figure 9). For each GM90 and GL90 simulation pair, the runtimes are normalized by the total runtime of 
the respective GM90 simulation. For the analysis in Figure 9, each experiment was run for 1,000 experiment days 
on NCAR's Cheyenne supercomputer (Computational And Information Systems Laboratory, 2017), on two nodes 
(for the 1/2° experiments) and eight nodes (for the 1/4° and 1/8° experiments) with 36 CPUs per node. There is 
no reason to expect significantly different relative runtimes across the three resolutions; we consider the runtime 
values merely as three samples from a (small) ensemble.

Figure 8.  Energetics of the GM90 and GL90 parameterizations, diagnosed online from the 1/2° simulations in Table 1: (a) 
GM work (Equation 36) and (b) GL work (Equation 37), both depth-integrated and averaged over 2,000 days. (c) Difference 
of the GM and GL work terms, computed by subtracting (b) from (a). Red (blue) shading indicates that the GL (GM) work is 
of greater absolute value.
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The GL90 simulations are slightly cheaper; on average, they require about 94% of the computing resources that 
are necessary for the GM90 simulations (Figure 9, left). The reduction in compute cost is largely explained by the 
fact that the GL90 experiments can skip through the routines that apply GM90 in the thickness equation, which 
amount to about 5% of the total runtime in the GM90 experiments (Figure 9, middle). On the other hand, the 
GL90 experiments require on average only 0.5% more compute time in the vertical viscosity routines than the 
GM90 experiments (Figure 9, right). This small additional expense is due to the (a) computation of the GL90 
coupling coefficient (Equation C2) associated with ν GL (Equation 26) from the κ GM that is specified by the user, 
and (b) addition of the GL90 coupling coefficient to the coupling coefficient associated with the background 
vertical viscosity (Equation C1). No extra cost is imposed by the vertical viscosity solver itself; the latter is always 
required due to the use of a background vertical viscosity (and other vertical viscous stresses) and operates merely 
with a modified coupling coefficient.

5.  Discussion
We have compared the GL90 and GM90 parameterizations in an idealized isopycnal coordinate model. The 
two parameterizations mimic the restratification effect of mesoscale eddies, but they do so in two distinct ways: 
GM90 via the adiabatic flattening of isopycnals, GL90 via the vertical mixing of horizontal momentum. In the 
following, we discuss our results from both a theoretical and practical perspective, and give an outlook for next 
steps.

5.1.  Theoretical Considerations

We argued that common approaches to implementing the GM90 parameterization in isopycnal-layer models are 
inconsistent with any possible combination of non-TWA or TWA thickness, continuity, and momentum equa-
tions (Section 2). The inconsistency is partly due to the fact that the non-thickness-weighted isopycnal average 
conserves neither tracers nor momentum. This problem is resolved when replacing GM90 with the GL90 param-
eterization. GL90 provides a path for parameterizing the eddy terms in the stacked shallow water equations in 
a way that is fully consistent with the TWA framework. From a theoretical perspective, the GL90 parameteri-
zation provides an attractive solution for isopycnal coordinate models. Indeed, GL90 allows for a clean inter-
pretation of what the model variables and parameterizations represent—an important property if one wants to 
compare coarse-resolution model output to observations or high-resolution model output, where eddy terms can 
be diagnosed.

Figure 9.  Comparison of runtime values for the GM90 versus GL90 simulations at 1/2° (blue bars), 1/4° (red bars), and 
1/8° (green bars) grid spacing. The bars indicate the total runtime (left), runtime spent for applying GM90 in the thickness 
equation (middle), and runtime spent in the vertical viscosity routines (right). For each grid spacing, the bars are normalized 
by the total runtime of the respective GM90 simulation.
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5.2.  GM90 Versus GL90 in Practice

The GM90 and GL90 parameterizations have profoundly different effects on the energy budget: GM90 dissipates 
APE, while GL90 extracts KE (Figure 7). Despite these inherently different energy pathways, we found the flow 
to adjust in such a way that GM90 and GL90 have almost identical effects on energy levels and vertical structure, 
as long as one chooses ν GL = κ GMf 2/N 2. While the effective equivalence of GM90 and GL90 is expected under the 
assumption of geostrophy, one cannot necessarily expect geostrophy to hold everywhere, in particular for models 
with topography and equatorial latitudes. Our stacked shallow water model simulations spanning two hemi-
spheres with idealized topography confirmed that, nevertheless, the effective equivalence of GM90 and GL90 
holds true across non-eddying to eddy-permitting grid resolutions, and both for spatially constant κ GM (Section 4) 
and spatially varying κ GM (Figures S1–S3 in Supporting Information S1).

The only notable exception is a small discrepancy found between the 1/2° GM90 and GL90 simulations in their 
vertical flow structure in the tropical region - a region where geostrophy breaks down. We note that many models 
employ GM90 together with a resolution function (Hallberg, 2013), which mutes GM90 in the equatorial region 
where the deformation radius is sufficiently resolved (Figure 1). On the other hand, GL90 is essentially switched 
off close to the equator because ν GL ∼ f 2. We therefore speculate that the small discrepancy noted above may not 
be present if we had used a resolution function in the GM90 simulations.

The similarity in the effects of GM90 and GL90 in our isopycnal coordinate model is perhaps more striking than what 
was found in previous studies, all of which have compared these two parameterizations in z-coordinate models (Ferreira 
& Marshall, 2006; McWilliams & Gent, 1994; Saenz et al., 2015; Zhao & Vallis, 2008). We conclude that in isopycnal 
coordinate models, the GL90 parameterization provides a promising alternative to the GM90 parameterization.

The GL90 parameterization is easy to implement because virtually every model uses a vertical viscosity solver 
already for other vertical processes. On the other hand, implementing GM90 in isopycnal coordinate models 
can be delicate near in- and outcrops; for instance, limiters are required to avoid fluxing volume out of vanished 
layers. Likely as a consequence of these difficulties, the coarse GM90 simulations (at 1/2° grid spacing) showed 
noisy surface velocities. GL90 produced noise-free flow patterns as it bypasses numerical implementation issues 
near the surface. While this was not the focus of our work, the reduction of grid scale noise by GL90 could also 
diminish spurious diapycnal mixing and allow the choice of a smaller horizontal viscosity than necessary with 
GM90 (Ferreira & Marshall, 2006; Zhao & Vallis, 2008).

It is also worth mentioning that vertical viscosity can be treated implicitly, which can improve the stability of 
the code. In terms of computational efficiency, we found that GL90 has a slight advantage because a vertical 
viscosity solver is employed at every timestep anyway due to other model processes. In other words, GL90 
requires essentially no extra computational effort, while the GM90 routines can be entirely skipped. This compu-
tational advantage is reflected in the runtimes of our experiments: the GL90 simulations required only 94% of the 
compute time that was necessary for the GM90 simulations.

5.3.  Outlook

An avenue for future work is to integrate GL90 into a parameterization that makes use of an explicit subgrid scale 
energy budget (Eden & Greatbatch, 2008; Jansen et al., 2015; Marshall & Adcroft, 2010). Having a prognostic equation 
for the subgrid scale energy budget is advantageous for multiple reasons, one of which is that the κ GM (or, then, the ν GL) 
coefficient can be constrained by the subgrid scale energy through a mixing length argument. The integration of GL90 
into a subgrid scale energy budget parameterization is a straightforward task, which simply consists of substituting 
the GM work with the GL work in the subgrid scale budget. Again, we anticipate very similar solutions because we 
found the (online diagnosed) depth-integrated GM and GL work to have similar horizontal distributions (Figure 8). 
A prognostic equation for the subgrid scale energy budget could also provide energetic constraints for a backscatter 
parameterization (Jansen & Held, 2014; Jansen et al., 2019; Juricke et al., 2019). Comparison with offline diagnostics 
highlighted that our simulations would benefit from backscatter (Figure 7). Future work should examine how GL90 
performs in concert with a backscatter parameterization. It will be interesting to see whether the slightly smoother 
velocity structure produced by GL90 enables backscatter that is more numerically stable than achieved with GM90.

Another direction for future development of the GL90 parameterization is to formulate an anisotropic version 
based on the anisotropic GM90 parameterization of R. D. Smith and Gent (2004). The resulting parameterization 
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is significantly simpler than the general anisotropic viscosity of R. D. Smith and McWilliams (2003) because 
only the vertical component of viscosity is horizontally anisotropic. Implementing an anisotropic version of 
GL90 may be much easier than implementing an anisotropic version of GM90 (R. D. Smith & Gent, 2004). On an 
Arakawa B-grid, implementation of such an anisotropic GL90 parameterization would be straightforward, while 
on a C-grid it would require some extra care.

One barrier to the widespread adoption of the GL90 approach is that turbulence parameterizations (such as bulk 
formulae for surface fluxes, or parameterizations of shear-driven instabilities in the mixed layer) are generally 
formulated in terms of the Eulerian mean flow, which is not readily available in the TWA equations. It remains 
an open question how challenging it would be to reformulate these parameterizations in terms of the TWA 
velocity, or whether a reformulation is even necessary given that the derivations of these parameterizations are 
typically vague about the specific definition of the “mean” flow, and noting their various other shortcomings. On 
the upside, the GL90 parameterization may open the door to explore related parameterizations such as those for 
bottom (i.e., topographic) form stresses. A parameterization for bottom form stress would very naturally enter as 
a boundary condition in the TWA framework and associated vertical viscosity parameterization.

In this study, we have worked within a stacked shallow water model. Moving forward, the GL90 parameterization 
has to be tested in more realistic isopycnal coordinate models that also include a mixed layer. A complication is 
that vanishing stratification in the mixed layer implies infinite vertical viscosity ν GL = f 2/N 2 κ GM, an issue that is 
analogous to the problem of infinite isopycnal slopes arising in the GM90 framework. To remedy this issue, one 
could potentially leverage ideas from Ferrari et al. (2010) and solve an elliptic boundary-value problem, adapted 
to dealing with infinite vertical viscosity rather than infinite isopycnal slopes. One advantage of GL90 is that one 
can solve the tridiagonal equation for vertical viscosity with an exceptionally large (almost infinite) viscosity by 
using implicit schemes in the vertical, for example, with the modified tridiagonal solver described by Schopf and 
Loughe (1995). There is no need to limit the viscosity for stability. By contrast, the horizontal GM90 scheme is 
handled explicitly and therefore needs bounds on the magnitude of the GM90 streamfunction.

An alternative way for employing GL90 in more realistic configurations is to focus on hybrid coordinate schemes, 
which are already utilized in many modern ocean general circulation models (e.g., Adcroft et al., 2019; Bleck, 2002; 
Bleck et al., 1992; Hofmeister et al., 2010; Ringler et al., 2013; Seland et al., 2020). In some parts of the domain 
hybrid coordinate schemes use an isopycnal coordinate directly analogous to the stacked shallow water equations, 
while in other parts of the domain they use geopotential or terrain-following coordinates. The GL90 parameteri-
zation developed here should port directly to the isopycnal coordinate part of these models, but some extra care is 
required to transition the parameterization from the isopycnal part of the domain to the other parts.

One approach to extending the current work to general coordinates is to discretize the general vertical coordinate 
and then apply the TWA machinery using general coordinate layer thickness instead of isopycnal layer thickness. 
One advantage of such an approach is that in regions of the model where the general coordinate layer thicknesses are 
uniform, the TWA reduces to the standard Reynolds average and the form stress that GL90 parameterizes is identically 
zero. For example, many hybrid coordinate schemes use a geopotential coordinate in the ocean surface mixed layer 
(Adcroft et al., 2019; Bleck, 2002). It would be natural to set the GL90 viscous coefficient to zero within the geopoten-
tial coordinate mixed layer, which avoids the difficulties associated with defining the GL90 viscosity in regions of weak 
stratification and with applying surface wind stress in the presence of a GL90 viscosity. Applying the TWA machinery 
using general coordinate layer thickness instead of isopycnal layer thickness will introduce new theoretical challenges, 
but may also lead to a unification of lateral physics parameterizations for general coordinate models.

Appendix A:  Conservation Properties of Averaging Operators
In this section, we show that the non-thickness-weighted average is non-conservative, while the TWA is conservative.

The total tracer content is

𝐶𝐶total =
∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 d𝐴𝐴𝐴� (A1)

where the integral is a definite integral over the horizontal extent of the spatial domain. Impermeable boundary 
conditions in the thickness-weighted tracer Equation 6 guarantee that total tracer content is conserved:
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d𝐶𝐶total

d𝑡𝑡
= 0.� (A2)

However, the non-thickness-weighted average does not conserve total tracer content. If we assume that the Reynolds 
average commutes with the domain integral (and thus has no effect on domain-integrated quantities), then we have

𝐶𝐶total =
∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 d𝐴𝐴 =
∫

𝑁𝑁
∑

𝑛𝑛=1

(

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 + ℎ′
𝑛𝑛𝐶𝐶

′
𝑛𝑛

)

d𝐴𝐴𝐴� (A3)

The total tracer content in the mean part of the non-thickness-weighted fields is

∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 d𝐴𝐴 ≠ 𝐶𝐶total� (A4)

because in general the tracer content in the eddy field is nonzero. In order to maintain conservation of total tracer 
content, the non-thickness-weighted equations must account for exchange of tracer between the mean and eddy 
fields, and this is reflected in the fact that the eddy terms are non-conservative. The evolution equation for the 
total tracer content in the mean part of the non-thickness-weighted fields is derived by integrating the following

𝜕𝜕𝑡𝑡
(

ℎ̄𝑛𝑛𝐶̄𝐶𝑛𝑛

)

+ ∇ ⋅

(

ℎ̄𝑛𝑛𝒖̄𝒖𝑛𝑛𝐶̄𝐶𝑛𝑛

)

= −𝐶̄𝐶𝑛𝑛∇ ⋅

(

ℎ′
𝑛𝑛𝒖𝒖

′
𝑛𝑛

)

− ℎ̄𝑛𝑛𝒖𝒖
′
𝑛𝑛 ⋅ ∇𝐶𝐶

′
𝑛𝑛� (A5)

and summing over layers, assuming impermeable boundary conditions on 𝐴𝐴 𝒖̄𝒖𝑛𝑛 :

d

d𝑡𝑡 ∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ̄𝑛𝑛𝐶̄𝐶𝑛𝑛 d𝐴𝐴 = −
∫

𝑁𝑁
∑

𝑛𝑛=1

[

𝐶̄𝐶𝑛𝑛∇ ⋅

(

ℎ′
𝑛𝑛𝒖𝒖

′
𝑛𝑛

)

+ ℎ̄𝑛𝑛𝒖𝒖
′
𝑛𝑛 ⋅ ∇𝐶𝐶

′
𝑛𝑛

]

d𝐴𝐴 ≠ 0.� (A6)

A similar analysis can be carried out for the total momentum, ∫ ∑nhnundA, showing that the non-thickness-weighted 
eddy field has a nonzero momentum content, which is reflected in the fact that the eddy terms in the 
non-thickness-weighted velocity Equation 10 are non-conservative.

In contrast, the TWA preserves the total quantity of tracers as well as total momentum. For example, considering 
total tracer content, the total tracer content in the mean part of the thickness-weighted fields is

∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 d𝐴𝐴 =
∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛

ℎ𝑛𝑛𝐶𝐶𝑛𝑛

ℎ𝑛𝑛

d𝐴𝐴 =
∫

𝑁𝑁
∑

𝑛𝑛=1

ℎ𝑛𝑛𝐶𝐶𝑛𝑛 d𝐴𝐴 = 𝐶𝐶total,� (A7)

where the last step assumes that the Reynolds average commutes with integrals. The total tracer content in the 
eddy part of the thickness-weighted fields is therefore zero, and similar conclusions result for momentum by 
swapping Cn with un. Because of this property, the eddy terms in the thickness-weighted tracer and velocity 
equations are conservative; unlike in the non-thickness-weighted case, they do not need to account for exchanges 
between the resolved and unresolved reservoirs of total tracer and momentum.

Appendix B:  Connecting GL90 to Eddy Interfacial Form Stress
The pressure force acting on an arbitrary fluid region, 𝐴𝐴  , can be written in two equivalent manners

−
∫


∇𝑝𝑝 d𝑉𝑉 = −
∮
𝜕𝜕

𝑝𝑝 𝒏̂𝒏 d ,� (B1)

with this identity following from the divergence theorem, and with 𝐴𝐴 𝒏̂𝒏 the outward unit normal vector on the region 
boundary, 𝐴𝐴 𝐴𝐴 . The left hand side is the volume integral of the pressure gradient body force acting throughout 
the region, whereas the right hand side is the area integral of the pressure contact force acting on the region 
boundary. In a hydrostatic fluid, the vertical portion of the pressure force balances the weight of fluid, whereas 
the horizontal portion gives rise to horizontal acceleration. Pressure form stress refers to the horizontal projection 
of the force per unit area from pressure that acts on a surface whose outward normal has a nonzero projection in 
both the horizontal and vertical directions. That is, there is only a pressure form stress on a sloping surface. We 
illustrate these points for a shallow water fluid in Figure B1.
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The fundamental assumption of the GL90 parameterization is that mesoscale eddies provide a vertically down-
gradient transfer of horizontal momentum through the action of eddy induced pressure form stresses. For the 
shallow water fluid, pressure form stresses act on the interfaces between shallow water fluid layers, in which case 
they are referred to as interfacial form stresses. In this appendix, we expose the basic features of interfacial form 
stress for the shallow water fluid, thus further describing how the GL90 parameterization appears in a shallow 
water fluid.

B1.  Shallow Water Pressure Identities

We make use of the following relations holding for the hydrostatic pressure within a shallow water layer, pn, and 
the pressure at a layer interface, pn±1/2

ℎ𝑛𝑛 = 𝜂𝜂𝑛𝑛−1∕2 − 𝜂𝜂𝑛𝑛+1∕2� (B2a)

𝑝𝑝𝑛𝑛 = 𝑝𝑝𝑛𝑛−1∕2 + 𝑔𝑔 𝑔𝑔𝑛𝑛
(

𝜂𝜂𝑛𝑛−1∕2 − 𝑧𝑧
)

=
(

𝑝𝑝𝑛𝑛−1∕2 + 𝑔𝑔 𝑔𝑔𝑛𝑛 𝜂𝜂𝑛𝑛−1∕2
)

− 𝑔𝑔 𝑔𝑔𝑛𝑛 𝑧𝑧� (B2b)

𝑔𝑔 𝑔𝑔𝑛𝑛 ℎ𝑛𝑛 = 𝑝𝑝𝑛𝑛+1∕2 − 𝑝𝑝𝑛𝑛−1∕2 = 𝑔𝑔 𝑔𝑔𝑛𝑛
(

𝜂𝜂𝑛𝑛−1∕2 − 𝜂𝜂𝑛𝑛+1∕2
)

� (B2c)

𝑝𝑝1∕2 = 𝑝𝑝 a,� (B2d)

with p a(x, y, t) the applied (or atmospheric) pressure at the ocean surface, which is set to zero in our simulations. 
The interfacial pressures, pn±1/2(x, y, t), and interfacial heights, ηn±1/2(x, y, t), are functions of horizontal position 
and time, and as such so too are the layer thickness, hn(x, y, t) whereas the densities, ρn, are constant within each 
layer.

The layer pressure, pn(x, y, z, t), in Equation B2b is a linear function of vertical position through the term −g 
ρn z. This term has a zero horizontal gradient so that ∇zpn is independent of depth within a shallow water layer. 

Figure B1.  A schematic of the contact pressure force per area acting on the boundaries of a vertical column region within 
a shallow water layer of density ρn. Since fluid moves as vertical columns in a shallow water layer, we focus on the pressure 
forces acting on this column. The interface at the lower boundary is at the vertical position z = ηn+1/2, and the upper interface 
is at z = ηn−1/2. In accordance with Newton's third law (and since we ignore surface tension), pressures are continuous 
across each of the ηn±1/2 layer interfaces so that the pressure forces are equal in magnitude yet oppositely directed on the 
opposite sides to the interfaces. The layer thickness is the difference between the interface positions, hn = ηn−1/2 − ηn+1/2. The 
boundaries of the columnar region feel a contact pressure force from the surrounding fluid that acts inward (compressive). 
The left side of the column experiences a pressure pL; the right side experiences pR; the upper interface has a pressure pn−1/2 
acting between the layer n − 1 and layer n, and the lower interface has a pressure pn+1/2 acting between the layer n + 1 and 
layer n. The net pressure acting on the column is computed as the area integral of the pressure acting around the full extent of 
the column boundaries. The horizontal components of the pressure acting on the top and bottom interfaces are the interfacial 
form stresses.
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Hence, when working with the pressure gradient force we can choose to drop the g ρn z term and instead use the 
Montgomery potential (Equation 5)

𝑀𝑀𝑛𝑛 = 𝑝𝑝𝑛𝑛 + 𝑔𝑔 𝑔𝑔𝑛𝑛 𝑧𝑧 with ∇𝑀𝑀𝑛𝑛 = ∇𝑧𝑧𝑝𝑝𝑛𝑛.� (B3)

See also Vallis  (2017) in his Equation 3.44, where he refers to Mn as the “dynamic pressure.” However, just 
for this appendix we find it more convenient to work with pn since doing so facilitates physically interpreting 
the transformation between the body force and contact force versions of the pressure force as in Equation B1. 
Note  that in Equation B3 we exposed the z label on the horizontal gradient operator, which adds clarity since pn 
is a function of z within a layer.

B2.  Exposing the Interfacial Pressure Form Stress

The thickness-weighted horizontal pressure gradient, as found in the thickness-weighted momentum Equation 7, 
can be decomposed as

−ℎ𝑛𝑛∇𝑧𝑧𝑝𝑝𝑛𝑛 = −∇𝑃𝑃𝑛𝑛 + 𝑭𝑭
form
𝑛𝑛 ,� (B4)

where on the left hand side we expose the subscript on the gradient operator,∇z, since pn is a function of z, 
whereas this extra notation is not needed on the right hand side since all terms are vertically constant within a 
layer. The first right hand side term in Equation B4 results from vertically integrating pressure over a shallow 
water layer

𝑃𝑃𝑛𝑛 =
∫

𝜂𝜂𝑛𝑛−1∕2

𝜂𝜂𝑛𝑛+1∕2

𝑝𝑝𝑛𝑛(𝑧𝑧) d𝑧𝑧 = ℎ𝑛𝑛

(

𝑔𝑔 𝑔𝑔𝑛𝑛 ℎ𝑛𝑛

2
+ 𝑝𝑝𝑛𝑛−1∕2

)

,� (B5)

with its negative horizontal gradient given by

−∇𝑃𝑃𝑛𝑛 = −
(

ℎ𝑛𝑛 ∇𝑝𝑝𝑛𝑛+1∕2 + 𝑝𝑝𝑛𝑛−1∕2 ∇ℎ𝑛𝑛

)

.� (B6)

The second horizontal stress in Equation B4 is the interfacial form stress acting on sloping upper and lower 
interfaces to the layer,

𝑭𝑭
form
𝑛𝑛 = 𝑝𝑝𝑛𝑛−1∕2∇𝜂𝜂𝑛𝑛−1∕2 − 𝑝𝑝𝑛𝑛+1∕2∇𝜂𝜂𝑛𝑛+1∕2.� (B7)

The interfacial form stress provides an inviscid exchange of horizontal momentum between shallow water layers, 
and it does so in a manner consistent with Newton's third law. Correspondingly, the column sum of the interfacial 
form stress arises just from form stresses active at the ocean surface and ocean bottom

𝑁𝑁
∑

𝑛𝑛=1

𝑭𝑭
form
𝑛𝑛 = 𝑝𝑝 a∇𝜂𝜂 − 𝑝𝑝 b∇𝜂𝜂 b,� (B8)

where z = η(x, y, t) is the free surface and z = η b(x, y) = −D(x, y) is the ocean bottom.

B3.  Connecting Eddy Interfacial Form Stress to GL90

Following Section 3 of Greatbatch (1998), we make use of the decomposition (Equation B4) to render the mean 
thickness-weighted pressure gradient

−ℎ𝑛𝑛 ∇𝑝𝑝𝑛𝑛 = −ℎ𝑛𝑛 ∇𝑝𝑝𝑛𝑛 − ℎ𝑛𝑛 ∇̂𝑝𝑝
′
𝑛𝑛 = −∇𝑃𝑃𝑛𝑛 + 𝑭𝑭

form
𝑛𝑛 ,� (B9)

which can be written

−ℎ𝑛𝑛 ∇𝑝𝑝𝑛𝑛 = −ℎ𝑛𝑛 ∇𝑝𝑝𝑛𝑛 − ∇𝑃𝑃 ′
𝑛𝑛 + 𝑭𝑭

form
′

𝑛𝑛 ,� (B10)

with the eddy contributions given by

−
[

ℎ𝑛𝑛 ∇̂𝑝𝑝
′
𝑛𝑛

]

P-contribution

= −∇𝑃𝑃 ′
𝑛𝑛 = −ℎ′

𝑛𝑛 ∇𝑝𝑝
′
𝑛𝑛+1∕2

− 𝑝𝑝′
𝑛𝑛−1∕2

∇ℎ′
𝑛𝑛,� (B11a)
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−
[

ℎ𝑛𝑛 ∇̂𝑝𝑝
′
𝑛𝑛

]

eddy form-stress
= 𝑭𝑭

form′

𝑛𝑛 = 𝑝𝑝′
𝑛𝑛−1∕2

∇𝜂𝜂′
𝑛𝑛−1∕2

− 𝑝𝑝′
𝑛𝑛+1∕2

∇𝜂𝜂′
𝑛𝑛+1∕2

.� (B11b)

Greatbatch (1998) argues that for geostrophic eddies, the term 𝐴𝐴 −∇𝑃𝑃 ′
𝑛𝑛  is negligible relative to the eddy interfacial 

form stress, 𝐴𝐴 𝑭𝑭
form

′

𝑛𝑛  , thus motivating a focus on developing a parameterization of eddy form stress. In turn, the 
GL90 parameterization assumes that the mean action from mesoscale eddy induced form stress leads to a vertical 
downgradient transfer of horizontal momentum. This assumption then motivates the GL90 parameterization of 

𝐴𝐴 𝑭𝑭
form

′

𝑛𝑛  as detailed in Section 3.

Appendix C:  Implementation of GL90 in MOM6
MOM6 handles vertical mixing of momentum fully implicitly, a necessity to allow for vanishingly small 
layers. Inputs into the tridiagonal solver for the implicit vertical viscosity scheme are coupling coefficients of 
the form

𝑎𝑎𝑢𝑢
𝑛𝑛−1∕2

=
2𝜈𝜈𝑛𝑛−1∕2Δ𝑡𝑡

ℎ𝑢𝑢

𝑛𝑛−1
+ ℎ𝑢𝑢

𝑛𝑛

, 𝑎𝑎𝑣𝑣
𝑛𝑛−1∕2

=
2𝜈𝜈𝑛𝑛−1∕2Δ𝑡𝑡

ℎ𝑣𝑣

𝑛𝑛−1
+ ℎ𝑣𝑣

𝑛𝑛

,� (C1)

which are located at zonal 𝐴𝐴

(

𝑎𝑎𝑢𝑢
𝑛𝑛−1∕2

)

 and meridional 𝐴𝐴

(

𝑎𝑎𝑣𝑣
𝑛𝑛−1∕2

)

 velocity points and layer interfaces (e.g., Schopf & 
Loughe, 1995). The thicknesses at velocity points, 𝐴𝐴 𝐴𝑢𝑢

𝑛𝑛, ℎ
𝑣𝑣
𝑛𝑛 are computed as an average of the thicknesses of the two 

adjacent grid cells, with an upwind biased estimate near the bottom. We leverage the existing implicit vertical 
solver (including its numerical stability) and choose the following “non-invasive” approach. We simply calculate 
additional coupling coefficients that are associated with the GL90 parameterization, 𝐴𝐴 𝐴𝐴

GL,𝑢𝑢

𝑛𝑛−1∕2
, 𝑎𝑎

GL,𝑣𝑣

𝑛𝑛−1∕2
 . The sums of 

the coupling coefficients,

𝑎𝑎𝑢𝑢
𝑛𝑛−1∕2

+ 𝑎𝑎
GL,𝑢𝑢

𝑛𝑛−1∕2
, 𝑎𝑎𝑣𝑣

𝑛𝑛−1∕2
+ 𝑎𝑎

GL,𝑣𝑣

𝑛𝑛−1∕2
,�

are then inserted into the vertical viscosity scheme; the vertical viscosity scheme itself is not altered.

The coupling coefficients associated with the GL90 parameterization have the form

𝑎𝑎
GL,[𝑢𝑢𝑢𝑢𝑢]

𝑛𝑛−1∕2
=

𝜅𝜅GM

𝑛𝑛−1∕2
𝑓𝑓 2Δ𝑡𝑡

𝑔𝑔′
𝑛𝑛−1∕2

⋅ (1 − 𝑏𝑏(𝑧̃𝑧)).� (C2)

The fraction on the right hand side of Equation C2 is obtained when applying Equation C1 to the expression 
of the GL90 vertical viscosity (Equation 26). The factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) has the purpose to avoid fluxing momen-
tum into vanished layers near the bottom. b is a taper function of the form 𝐴𝐴 𝐴𝐴(𝑧̃𝑧) =

(

1 + 0.09 ⋅ 𝑧̃𝑧6
)−1

, where 
𝐴𝐴 𝐴𝐴𝐴 = (𝑧𝑧 +𝐷𝐷)∕ΔℎBBL,GL is the normalized distance from the ocean bottom, with tunable parameter ΔhBBL,GL. The 

factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) is 0 within ΔhGL,BBL − ɛ from the bottom, and 1 for distances greater than ΔhGL,BBL + ɛ from 
the bottom, for small ɛ > 0, with a smooth transition in between. In practice, z + D is computed as the sum of 
cell thicknesses, accumulated from the bottom upwards. Note that 𝐴𝐴 𝐴𝐴(𝑧̃𝑧) is needed at u- and v-velocity points; to 
obtain the thicknesses at velocity points, we compute an upwind biased estimate (i.e., harmonic mean) from the 
thicknesses of the two adjacent grid cells.

The factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) in Equation C2 is necessary. Skipping this factor can lead to spurious large bottom velocities 
over the continental slope (Figure C1c). If the factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) is skipped, the large vertical gradient in the GL90 
coupling coefficient near the bottom facilitates occasional upslope thickness transport into near-vanished layers. 
The upslope layer then drains slowly (over several days to weeks), leading to strong downslope velocities near the 
bottom while the layer is draining. The factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) effectively mutes the GL90 scheme in vanished bottom 
layers and the problem of spurious bottom velocities is remedied (Figures  C1d–C1h). All GL90 simulations 
presented outside of this appendix use ΔhGL,BBL = 5 m.

It is important to note that the GL90 scheme is not sensitive to the choice of ΔhGL,BBL, as long as ΔhGL,BBL is set 
within a reasonable range: large enough to contain vanished layers over topography, and small enough to not 
contaminate the action of GL90 in the interior. We have tested values of ΔhGL,BBL = 1 m, 5 m, 10 m, 20 m, as well 
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as ΔhGL,BBL = ΔhdynBBL, where ΔhdynBBL is a dynamically computed and spatially varying bottom boundary layer 
thickness, and found no sensitivity of the flow and the APE to the choice of ΔhGL,BBL (Figures C1 and C2). Note 
that skipping the factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) leads to an APE that is more than 10% larger than the APE in the corresponding 
GM90 simulation (yellow vs. green line, Figure C2), whereas GL90 simulations in which 𝐴𝐴 𝐴𝐴

GL,[𝑢𝑢𝑢𝑢𝑢]
𝑛𝑛  is muted within 

ΔhGL,BBL from the bottom produce virtually identical APE values as the GM90 simulation (pink lines vs. green 
line, Figure C2). The elevated APE in the former case is again explained by the spurious bottom velocities; a 
strong vertical shear is related to more tilted interfaces, via thermal wind balance.

Figure C1.  2,000-day averages of zonal velocity along a south-north transect at 4°E for multiple experiments, all at 1/4° 
horizontal grid spacing: (a) unparameterized, (b) using GM90 with κ GM = 300 m 2 s −1, (c) using GL90 with ν GL = 300 ⋅ f 2/N 2 
m 2 s −1, where the factor 𝐴𝐴 (1 − 𝑏𝑏(𝑧̃𝑧)) in Equation C2 is skipped, (d)–(h) using GL90 with ν GL = 300 ⋅ f 2/N 2 m 2 s −1 and different 
choices of ΔhGL,BBL.
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Appendix D:  GL90 in Isopycnal Versus Z-Coordinates
The isopycnal coordinate derivation in Section  3 differs qualitatively from the derivations by Ferreira and 
Marshall (2006) and Zhao and Vallis (2008), who use z-coordinates. We here review the derivation of Zhao and 
Vallis (2008) and thereafter discuss the differences with the isopycnal approach.

The Reynolds-averaged velocity equation in z-coordinates is

𝐷𝐷𝒖̄𝒖

𝐷𝐷𝐷𝐷
+ ∇ ⋅

(

𝒖𝒖
′ ⊗ 𝒖𝒖

′

)

+ 𝑓𝑓 × 𝒖̄𝒖 = −∇𝜙̄𝜙 + 𝜕𝜕𝑧𝑧𝝉𝝉𝑚𝑚,� (D1)

where D/Dt denotes the material derivative, ϕ the pressure (divided by the Boussinesq reference density), and τm 
mechanical stresses. The Reynolds stress is the only eddy term in this equation.

The mean buoyancy, 𝐴𝐴 𝑏̄𝑏 = −𝑔𝑔 𝑔𝑔𝑔∕𝜌𝜌0 , in a Reynolds-averaged z-coordinate Boussinesq model is shown by Zhao and 
Vallis (2008) to be advected by the residual mean velocity

𝒖̃𝒖 = 𝒖̄𝒖 + 𝒖𝒖
∗,� (D2)

where the eddy-induced velocity is

𝒖𝒖
∗ = −∇ ×

(

𝒖𝒖
′𝑏𝑏′ × ∇𝑏̄𝑏

|∇𝑏̄𝑏|2

)

.� (D3)

Adding f × u* to both sides of Equation D1 leads to

𝐷𝐷𝒖̄𝒖

𝐷𝐷𝐷𝐷
+ ∇ ⋅

(

𝒖𝒖
′ ⊗ 𝒖𝒖

′

)

+ 𝑓𝑓 × 𝒖̃𝒖 = −∇𝜙̄𝜙 + 𝜕𝜕𝑧𝑧𝝉𝝉𝑚𝑚 − 𝑓𝑓 ×

[

∇ ×

(

𝒖𝒖
′𝑏𝑏′ × ∇𝑏̄𝑏

|∇𝑏̄𝑏|2

)]

.� (D4)

At this point, we do not have a closed set of equations, as Equation D4 contains both the Eulerian and residual 
mean velocities.

Figure C2.  Timeseries of available potential energy for the eight experiments shown in Figure C1, during spin-up and 
equilibration. The gray shading marks the 2,000-day windows that were used for time-averaging in Figure C1.
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To obtain an evolution equation for the residual mean velocity, Zhao and Vallis  (2008) replace 𝐴𝐴 𝐴𝐴𝒖̄𝒖∕𝐷𝐷𝐷𝐷 by 
𝐴𝐴 𝐴𝐴𝒖̃𝒖∕𝐷𝐷𝐷𝐷 in equation (Equation D4). Following Section 5 of Greatbatch (1998), this replacement is justified by 

a geostrophic argument: as long as Du*/Dt is order Rossby number smaller than f × u* then the replacement of 
𝐴𝐴 𝐴𝐴𝒖̄𝒖∕𝐷𝐷𝐷𝐷 by 𝐴𝐴 𝐴𝐴𝒖̃𝒖∕𝐷𝐷𝐷𝐷 introduces only an order-Rossby error in Equation D4. The resulting evolution equation for 

the residual mean velocity is

𝐷𝐷𝒖̃𝒖

𝐷𝐷𝐷𝐷
+ ∇ ⋅

(

𝒖𝒖
′ ⊗ 𝒖𝒖

′

)

+ 𝑓𝑓 × 𝒖̃𝒖 = −∇𝜙̄𝜙 + 𝜕𝜕𝑧𝑧𝝉𝝉𝑚𝑚 − 𝑓𝑓 ×

[

∇ ×

(

𝒖𝒖
′𝑏𝑏′ × ∇𝑏̄𝑏

|∇𝑏̄𝑏|2

)]

.� (D5)

The rightmost expression in this new equation is an eddy term that needs to be parameterized, and Zhao and 
Vallis (2008) show how it can be reduced by a series of approximations to a vertical mixing of momentum with 
viscous coefficient κ GMf 2/N 2.

One difference in the isopycnal versus z-coordinate derivations is that the z-coordinate approaches of Ferreira 
and Marshall (2006) and Zhao and Vallis (2008) rely on a geostrophic approximation (replace 𝐴𝐴 𝐴𝐴𝒖̄𝒖∕𝐷𝐷𝐷𝐷 by 𝐴𝐴 𝐴𝐴𝒖̃𝒖∕𝐷𝐷𝐷𝐷 ) 
to obtain an equation for the residual mean velocity, whereas the TWA Equation 15 for 𝐴𝐴 𝒖̂𝒖 is derived without any 
approximations (a point also emphasized by Young (2012)).

Another difference is that although the residual mean velocity, 𝐴𝐴 𝒖̃𝒖 , advects buoyancy, it is not immediately clear 
why it should also advect other tracers, though that connection can be made with further effort (Bachman 
et al., 2020; Plumb & Ferrari, 2005). In contrast, it is clear from Equation 14 that the TWA velocity 𝐴𝐴 𝒖̂𝒖 advects 
all tracers.

A final key difference is the interpretation of the residual mean velocity 𝐴𝐴 𝒖̃𝒖 in one formulation and the TWA 
velocity 𝐴𝐴 𝒖̂𝒖 in the other. One obstacle to the widespread adoption of the residual-mean formulation of Ferreira 
and Marshall (2006) and Zhao and Vallis (2008) in z-coordinates is the conflict between the two interpretations 
of the model velocity—Eulerian versus residual mean—in different parts of an ocean model. The TWA formu-
lation does not suffer from this problem: If the Reynolds average 𝐴𝐴 𝐴⋅  is loosely understood to represent a spatial 
averaging operator, as appropriate in any discussion of subgrid-scale parameterization, then the TWA velocity 𝐴𝐴 𝒖̂𝒖 
corresponds to the velocity instantaneously averaged in space over an isopycnal layer whose spatial mean loca-
tion is known. This interpretation corresponds naturally with the finite-volume approach used in many numer-
ical ocean models (e.g., Griffies et al., 2020), although the correspondence is not precise because the Reynolds 
average used here is only a formal mathematical tool whose properties are easier to manage than those of a 
spatial filter. In contrast, the residual mean velocity in the z-coordinate formulation is the sum of a Eulerian mean 
velocity plus the eddy-induced velocity (Equation D3). The eddy-induced velocity is somewhat problematic in 
that it is not in general equal to a velocity that has been averaged over any known location, although the residual 
mean velocity can be shown to approximate the TWA velocity for small-amplitude perturbations (McDougall & 
McIntosh, 2001; Tréguier et al., 1997).

Data Availability Statement
The parameter settings for the NeverWorld2 experiments used in this paper as well as Jupyter Notebooks for anal-
ysis are available on GitHub (Loose, 2023). The data and configuration for the unparameterized NeverWorld2 
reference simulations are described in Marques et al. (2022).
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