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Abstract
Large tabular icebergs calved from Antarctic ice shelves have long lifetimes (due to their
large size), during which they drift across large distances, altering ambient ocean circu-
lation, bottom-water formation, sea-ice formation, and biological primary productivity
in the icebergs’ vicinity. However, despite their importance, the current generation of
ocean circulation models usually do not represent large tabular icebergs. In this study
we develop a novel framework to model large tabular icebergs submerged in the ocean.
In this framework, tabular icebergs are represented by pressure-exerting Lagrangian el-
ements that drift in the ocean. The elements are held together and interact with each
other via bonds. A breaking of these bonds allows the model to emulate calving events
(i.e. detachment of a tabular iceberg from an ice shelf) and tabular icebergs breaking
up into smaller pieces. Idealized simulations of a calving tabular iceberg, its drift, and
its breakup demonstrate capabilities of the developed framework.

1 Introduction

Large tabular icebergs – pieces of floating ice with horizontal dimensions substan-
tially larger than the vertical dimension – calve infrequently (∼ every forty-fifty years)
from Antarctic or Greenlandic ice shelves [Jacobs et al, 1992]. Observational estimates
suggest that over the past 30 years approximately half of Antarctic ice-shelf decay is due
to iceberg calving, while the other half occurs through ice-shelf melting [Depoorter et
al, 2013; Rignot et al, 2013]. The infrequently-calved tabular icebergs (horizontal extent
larger than 5 km) account for more than 90% of the Southern Hemisphere iceberg mass
[Tournadre et al, 2016].

After calving, icebergs drift away from their origins, often becoming stuck in sea
ice, or grounding on bathymetric highs along the Antarctic coast [Lichey and Hellmer,
2001; Dowdeswell and Bamber, 2007]. Large tabular icebergs extend deep into the wa-
ter column, and have the potential to disrupt ocean circulation patterns for months or
even years after calving [Robinson et al, 2012; Stern et al, 2015]. The freshwater flux from
iceberg melt impacts ocean hydrography around the iceberg, influencing sea-ice produc-
tion and bottom-water formation [Arrigo et al, 2002; Robinson et al, 2012; Nicholls et
al, 2009; Fogwill et al, 2016]. Because of their large size, the tabular icebergs have long
lifetimes during which they drift over long distances injecting meltwater along the way
and impacting the Southern Ocean state (e.g. hydrography, sea-ice conditions, etc.) far
away from their calving origins [Stern et al, 2016; Rackow et al, 2017]. Meltwater injec-
tion (and the accompanying upwelling) from icebergs can also influence biological pro-
ductivity by bringing nutrients to the surface ocean or changing sea-ice conditions [Ar-
rigo et al, 2002; Vernet et al, 2012; Biddle et al, 2015]. The increased productivity as-
sociated with free-floating tabular icebergs has been linked with local increases in ocean
carbon uptake, potentially large enough to be a significant fraction of the Southern Ocean
carbon sequestration [Smith et al, 2007].

In recent years, there has been an increased interest in iceberg drift and decay. This
surge of interest has been driven by (i) the need to understand polar freshwater cycles
in order to create realistic climate change and sea level projections [Silva et al, 2006; Shep-
herd and Wingham, 2007; Rignot et al, 2013]; and (ii) the increased navigation and ex-
ploration activities in high-latitude iceberg-filled waters in the Arctic [Pizzolato et al,
2012; Unger, 2014; Henderson and Loe, 2016]. The increased interest in icebergs has led
to the development of numerical models of iceberg drift and decay [Mountain, 1980; Bigg
et al, 1997; Gladstone et al, 2001; Kubat et al, 2005], some of which have been included
in global General Circulation Models [Martin and Adcroft, 2010; Marsh et al, 2015]. These
iceberg drift models treat icebergs as levitating Lagrangian point particles, which are ad-
vected by the flow, and melt according to parameterizations for iceberg melt. Here the
term levitating refers to the fact the point-particle icebergs do not apply pressure to the
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ocean surface, and therefore do not displace water. Since icebergs are treated as point
particles, iceberg drift models are mostly suitable for modeling icebergs smaller than an
ocean grid cell. Consequently, these models have mostly been used to represent icebergs
smaller than 3.5 km on a global scale [Jongma et al, 2009; Martin and Adcroft, 2010;
Marsh et al, 2015].

Point-particle iceberg drift models are less suitable for modeling larger tabular ice-
bergs, where the size and structure of the iceberg may be an important feature in de-
termining their drift and decay [Stern et al, 2016]. They also are not suitable for study-
ing the local effects that icebergs have on the surrounding ocean, or the small-scale pro-
cesses that influence iceberg melt and decay [Wagner et al, 2014; Stern et al, 2015]. For
these reasons, tabular icebergs are currently not represented in the iceberg drift mod-
els used as components of climate models, despite accounting for the vast majority of
the total Southern Hemisphere iceberg mass [Tournadre et al, 2016].

Some efforts have been made to modify levitating point-particle icebergs models
so that they can be used to represent tabular icebergs [Lichey and Hellmer, 2001; Hunke,
2011; Rackow et al, 2017]. A promising approach involves integrating ocean properties
over the implied iceberg surface area [Rackow et al, 2017] or implied iceberg depth [Hunke,
2011; Merino et al, 2016] when calculating the iceberg forcing (or applying iceberg melt
fluxes), to account for the horizontal and vertical extent of the tabular iceberg. How-
ever, this approach does not account for influence that a submerged iceberg can have on
the surrounding ocean due to its physical presence in the water column. Martin and Ad-
croft [2010] partially addressed this by allowing their icebergs to apply pressure to the
top-most layer of their layered ocean model. This approach effectively allowed the ice-
bergs to displace water, therefore making the point-particle icebergs into ‘non-levitating’
(pressure-exerting) icebergs. A limitation of the Martin and Adcroft [2010] approach is
that the maximum iceberg size is constrained to be smaller than one ocean grid cell, which
means that tabular icebergs can not be represented [Stern et al, 2016]. While it may be
possible to combine these two approaches, at this stage more work is needed before point-
particle icebergs can be used to represent tabular icebergs in climate models. Further-
more, at smaller scales and for regional modeling, it is clear that modeling tabular ice-
bergs as levitating point particle is not adequate to resolve the complex interactions be-
tween tabular icebergs and the surrounding ocean.

The goal of this study is to develop a new framework to model all kinds of icebergs,
where tabular icebergs are explicitly resolved in the ocean. Our new representation of
icebergs aims to include the following key properties: (i) icebergs should be able to travel
large distances within the ocean, (ii) icebergs should melt and decay as they drift in the
ocean, (iii) icebergs should behave as if they have finite extent and should be able to have
any shape and size, (iv) icebergs should be submerged in the ocean so they are no longer
levitating, and (v) tabular icebergs should be able to break away from ice shelves or break
into smaller pieces. Properties (i) and (ii) are common to point-particle icebergs mod-
els, while properties (iii), (iv) and (v) are new to the framework developed in this study.
A further requirement of the new framework is that the model should run sufficiently
fast to be included in general circulation models used for climate.

In order to allow icebergs to travel large distances, we model the icebergs in a La-
grangian framework (as in the point particle iceberg drift models described above). How-
ever, in our model icebergs are no longer treated as point particles that interact with the
ocean at a single location. Instead icebergs are given physical structure, so that they in-
teract with the ocean across multiple ocean grid cells, depress the ocean surface over a
wide area, and can interact with other icebergs (Figure 1). This is done by assigning a
finite surface area and shape to the Lagrangian elements, which allows the elements to
behave as if they have a finite extent. The finite extent of an element is transmitted by
the ocean by distributing the element’s weight, surface area and melt fluxes over mul-
tiple ocean grid cells in a way which is consistent with the shape of the ice element. Finite-
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extent elements interact with each other via repulsive forces which are applied when the
boundaries of the elements overlap. This prevents the icebergs from piling up on top of
one another, which has been an issue near coastlines in previous point-particle icebergs
models.

Large tabular icebergs can then be represented by ‘bonding’ together multiple ice
elements into larger structures using numerical bonds (Figure 1). The numerical bonds
hold the ice elements together and allow a collection of elements to move as a unit. This
allows tabular icebergs to drift in the ocean when forced by ocean currents and wind.
An advantage of representing tabular icebergs using numerical bonds is that by break-
ing the bonds, we can simulate iceberg calving (e.g.: Figure 2), or the response to an ice-
berg fracturing into multiple smaller pieces (see movies S1 and S2 in the Supporting In-
formation).

The manuscript is organized as follows. Section 2 gives a description of the key as-
pects of the model developed in this study. Since this model is a new approach to mod-
eling icebergs, we present technical aspects of the model. In Sections 3 and 4, we demon-
strate the capabilities of the model by simulating a tabular iceberg detaching from an
idealized ice shelf. In a further simulation we break some numerical bonds within the
tabular iceberg to demonstrate an iceberg splitting in two.

2 Model description

The Kinematic Iceberg Dynamics model (KID) is a Lagrangian particle-based model
in that the objects of the model are Lagrangian elements [Cundall and Strack, 1979; Lud-
ing, 2008; Radjai and Dubois, 2017]. Each element represents a column of ice that is float-
ing in the ocean, and has a position, velocity, mass, and a set of dimensions, which can
evolve in time. The motion of each element is determined by a momentum equation which
is solved in the (Lagrangian) reference frame of the element. The elements experience
oceanic and atmospheric forces, which are either prescribed, or computed by coupling
the iceberg model to an ocean/atmosphere model. The ice elements also interact with
one another via attractive and repulsive interactive forces, and can be bonded together
to form larger structures. The angular momentum of the elements is not modeled ex-
plicitly; instead rotational motion of larger structures emerge as a consequence of bond
orientation and collective motion.

In different contexts, the ice elements can be thought to represent individual ice-
bergs, sea-ice flows, or, when the elements are bonded together, they can represent larger
structures such as tabular icebergs or ice shelves.

The KID model is developed on the code base of an existing iceberg drift model
[Martin and Adcroft, 2010; Stern et al, 2016]. When run with a different set of runtime
flags, the model runs as a traditional point-particle iceberg drift model.

2.1 Equations of motion

The elements drift in the ocean in response to atmosphere, ocean and sea-ice drag
forces, as well as the Coriolis force, a wave radiation force, a force due to the sea sur-
face slope and interactive forces with other elements. The momentum equation for each
element is given by

M
D~u

Dt
= ~FA + ~FW + ~FR + ~FC + ~FSS + ~FSI + ~FIA, (1)

where D
Dt is the total (Lagrangian) derivative, M is the mass of the element, ~u is the ve-

locity of the element, and the terms on the right hand side give the forces on the element
due to air drag (~FA), water drag (~FW ), sea-ice drag (~FSI), Coriolis force (~FC), wave ra-
diation force (~FR), sea surface slope (~FSS), and interactions with other elements (~FIA).
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When ice elements move alone (without interactions with other elements), they can
be thought of as representing individual (or clusters of) small icebergs, and follow the
same equations described in the iceberg drift model of Martin and Adcroft [2010] (based
on the equations outlined in Bigg et al [1997] and Gladstone et al [2001]). A description
of these forces is provided in Appendix A.

In addition to the external forces, the ice elements experience interactive forces due
to the presence of other elements. Two types of interactive forces are included between
elements. The first force is a repulsive force which is applied to elements to prevent them
from overlapping the boundaries of the neighboring elements. The second interactive force
is a force due to numerical ‘bonds’, and is only applied if two elements are labelled as
‘bonded’. When two elements are bonded, each element feels an attractive force that pre-
vents the elements from moving too far apart from one another. The details of the in-
teractive forces are provided in below.

2.2 Interactive Forces

The interactive forces in the model are used to (i) prevent the ice elements from
overlapping and (ii) to connect multiple ice elements together so that the collection of
elements moves as a rigid body. Modeling the collisions and movements of rigid objects
precisely, requires very small time steps and precise collision detection algorithms, which
are very computationally expensive. Models using these methods are typically only run
for a few days or even a few seconds, and are used to study rapid processes like crack
formation or ridging [Hopkins, 2004; Bassis and Jacobs, 2013; Rabatel et al, 2015]). The
tabular iceberg framework presented in this study is developed in order to be used in gen-
eral circulation models used for multi-year simulations. In order to gain the required com-
putational efficiency, we relax the requirement that icebergs must be perfectly rigid and
that ice elements can not overlap. Instead, we model the interactive forces between ice
elements using damped elastic forces, which can be calculated more efficiently.

The total interactive force on an element is calculated by adding together the in-
teractions with all other elements, such that the interactive force on element i, (~FIA)i
is given by:

(~FIA)i = Σj 6=i(~FIA)ij , (2)

where (~FIA)ij is the force on element i by element j. Both bonded and repulsive inter-
actions are modeled using elastic stresses with frictional damping. The elastic compo-
nent of the force is a function of the distance between the two elements, while the fric-
tional damping force depends on the relative velocity of the two elements.

To describe the forces between two elements, we begin by introducing some nota-
tion. Let ~xi, ~xj be the positions of elements i and j. The distance between elements i
and j is

dij = |~xi − ~xj |. (3)

In calculations of the interactive forces between elements, the elements are assumed to
be circular. We define the interaction radius of an element by

Ri =

√
Ai
π
, (4)

where Ai is the planar surface area of element i. Using this, we define the critical-interactive-
length scale,

Lij = Ri +Rj , (5)

which governs interactions between elements i and j. Repulsive forces are only applied
when dij<Lij , while for dij>Lij attractive bonded forces are applied when a bond ex-
ists between element i and j (see diagram in Figure 3). The interactive forces are de-
signed such that (in the absence of other external forces) bonded particles will settle in
an equilibrium position where elements are separated by Lij .
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To aid in notation, we define a bond matrix Bij such that Bij = 1 if elements i
and j are bonded together and Bij = 0 otherwise. Using this notation, the interactive

force (~FIA)ij on an element i by an element j is given by

(~FIA)ij =

{
(~Fe)ij + (~Fd)ij if (dij ≤ Lij) or (dij > Lij and Bij = 1 )
0 if dij > Lij and Bij = 0 .

(6)

( ~Fe)ij and ( ~Fd)ij are the elastic and frictional damping components of the interactive

force between elements i and j. The elastic force ( ~Fe)ij between elements is given by

( ~Fe)ij = −κe
(
dij − Lij

)
Mij~rij , (7)

where ~rij =
( ~xi− ~xj)
| ~xi− ~xj | is the directional unit vector between the position of element i and

j, κe is the spring constant, and Mij is the minimum of the masses of elements i and j.

The interactive forces obey Newton’s 3rd Law (i.e.: (~FIA)ij = −(~FIA)ji). The mini-
mum mass, Mij , is preferred to the average mass, since this means that for two bonded
elements a fixed distance apart, the acceleration due to elastic forces is bounded, even
when the mass of one of the elements approaches zero.

The frictional damping force acts to dampen the relative motion of the two par-
ticles. If P~rij is the projection matrix that projects onto ~rij , then the frictional damp-
ing force is given by

( ~Fd)ij = −Mijcr||P~rij · (~ui − ~uj) (8)

Here cr|| is the drag coefficient damping motion parallel to ~rij . We set cr|| = 2
√
κe, so

that the elastic force parallel to ~rij is critically damped. The damping force is implemented
using an implicit time stepping scheme, to avoid stability issues for very small elements
(details found in Appendix B).

Figure 4 illustrates the effectiveness of the repulsive forces in an uncoupled (ice-
only) simulation. In this simulation ice elements are forced westward into a bay, and even-
tually come to rest in the bay with a small amount of overlap between elements. The
amount of overlap between elements in the final state of the simulation depends on the
magnitude of the spring constant, κe, with larger spring constants reducing the amount
of overlap. Increasing the spring constant also makes the system numerically stiff so that
smaller time steps are required to prevent numerical instabilities (the system is stable
for time steps satisfying dt2 < 4/κe). A value of κe = 10−5 s−2 is chosen that is large
enough to prevent too much overlap between elements for typical ocean forcings (e.g: Fig-
ure 4), and small enough to allow for time steps up to 10 minutes (smaller time steps
are used when the model is coupled to an ocean model).

Figure 5 illustrates the effectiveness of the numerical bonds in simulations of small
icebergs (individual un-bonded elements) and large icebergs (constructed from many ice
elements bonded together) forced to drift towards a convex coast line. When the tab-
ular icebergs arrive at the coast, they bump into the coastline and begin to rotate, in-
fluencing the paths of the other icebergs. This example illustrates an advantage of us-
ing small elements bonded together to represent large-scale structure - i.e. rotational mo-
tion of large structures can be simulated without explicitly accounting for the angular
momentum of the elements (as discussed in Jakobsen [2001]). Movies of these uncoupled
simulations are found in S3 and S4 in the Supporting Information.

2.3 Initializing element geometry and packing

For purposes of initialization, we assume that elements have surface areas which
are shaped as equally-sized regular hexagons (note that the elements are assumed to be
circular for propose of interactions). When packing elements together, the hexagonal el-
ements are initially arranged in a staggered lattice, with each element bonded to the ad-
jacent elements (Figures 1 and 6a). In this arrangement, each element (away from the
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edges) is bonded to six other elements. The bonds between elements form a pattern of
equilateral triangles, which gives rigidity to the larger structure. The circular shape of
elements (used for interactions) is inscribed within the hexagonal shape used for pack-
ing (Figure 6a). The centers of adjacent elements are initially separated by a distance
dij = Lij = 2Ap, where Ap is the length of the apothems of the hexagons.

Some experiments were also performed using rectangular elements, arranged in a
regular (non-staggered) lattice. In this case, each element forms four bonds with adja-
cent elements. However, the resultant structures were found to be much less rigid and
tended to collapse when sufficient forces were applied. For this reason, we only show the
results using hexagonal elements.

2.4 Ice-ocean coupling

The KID model is coupled to the ocean model via a two-way synchronous coupling,
meaning that ocean-model fields are passed to the iceberg model, and iceberg model fields
are passed back to the ocean model at every time step. Passing fields between the two
models involves interpolating the fields from the ocean model’s Eulerian grid onto the
iceberg model’s ‘Lagrangian grid’ (i.e.: onto the ice elements), and aggregating fields from
the Lagrangian elements onto the ocean-model’s Eulerian grid.

The coupling from the ocean model to the iceberg model is straight forward: at ev-
ery time step the top-of-ocean temperature, salinity, velocity and sea-ice concentration
are passed from the ocean model to the iceberg model, to be used in the momentum and
thermodynamic equations of the ice elements. Since tabular icebergs are explicitly re-
solved in the ocean, it is sufficient for each element to interact with only the upper-most
ocean layer. This layer could be hundreds of meters below mean-global sea level if a large
iceberg was positioned above it. This means that there is no need to manually embed
icebergs into the ocean by integrating ocean fields over the icebergs’ thickness, as sug-
gested in Merino et al [2016], or to integrate ocean fields over an implied iceberg surface
area, as suggested in Rackow et al [2017]. Within the iceberg model, the ocean model
fields are interpolated onto the Lagrangian grid using a bilinear interpolation scheme.

The iceberg model influences the ocean by: (i) applying a pressure to the ocean sur-
face, (ii) affecting the upper ocean by applying a no-slip boundary condition and fric-
tional velocity beneath the ice, and (iii) imposing heat, salt and mass fluxes on the ocean,
associated with ice melting. Six fields are passed from the iceberg model to the ocean
model: ice mass, ice area, frictional velocity, and heat, salt and mass fluxes. Fields in
the iceberg model are aggregated from the Lagrangian elements to the Eulerian ocean
grid before they are passed to the ocean model.

The aggregation of the iceberg-model fields onto the ocean grid is done in a way
that is consistent with the shape of the elements in the iceberg model (see Section 2.3).
Fields are ‘spread’ to the ocean model grid by exactly calculating what fraction of an
element’s surface area lies in a particular grid box, and dividing the field in proportion
to this fraction. As an example, consider a hexagonal element in the iceberg model, which
is positioned such that it intersects four ocean grid cells (Figure 6b). In this situation,
the element’s mass (for example) is divided between these four ocean cells in proportion
to the overlap area between the hexagonal element and the grid cell (this fraction is shown
by the colors in Figure 6b). An advantage of this approach is that there are no jumps
in pressure as an element moves from one grid cell to another, which could trigger ar-
tificial tsunamis within the ocean model.

The numerical calculation of the intersection between hexagons and the ocean grid
is simplified by dividing the hexagon into 6 equilateral triangles. This method allows for
the intersection to be found even when the hexagon is not aligned with the grid.
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The aggregation scheme is coded with the restriction that an element’s area can
only intersect a maximum of four ocean grid cells at a time. A consequence of this is that
this sets a limit on the maximum size of elements that can be represented using this model,
i.e., the longest horizontal dimension of an ice element must be smaller than the ocean
grid spacing. Larger ice structures are constructed by bonding together smaller elements.

2.5 Melting parameterization

The ice elements change their mass and size due to melting, which also affects the
surrounding ocean by changing its heat and salt content. In the model, these processes
are parametrized in several ways. In this section we describe the melt parametrization
for bonded, unbonded and partially bonded elements.

As mentioned above, ice elements which do not interact with other elements are
modeled identically to the point particle icebergs described in Martin and Adcroft [2010].
These elements melt according to three semi-empirical parametrization for melt com-
monly used in previous iceberg studies [Gladstone et al, 2001; Martin and Adcroft, 2010].
Three types of iceberg melting are distinguished: basal melt, Mb, melt due to wave ero-
sion, Me and melt due to buoyant convection, Mv. The melt rates Me and Mv are ap-
plied to the sides of the ice element, while Mb is applied at the ice element base. The
details of Mb. Mv and Me are given in Appendix A.

When multiple elements are bonded together to form larger structures, it is no longer
appropriate to use the melt parameterizations developed for individual point-particle ice-
bergs. An element which is completely surrounded by other elements, is meant to rep-
resent a column of ice in the middle of a large structure, and hence will not experience
melt at its sides due to wave erosion or buoyant convection. Also, the iceberg basal melt
rate Mb described above is based on boundary layer theory of flow past a finite plate,
and is only appropriate for basal surfaces where the distance from the leading edge is
sufficiently small [Eckert, 1950; Weeks and Campbell, 1973]. For an element in the in-
terior of a large structure, the distance from the edge of the structure is large, and so
using Mb for the basal melt is not appropriate. Instead, the basal melt Ms is determined
using the three equation model for basal melt, which is a typical melting parametriza-
tion used beneath ice shelves [Holland and Jenkins, 1999], and has been used to parametrize
melt rates beneath large icebergs in previous studies [Silva et al, 2006; Rackow et al, 2017].

When using both individual elements and bonded elements in the same simulation,
we determine which melt rate parameterizations to use based on the amount of bonds
that each element has. An element in the center of a large structure has the maximum
number of bonds, while an un-bonded element has no bonds. If an element can have max-
imum number of bonds Nmax, and the number bonds that an element has is Nb, then
the fraction of the element’s perimeter surrounded by ocean (rather than by other ice
elements) is estimated as ε = 1− Nb

Nmax
. In this case, the element experiences side melt

and bottom melt

Mside = ε(Mv +Me) (9)

and
Mbottom = εMb + (1− ε)Ms, (10)

respectively. In this way, elements with no bonds (i.e.: ε = 1), melt like point-particle
icebergs; elements at the center of large structures (i.e.: ε = 0) melt like ice shelves; and
elements at the sides of large structures have a combination of iceberg side and basal melt,
and ice-shelf melt.

A similar procedure is used to allow elements at the edge of a large structure to
experience partial side drag and wave radiation forces, while for interior elements the side
drag force is zero. Details are provided in Appendix A.
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2.6 Algorithms and computational efficiency

Including interactions between elements leads to an increase in the computational
complexity of the model. In this subsection we comment on some of the algorithmic pro-
cedures that have been used to increase the computational efficiency.

2.6.1 Interactions and Bonds

At every time step, we calculate the force on each element due to interactions with
every other element. This involves order N2 operations (for N elements), which becomes
computationally expensive as N grows large. We reduce the number of computations us-
ing a space-partitioning contact search where we leverage the fact that each element only
has repulsive interactions with elements that are less than one ocean grid cell away, and
each element only has bonded interactions with a small number of other elements.

The computation reduction is achieved by storing the element data in an efficient
way that eliminates a search through all element pairs to check if they are close to one
another or are bonded with one another. The data storage system is organized as fol-
lows: pointers to the memory structures containing each element are stored in linked list
data structures, which allow elements to be added and removed from the lists easily with-
out restructuring the entire list. Instead of using one list for all the elements on a pro-
cessor (as was done in the original code [Martin and Adcroft, 2010]), we use a separate
linked list for each ocean grid cell. When an element moves between ocean grid cells, it
is removed from its original list and added to the list corresponding to its new ocean grid
cell. Since the area of elements has to be smaller than the area of an ocean grid cell, the
critical interaction length scale (equation 5) is less than the size of a grid cell. This means
that elements only experience repulsive forces with other elements in the same ocean grid
cell, or in one of the 8 adjacent cells. At each time step and for each element i, the code
traverses the linked lists of the 9 surrounding grid cells, and applies a repulsive force if
dij < Lij (whether the elements are bonded or not). Limiting the possible repulsive
interactions to elements in these 9 linked lists substantially reduces the computational
time needed to calculate the total interactive forces.

The attractive forces are computed in the following way. Each bond is assigned two
pieces of memory (one for each of the two elements involved in the bond). Each ice el-
ement contains a linked list of each of its bonds (typically up to six bonds per element).
At every time step, the code traverses the lists of bonded elements, and adds an attrac-
tive bonded force corresponding to these bonds if dij > Lij (the repulsive bonded force
to be applied when dij < Lij is already accounted for by the procedure outlined in the
previous paragraph). Having a list of bonds stored with each element reduces the com-
putations needed for bonded interactions from order N2 to order N. Computing attrac-
tive forces separately from the repulsive forces allows us to avoid checking whether two
elements are bonded, which further increases the computational efficiency.

2.6.2 Parallelization and halos

The iceberg model runs on multiple processors in parallel (using the same grid de-
composition as the ocean model). When elements move from an ocean cell on one pro-
cessor to an ocean cell on a second processor, the memory has to be passed from one pro-
cessor to the next, added to and removed from the appropriate lists, and the memory
has to be allocated and deallocated correctly. Element interactions across the edge of
processors are handled using computational halos. A computational halo is a copy of the
edge of one processor which is appended to the edge of a second processor, so that the
first processor can interact with the second processor during a time step. Before each
time step, elements at the edges of each processor are copied onto the halos of adjacent
processors so that they can be used in calculating the interactive forces. After each time
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step, these halos are emptied, and the process is repeated. These halo updates are one
of the most computationally expensive parts of the iceberg model. Details of how the
bonds are broken and reconnected across processor boundaries are provided in Appendix C.

2.6.3 Time stepping

The elements in the iceberg model are advected using a semi-implicit velocity Ver-
let time-stepping scheme. The velocity Verlet time stepping scheme is commonly used
in discrete element models in video games because it is computational efficient and has
desirable stability properties [Jakobsen, 2001]. This time stepping scheme was preferred
to the Runge-Kutta 4, which was used in the iceberg model of Martin and Adcroft [2010]
since the Verlet time stepping only requires one calculation of the interactive forces once
per time step (while the Runge-Kutta scheme requires the interactive forces to be cal-
culated four times). Since the calculation of the interactive forces is one of the most com-
putationally expensive part of the algorithm, the Verlet scheme leads to a significant in-
crease in the computational efficiency of the model. The Verlet scheme used in the model
contains a modification of the original (fully explicit) velocity Verlet time stepping scheme
in that damping terms are treated implicitly (which increases the numerical stability).
The details of this adapted time stepping schemed are outlined in Appendix B.

3 Experiment Setup

The introduction of Lagrangian elements, numerical bonds and interpolation schemes
between the Eulerian and Lagrangian grids (discussed in Section 2) means that we now
have the tools to model large tabular icebergs submerged in the ocean. We demonstrate
this capability by simulating a tabular iceberg drifting away from an ice shelf in an ide-
alized setting.

3.1 Model configuration

We use the geometric setup of the Marine Ice Ocean Modeling Inter-comparison
Project (MISOMIP) [Asay-Davis et al, 2016]. The configuration consists of an idealized
ice shelf in a rectangular domain. The domain is Lx = 80 km wide and Ly = 480 km
long, and contains an ice shelf which is grounded on the south side of the domain and
has an ice front at y=650 km. The ice thickness and bottom topography of this setup
are shown in Figure 7a and 7c respectively, with the grounding line position drawn in
for reference. The configuration is the same as that of the Ocean0 setup in the MISOMIP,
with a few minor changes to the ice-shelf geometry (see the Supporting Information for
details).

3.2 Initializing Lagrangian elements

The idealized ice shelf is constructed out of Lagrangian ice elements. Ice elements
are hexagonal and are arranged in a regular staggered lattice (as discussed in Section
2.3). The sides of the hexagons are initialized with length S = 0.98 km. Gaps along
the boundaries of the domain are filled in using smaller elements so that the total ice-
shelf area is preserved. These smaller elements are held stationary throughout the sim-
ulations, and are not bonded to other elements.

The initial masses of the ice elements are calculated from the gridded ice thickness
field using bilinear interpolation, assuming a constant ice density ρ = 918 kg/m3. When
the model runs, the mass of elements is aggregated from the Lagrangian elements onto
the Eulerian ocean grid (see Section 2.3), and is used to find the surface pressure and
ice draft (part of an ice column submerged into the ocean). The ice draft calculated with-
out the aggregation (treating elements as point masses) contains large resolution-dependent
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grid artifacts (Figures 7b). These grid artifacts are much reduced after the mass-spreading
aggregation is used (Figure 7c).

3.3 Ocean model setup

The KID model is coupled to the MOM6 ocean model [Hallberg et al, 2013]. The
ocean model configuration uses a vertical coordinate system which is a hybrid between
a sigma-level and a z-level coordinate. In particular, model layers deform underneath the
ice shelf as they would in a sigma-coordinate model, but collapse to zero thickness when
they intersect with bottom topography, as they would in a z-level model. The coordi-
nate system was achieved using the ALE regridding-remapping scheme [White et al, 2009].
The model uses a horizontal resolution of 2 km, and 72 vertical layers. All simulations
were repeated using the ocean model configured in isopycnal mode (results were simi-
lar and are not presented here).

Ocean parameters are as specified in the MISOMIP configuration [Asay-Davis et
al, 2016], and are shown in Table 1. The simulation is initially at rest, with horizontally
uniform initial ocean temperature and salinity profiles which vary linearly between spec-
ified surface and bottom values: Ttop = −1.9◦ C, Tbottom = 1.0◦ C, Stop = 33.8
psu, Sbottom = 34.7 psu. The maximum ocean depth is Hocean = 720 m. A sponge
layer is used on the northern boundary of the domain, which relaxes the temperature
and salinity back to the initial temperature and salinity profile. The sponge layer has
length Lsponge = 10 km, and has a relaxation time scale parameter Tsponge = 0.1 days
at the northern boundary. The inverse of the relaxation time scale parameter drops lin-
early to zero over the length of the sponge layer. Melting is set to zero for ocean cells
where the ocean column thickness is less than 10m to avoid using more energy to melt
ice than is present in the water column.

3.4 Spinup period

The model is spun up for 5 years with all ice elements being fixed. During spinup,
the injection of buoyant meltwater at the base of the ice shelf drives a clockwise circu-
lation within the domain (not shown). The circulation compares well with an identical
static ice-shelf experiment run using an Eulerian ice-shelf model [Goldberg et al, 2012].
A detailed comparison of the Lagrangian and Eulerian ice-shelf models will be presented
in a separate study, and is not shown here.

3.5 Iceberg calving

After spinup, a large tabular iceberg detaches from the ice shelf, and is allowed to
drift into the open ocean. Since the focus of this study is on developing a framework for
modeling tabular icebergs, we bypass the question of how to prescribe a physical calv-
ing law [Benn et all, 2007; Alley et al, 2008; Levermann et al, 2012; Bassis and Jacobs,
2013] by manually breaking off a semi-circular iceberg. This is achieved by allowing all
ice elements initially within a 14.4 km radius of the center of the ice front to move freely
while the other ice elements continue to be held stationary. Ice elements less than 12 km
from the center of the ice front, are bonded together to form a semi-circular tabular ice-
berg. A ring of elements whose distance, d, from the ice front center obeys 12 km ≤ d ≤
14.4 km, are allowed to move freely, but have all their bonds removed. Elements in this
half annulus represent fragments of the ice shelf which calve into small pieces during the
calving event.

After the spinup period, a wind stress ~τ =< τx, τy >=< 0.05, 0.05 > N
m2 is ap-

plied to drive the tabular iceberg away from the ice-shelf cavity. This is referred to as
the Control simulation. Perturbation experiments were also performed using other wind
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stress values. Further perturbation experiments were performed by breaking some nu-
merical bonds in order to break the tabular iceberg into smaller pieces.

4 Model Results

After spinup of the Control simulation, the elements near the ice-shelf front are al-
lowed to move freely, and the icebergs begin to drift away from the ice shelf while fully
submerged in the ocean (see Figures 2 and 8, and the movie S1 in the Supporting In-
formation). At this point, the iceberg model and the ocean model are fully coupled: changes
to the iceberg position alter the top-of-ocean pressure and dynamical boundary condi-
tion; and changes to the iceberg melt rates alter the top-of-ocean temperature, salt and
mass fluxes. These changing ocean boundary conditions influence the ocean by trigger-
ing gravity waves, driving surface mixing, and affecting the ocean stratification. The evolv-
ing ocean velocities, temperatures and salinities feedback onto the ice elements by chang-
ing the force balance on the ice elements (leading to changes in the elements’ position),
and altering the melt rates. The various feedbacks within this coupled system offer many
opportunities for the model to become unstable. The fact that the model is stable and
that we are able to simulate tabular icebergs moving in the ocean without the model crash-
ing and introducing artificial effects like tsunamis, is a non-trivial technical milestone.

4.1 Iceberg motion

In the Control simulation, the semi-circular tabular iceberg moves as a cohesive unit
due to the presence of the numerical bonds, while the smaller ice fragments quickly dis-
perse (Figure 2). The tabular iceberg drifts towards the north east, driven by the wind
and steered by the Coriolis force. As the tabular iceberg drifts northwards, it rotates in
a counterclockwise direction (the direction of the Coriolis force in the Southern Hemi-
sphere), and makes contact with the eastern boundary of the domain, before continu-
ing northward. Most of the smaller ice fragments also move to the northeast, but not
as a cohesive unit. Some of these element also move to other parts of the domain.

The direction (and speed) of the iceberg drift is largely determined by the wind speed
and direction. Perturbation experiments using different wind stresses show that for suf-
ficiently large winds, the tabular iceberg drifts to the north east when τx > 0, and to
the north west when τx < 0 (not shown). For a purely zonal wind stress with |τx| ≤
0.01 N

m2 , the iceberg does not move away from the ice shelf. When the wind is purely off-

shore (τx = 0.0 N
m2 ), a meridional wind stress τy ≥ 0.05 N

m2 is needed to move the tab-
ular iceberg away from the ice shelf. While this result is partly an artifact of the cho-
sen shape of the calving iceberg, it is also consistent with Bassis and Jacobs [2013] who
noted that calving is a two step process consisting of (i) ice-shelf rifting that forms an
iceberg and (ii) iceberg detachment. The results here suggest that strong (cross-shore)
winds may be required to drive large tabular icebergs away from their source ice shelves.

4.2 Breaking bonds

The numerical bonds in the iceberg model enable the tabular iceberg to retain its
shape. This is demonstrated by comparing the Control simulation to an identical sim-
ulation where all numerical bonds have been removed (Figure 9, movie S5). In the bond-
free simulation, the ice elements disperse and the calved iceberg quickly loses its orig-
inal structure. This bond-free simulation does not adequately represent the tabular ice-
berg, since a tabular iceberg needs to be able to move long distances through the ocean
as a cohesive unit. This result motivates the inclusion of bonds in the iceberg model, even
though they are more computationally expensive than traditional point-iceberg models.

By breaking some (but not all) numerical bonds, we can simulate breaking of tab-
ular icebergs into smaller pieces. Figure 10 shows the results of an experiment which is
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identical to the Control experiment, except that all numerical bonds that intersect the
line x = Lx

2 have also been severed. This effectively cuts the large tabular iceberg into
two halves. As the icebergs drift northwards, the two halves of the tabular iceberg each
move as a cohesive unit, but they are able to move independently of one other (Figure
10, movie S2). The two large fragments initially move together, but begin to separate
after a few days. The breaking of a tabular iceberg has the additional effect of increas-
ing the total surface area of ice exposed to the ocean, thus increasing the total decay rate
of the icebergs.

4.3 Ocean response

Since the tabular iceberg is submerged in the ocean, the iceberg calving and drift
affects the surrounding ocean. In the Control simulation, as the tabular iceberg drifts
northward a warming of the surface waters is observed around the tabular iceberg, with
the largest warming occurring at the ice-shelf front and along the tabular iceberg’s rounded
edge (Figure 2). This surface warming is caused by upwelling of the warmer waters from
beneath the ice shelf and iceberg. As the iceberg drifts away from the ice shelf, these warmer
waters remain at the surface, mapping out the iceberg wake (Figure 2). The motion of
the tabular iceberg disturbs the ocean surface, which affects ocean velocities through out
the water column (Figure 11). The elevated shears around the tabular iceberg lead to
increased vertical mixing in the vicinity of the iceberg, which alters the stratification of
the water column (Figure 8), warming the upper ocean. The signature of upwelling wa-
ter in the wake of a drifting tabular iceberg bears some similarity to satellite observa-
tions of streaks of increased ocean color in the wake of tabular iceberg in the Southern
Ocean [Duprat et al, 2016], suggesting that the increased productivity around icebergs
may be driven by upwelling water delivering nutrients to the surface.

The surface warming and increased ocean mixing observed around the iceberg are
in contrast to the cooling of the ocean surface and increased stratification reported around
melting icebergs in previous modeling studies using point-particle icebergs [Martin and
Adcroft, 2010; Stern et al, 2016; Marsh et al, 2015]. This difference results from the fact
that in our model the iceberg is submerged in the ocean and extends across an area cov-
ering multiple grid cells. This allows the ocean circulation below the iceberg to be re-
solved, and in this case, for upwelling to occur which warms the ocean surface. In con-
trast, levitating point-particle iceberg models used in global climate simulation do not
resolve the flow beneath the icebergs. In these models, the icebergs only influence the
ocean via surface freshwater fluxes (applied at a single point), which cool and stratify
the ocean mixed layer. In general the sea surface temperature response to the presence
of an iceberg submerged in the water column will likely depend on multiple factors such
as the ambient stratification around the iceberg, the amount of melting beneath the ice-
berg, the amount of entrainment into the iceberg meltwater plume, the geometry of the
iceberg, local winds, topography and ocean currents, and the relative motion of the ice-
berg and the ocean. Further work is required to determine whether the presence of tab-
ular icebergs in the Southern Ocean leads to a net warming or cooling of the ocean sur-
face. This result could have important implications, since the warming/cooling of sur-
face waters around icebergs can lead to large-scale changes to sea-ice concentrations and
dense-water production [Stern et al, 2016].

4.4 Iceberg melt rates

The increased subsurface velocities and temperatures cause elevated melt rates at
the base of the ice shelf and iceberg (Figure 12). The largest melt rates are observed at
the newly calved ice-shelf front and on the rounded side of the tabular iceberg (Figure
12a), where the iceberg calving has created steep ice cliffs. These sharp ice fronts allow
for large ocean currents (Figure 12c), which drive the elevated melt rates. The elevated
melt rates act to smooth out the ice front over time, making the ice cliff less steep. While
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this is likely a real phenomenon that could be observed in nature, we should be wary of
the modeled velocities at the ice cliffs, since large changes in ice thicknesses are associ-
ated with numerical pressure gradient errors which can drive spurious motion.

The large melt rates along the ice edges are also partly driven by the fact that dif-
ferent melt parametrization are used in the interior and edges of large ice structures (see
Section 2.5). Figure 13 shows the melt rates computed with (a) the 3-equation-model
parametrization [Holland and Jenkins, 1999], (b) point-particle-iceberg-melt parametriza-
tion [Gladstone et al, 2001], and (c) the mixed-melt-rate parametrization (introduced
in Section 2.5). The 3-equation-model melt rates (Figure 13a) are less than a third of
the size of those calculated using the point-particle-iceberg-melt parametrization (Fig-
ure 13b). The point-particle-iceberg-melt is dominated by the wave erosion term, which
is an order of magnitude larger than the basal melt. When the mixed-melt-rate parametriza-
tion is used (Figure 13c), the very high melt rates are only observed at the edges of ice
structures.

5 Summary

In this study we present a novel framework for simulating tabular icebergs in ocean
models, and representing icebergs with finite extent and structure submerged in the ocean.
In this framework, large tabular icebergs are represented by collections of Lagrangian
elements that are held together by numerical bonds. Each ice element is assigned a sur-
face area and shape, and can interact with the ocean and other elements in a way which
is consistent with the shape of the element. Such a representation allows tabular icebergs
to interact with the ocean across a wide area (larger than a grid cell), and individual ice
elements to behave as if they had a finite extent. This is in contrast to previous repre-
sentations of icebergs in numerical models [Jongma et al, 2009; Martin and Adcroft, 2010;
Marsh et al, 2015] that treat icebergs as point particles. Assigning a finite extent to el-
ements prevents icebergs from piling up on top of one another, which has been an issue
for previous point-particle iceberg models. Explicitly resolving tabular icebergs in the
ocean allows the icebergs to apply pressure to the ocean surface and thus to interact with
the ocean in a more realistic way, and allows us to study the effects that tabular icebergs
have on ocean circulation. Including numerical bonds between elements allows for sim-
ulations which emulate iceberg calving and fracture by severing the bonds.

The capabilities of the tabular iceberg model are demonstrated by modeling a tab-
ular iceberg drifting away from an idealized ice shelf (also constructed using Lagrangian
elements). The results show that explicitly resolving tabular icebergs in the ocean al-
lows for a complex interaction between the iceberg and the surrounding ocean. In our
Control setup, a tabular iceberg is driven away from the ice shelf by ocean currents, wind
stress, and the Coriolis force. As the iceberg moves through the water, it disturbs the
ocean surface, driving ocean currents. The motion of the iceberg and melt beneath the
iceberg drive upwelling along the sides of the iceberg, which entrains ambient water and
causes a warming of the surface ocean in the wake of the iceberg. The changing ocean
conditions feed back onto the iceberg, affecting its motion and melt rates. The highest
melt rates are observed at the edge of the iceberg which has the steepest ice cliff. These
have the effect of smoothing out the ice edge over time. Simulations without using nu-
merical bonds show that the bonds are essential for allowing the iceberg to move as a
unit. We also demonstrate that by breaking these numerical bonds we can simulate ice-
berg fracture, which is an important process that increases the rate of iceberg decay.

To our knowledge, the model presented in this study is the first model to explic-
itly resolve drifting tabular icebergs in an ocean model that can be used for climate stud-
ies. A natural extension of this work is a representation of tabular icebergs in a general
circulation model (GCM). However, before this can be done, there are a number of is-
sues that need to be resolved: firstly, the question of how and when to introduce tab-
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ular icebergs into the ocean needs to be addressed [Stern et al, 2016]. For GCMs with
active ice shelves, a calving law is needed to release the tabular iceberg into the ocean.
The question of what calving law to use is a topic of ongoing research [Benn et all, 2007;
Alley et al, 2008; Levermann et al, 2012; Bassis and Jacobs, 2013] and is still unresolved.
One potential way to temporarily bypass this problem would be to run hindcast simu-
lations using historically observed calving events. A related issue is the question of how
and when to break the bonds within the freely floating icebergs to simulate iceberg breakup.
Without a rule for iceberg breakup, the tabular icebergs would likely drift to unrealis-
tically low latitudes. Further work is also needed to understand (and model) the inter-
actions between tabular icebergs and sea ice, and to parametrize the effects of iceberg
grounding, as these interactions play a large role in dictating the trajectories of tabu-
lar icebergs. However, despite these remaining challenges, the technical framework de-
scribed in this article is potentially a useful step towards including tabular icebergs in
global GCMs.

6 Appendix A

6.1 Environmental forces on ice elements

The non-interactive forces on an ice element are as described in [Martin and Ad-
croft, 2010], with a small modification to drag forces and wave radiation force, included
to account for elements which are part of larger ice structures, and have a reduced sur-
face area exposed to the ocean. When modeling the momentum balance, the elements
are assumed to be cuboids with time-evolving lengths, widths and thicknesses. The length
L and width W of an element are initially set to L = W =

√
As, and thereafter evolve

dynamically. As is the planar surface area of the element. The cuboid shape is used so
that the momentum balance of unbonded elements is exactly as described in [Martin and
Adcroft, 2010]. The mismatch between the cuboid shape used in the momentum balance
and the hexagonal shape used for spreading mass onto the ocean grid introduces a small
error. This error is likely to be small compared to the uncertainty in the drag coefficients,
melt parametrization and other uncertainties built into a iceberg model.

The forces on an element due to air (a), ocean (o) and sea ice (si) drag are given
by

(~Fa) = ρa(0.5ca,vWF + εca,hLW )|~ua − ~u|(~ua − ~u), (11)

(~Fo) = ρo(0.5co,vW (D − Tsi) + εco,hLW )|~uo − ~u|(~uo − ~u), (12)

(~Fsi) = ρsi(0.5csi,vWTsiF + εcsi,hLW )|~usi − ~u|(~usi − ~u). (13)

Here ρa, ρo, ρsi, are the density of air, ocean and sea ice, respectively. ca,v, co,v and csi,v
are the vertical drag coefficients with air, ocean and sea ice, while ca,h, co,h and csi,h are
the respective horizontal drag coefficients. ~ua, ~uo, ~usi, are the velocities of air, ocean and
sea ice, respectively. L, W, T, F and D are the length, width, thickness, freeboard, and
draft of the ice element. L and W are defined such that L ≥ W . The element thick-
ness is related to the draft and freeboard by T = F +D and D = ρ

ρo
T , where ρ is the

ice element density. Tsi is the sea-ice thickness. As discussed in Section 2.5, ε is the frac-
tion of an element’s perimeter surrounded by ocean, and is given by ε = 1 − Nb

Nmax
,

where Nmax is the maximum number of bonds that an element form, and Nb is the num-
ber of bonds that the element forms.

The wave radiation force (~FR) is given by

~FR = ερocrga
WL

W + L

~ua
|~ua|

min(a, F ) (14)

where g is the acceleration due to gravity, a is the wave amplitude empirically related
to the wind speed by a = 0.010125|~ua − ~uo|, and cwd is the wave drag coefficient de-
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fined as

cwd = 0.06 min

(
max

[
0,
L− Lc
Lt − Lc

]
, 1

)
, (15)

where Lw = 0.32|~ua − ~uo|2 is an empirical wave length, Lc = 0.125Lw is the cutoff
length, and Lt = 0.25Lw is the upper limit.

The pressure gradient force is approximated as a force due to sea surface slope and
given by

~FSS = −Mg~∇η (16)

where η is the sea surface height.

A parametrization for iceberg capsizing is applied for tall narrow ice elements. El-
ements capsize when the ratio W

H <
√

6α(1− α), where α = ρ
ρo

. [Wagner et al, 2017].
When this occurs, W and H are instantaneously swapped. The iceberg capsizing parametriza-
tion used here is different from the one described in [Martin and Adcroft, 2010], which
was found to be inappropriate for modeling icebergs with evolving dimensions [Wagner
et al, 2017]. In our model capsizing is only permitted for unbonded elements.

6.2 Melt rate parametrization

As discussed in Section 2.5, unbounded ice elements in the iceberg model decay ac-
cording to parameterizations for iceberg decay typically used in iceberg drift models [Mar-
tin and Adcroft, 2010], while ice elements within larger ice structures have only a basal
melt given by the three equation model [Holland and Jenkins, 1999]. For the purposes
of applying melt rates, we again assume that the elements are cuboids with time-evolving
lengths, widths and thicknesses, as discussed in the previous subsection above.

For unbonded ice elements, the element thickness decays due to basal melt at a rate
Mb, while the length and width of the elements decay as a result of wave erosion, Me,
and melt due to buoyant convection, Mv. Following Gladstone et al [2001] and Martin
and Adcroft [2010], the basal melt rate, the ‘melt’ due to wave erosion, and buoyant con-
vection melt rate are parameterized by

Mb = 0.58|~u− ~uo|0.8
T̃o − T̃
L0.2

(17)

Me =
1

12
Ss

(
1 + cos [πA3

i ]

)(
T̃o + 2

)
, (18)

Mv =

(
7.62× 10−3

)
T̃o +

(
1.29× 10−3

)
T̃ 2
o . (19)

T̃ is the effective iceberg temperature and is set to T̃ = −4◦C, T̃o is the temperature
at the top of the ocean, Ai is the sea-ice area fraction, and Ss is the sea state, which is
given by the Beaufort scale

Ss =
2

3
|~ua − ~uo|

1
2 +

1

10
|~ua − ~uo| (20)

All three melt rates are in units of meters per day.

For elements inside larger structures, the melt due to wave erosion and melt due
to buoyant convection are set to zero, and the basal melt, Ms, is given by the standard
three equation model [Holland and Jenkins, 1999]: neglecting the heat flux in the ice,
the heat flux balance, salt flux balance and freezing point constraint at the ice-ocean in-
terface can be expressed as

LMs = cpoγT |~uo − ~u|

(
To − Tb

)
, (21)
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SbMs = γS |~uo − ~u|

(
So − Sb

)
(22)

and

f(Sb , Tb , pb) = 0. (23)

Here To and So are the boundary-layer temperature and salinity below the ice; Tb, Sb
and pb are the temperature, salinity and pressure at the ice-ocean interface. cpo = 3974 J kg−1 ◦C−1

is the specific heat of water, and L = 3.35×105 J kg−1 is the latent heat of ice fusion.
γT and γS are the coefficients representing the transfer of heat and salt through the bound-
ary layer. The specific formulation of γT and γS can be found in [Holland and Jenkins,
1999]. The final equation is a constraint imposed by the equation of state, which relates
the pressure-dependent freezing temperature and salinity at the ice-ocean interface. The
basal melt rate Ms is found by numerically solving this system of three equations.

7 Appendix B

7.1 Modified Verlet Algorithm

The model uses a version velocity Verlet time-stepping algorithm, which has been
modified to allow part of the forcing to be calculated implicitly. The traditional veloc-
ity Verlet algorithm is commonly used in molecular dynamics, as it is simple to imple-
ment, second order accurate and computationally efficient [Swope et al, 1982; Omelyan
et al, 2002]. Here we modify the traditional scheme to allow for the drag forces to be mod-
eled implicitly, which prevents large accelerations for elements whose mass approaches
zero. To do this, we include both an implicit and explicit acceleration, ~a = ~aexp+~aimp.
The explicit acceleration, ~aexp, includes all forcing terms which depend only on the pre-
vious time step and the current position, while the implicit acceleration, ~aimp, includes
forcing terms which depend on the velocity at the current time step (in particular the
drag and Coriolis forces).

Using a time step of ∆t, and subscripts to denote the time step (so that tn+1 =
tn + ∆t), the modified velocity Verlet scheme can be written as:

1) Calculate updated position: ~xn+1 = ~xn + ~un∆t+
∆t2

2

(
~aexp
n + ~aimp

n

)
.

2) Calculate ~a
exp
n+1

3) Calculate ~a
imp
n+1 and ~un+1 = ~un +

∆t

2

(
~aexp
n + ~a

exp
n+1

)
+ (∆t)~a

imp
n+1

This scheme reduces to the traditional velocity Verlet when ~aimp is set to zero. Note
that ~a

exp
n+1 = ~a

exp
n+1(~xn+1, tn) is an explicit function of ~xn+1 and other quantities eval-

uated at time tn, while ~a
imp
n+1 = ~a

imp
n+1(~un+1, ~xn+1, tn) additionally depends on un+1, and

needs to be solved implicitly. For this reason in step three, ~a
imp
n+1 and ~un+1 need to be

solved simultaneously, as described in the next subsection.

In equation (1), the forces due to ocean drag, atmospheric drag and sea ice drag
are treated implicitly. The force due to sea surface slope and wave radiation are treated
explicitly. The Coriolis term is handled using the Crank-Nicolson scheme so that half
of the effect is implicit and half is explicit. The elastic part of the interactive forces is
treated explicitly, while the interactive damping is handled semi-implicitly in that the
drag force on element A by element B depends on the velocities of elements A and B eval-
uated at time tn+1 and tn, respectively.
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7.2 Solving for the velocity implicitly

Since this modified scheme contains some forcing terms which are handled implic-

itly, ~a
imp
n+1 and ~un+1 need to be calculated simultaneously. We demonstrate how this is

done, using a simplified one-dimensional version of equation (1), neglecting the atmo-
spheric drag, sea-ice drag and Coriolis force, so that the only implicitly treated term is
the ocean drag. In this demonstration, we use a superscript to denote the ocean drag
force, F o, and ocean velocity, uo, to avoid confusion with the subscripts indicating time
step. We also define an explicit force, F exp, which accounts for all forces not proportional
to the element velocity. With these simplifications, the implicit and explicit accelerations
are

aexp =
1

M
(F exp) (24)

aimp =
1

M
(F o) (25)

The ocean drag force at time tn+1 is modeled (mostly) implicitly as

F on+1 = c̃o|uon − un|(uon − un+1), (26)

where c̃o is the effective drag coefficient, accounting for the dimensions of the ice element
(see equation 12).

Step 3 of the modified velocity Verlet scheme can be rewritten by introducing an
intermediate velocity u∗, which only depends on the velocity and acceleration at time
tn,

u∗n = un +
1

2
(∆t)aexp

n . (27)

Using this, the updated velocity (Step 3) can be written

un+1 = u∗n +
∆t

2
a

exp
n+1 + (∆t)a

imp
n+1 . (28)

Including the forcing terms into this equations gives

un+1 = u∗n +
∆t

2M
(F

exp
n+1) +

∆t

M

(
cw|uon − un|(uon − un+1)

)
(29)

Solving for u(tn+1) in terms of quantities which only depend on the previous time step
gives

un+1 =

u∗n + ∆t
2M (F

exp
n+1) + ∆t

M

(
cw|uon − un|(uon)

)
(

1 + ∆t
M cw|uon − un|

) (30)

Recall that F
exp
n+1 is an explicit function of xn+1 and other quantities evaluated at tn, which

are already known at this point. Once the un+1 has been found, it can be used to cal-
culate the explicit and implicit accelerations, which are required for the next time step.

Finally, we note that the the drag term (equation 26) is not entirely implicit, since
the element velocity inside the absolute value is evaluated at time tn, rather than at time
tn+1. This is done so that we can solve for the updated velocity analytically. One con-
sequence of this is that it can give rise to a small oscillation in the element velocity. This
oscillation is addressed by using a predictive corrective scheme: after solving for a first
guess of the velocity at time tn+1, this estimate of the velocity is used to update the es-
timate of the drag force (i.e.: inside the absolute value signs). This updated drag can
now be used to repeat the process described above to find an improved estimate of the
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velocity. We found that two iterations were sufficient to remove the unwanted oscilla-
tion.

The procedure described in this section is easily extended to include more forcing
terms and two dimensions (where it involves inverting a 2× 2 matrix).

8 Appendix C

Connecting bonds across processor boundaries
Since the model is parallelized across multiple distributed-memory processors, it

often happens that two elements on different processes are bonded together. Keeping track
of numerical bonds across processor boundaries requires a lot of book keeping. In this
section we describe how the model handles bonds across processor boundaries.

The basics of the bond bookkeeping work as follows: consider an element A and
an element B that are bonded together. Each element has a copy of the bond (a piece
of memory which describes the bond between the two elements), which is stored with
the element. Let A-B be the bond stored by element A, and B-A be the bond stored by
element B. Bond A-B contains a pointer which points to element B and bond B-A con-
tains a pointer which points to element A.

Consider a situation where element A and B are originally on Processor 1, and then
element B moves to Processor 2. When this occurs, the memory assigned to element B
on processor 1 is removed, and is allocated on Processor 2. This means that the pointer
to element B in bond A-B (stored in element A on Processor 1) is no longer assigned.
Similarly, the pointer to element A in bond B-A (stored in element B on Processor 2)
is no longer assigned. Before the next time step, a halo update occurs, so that the there
is a copy of element A in the halo of Processor 2 and a copy of element B in the halo of
Processor 1. After the halo update, the bonds A-B and B-A have to be reconnected on
both Processor 1 and 2. To aid in reconnecting the bonds, a copy of the grid cell num-
ber of element B is stored in the bond A-B and a copy of the grid cell number of element
A is stored in the bond B-A. We refer to this as the ‘most recent address’. Before a bond
is moved from one processor to another, the ‘most recent address’ is updated, so that
the bond can be reconnected later. To reconnect bond A-B on Processor 1 (for exam-
ple), we find the most recent address of element B, and search through the list of ele-
ments in the grid cell corresponding to the most recent address of element B until ele-
ment B is found. The pointer to element B in bond A-B is reassigned, and the bond is
said to be connected.
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Parameter Symbol Value Unit

Domain Length Lx 80 km
Domain Width Ly 480 km

Horizontal Resolution ∆x 2 km
Number of vertical layers Nl 72 non-dim

Horizontal Viscosity νH 6.0 m2 s−1

Diapycnal Viscosity νV 10−3 m2 s−1

Horizontal Diffusivity εH 1.0 m2 s−1

Diapycnal Diffusivity εV 5× 10−5 m2 s−1

Initial Surface Temperature Tt -1.9 oC
Initial Bottom Temperature Tb 1.0 oC

Initial Surface Salinity St 33.8 psu
Initial Bottom Salinity Sb 34.7 psu
Maximum Ocean depth Hocean 720 m

Relaxation Time of Sponge Layer Tsponge 0.1 days
Length of Sponge Layer Lsponge 10 km

Ocean and iceberg model time step dt 10 s
Elastic interactive force spring constant κe 10−5 s−2

Table 1. Parameters used in the model. The ocean model parameters are as described in

Asay-Davis et al [2016].
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Figure 1. Schematic showing how tabular icebergs are constructed using Lagrangian ele-

ments. (a) Hierarchy of ice elements’ physical structure: (i) Previous iceberg models represent

icebergs using non-interacting point-particle elements; (ii) In the new framework ice elements are

given finite extent so that they are able to interact with the ocean across multiple grid cells, and

can interact with other elements; (iii) These finite extent elements can be joined together by nu-

merical bonds (magenta lines) to form larger structures such as tabular icebergs. (b) Areal pho-

tograph of a tabular iceberg with elements superimposed over it to illustrate how the Lagrangian

elements can be used to model tabular icebergs. In this schematic the ice elements (purple dots)

are initialized in a staggered lattice covering the surface area of the iceberg. For purposes of mass

aggregation, the ice elements are assumed to have hexagonal shape (red hexagons). For purposes

of element interactions, the ice elements are assumed to be circular (black circles). Elements are

initially bonded to adjacent elements using numerical bonds (magenta lines). These numerical

bonds form equilateral triangles which give the shape rigidity. An ocean grid has been included

(dashed cyan lines). The background photo is an areal photograph of iceberg PIIB (Area= 42

km2) taken in Baffin Bay in 2012. A red ship can be identified on the bottom of the photo for

scale.
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Figure 2. Snapshots of the sea surface temperature in the tabular iceberg calving simulation.

Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calving. Grid cells with ice mass > 104

kg are plotted in white, with grey shading indicating thinner ice. The dashed line in panel (c)

shows the location of the vertical transects shown in Figures 8 and 11.
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Figure 3. Diagram showing the (a) repulsive and (b) attractive elastic interactive forces

between two elements, i and j. Ri and Rj are the interactive radii of element i and j, respec-

tively. The distance between the centers of elements is denoted as dij . Lij = Ri + Rj is the

critical-interactive-length scale. (Fe)ij and (Fe)ji are the elastic forces applied to elements i and

j, respectively (equation 7). A frictional damping force is also applied, which opposes the rela-

tive velocity of the elements (not shown). The attractive forces are only applied when the two

elements are bonded together (i.e.: Bij = 1).
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Figure 4. Results of an uncoupled (ice-only) simulation with no bonds between ice elements.

Ice elements are initialized throughout the domain, as shown in the top left panel. The elements

are forced by an imposed westward ocean current of u=0.1m/s (no ocean model is used). Forces

due to sea surface slope, atmospheric drag, Coriolis and sea-ice drag are set to zero. The figure

shows snapshots of ice element positions at time t=0, 17, 33 and 50 days. The size of the dots

shows the surface area (and interaction radius) of each ice element. The white tails behind the

elements show the elements’ positions over the preceding two days. Land points are shown by

black circles.
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Figure 5. Results of an uncoupled (ice-only) simulation using bonds between elements. Ice

elements are initialized throughout the domain, as shown in the top left panel. Three tabular

icebergs are included, with 25, 16 and 4 elements respectively. The elements are forced by an

imposed westward ocean current of u=0.1m/s (no ocean model is used). Forces due to sea surface

slope, atmospheric drag, Coriolis and sea-ice drag are set to zero. The figure shows snapshots

of ice element positions at time t=0, 25, 52, and 75 days. The size of the dots shows the sur-

face area (and interaction radius) of each ice element. The white tails behind the elements show

the elements’ positions over the preceding two days. Bonds between ice elements are plotted in

magenta. Land points are shown by black circles.
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Figure 6. (a) Ice element packing and geometry: ice elements (purple dots) are initialized in a

staggered lattice. For purposes of mass aggregation, the ice elements are assumed to have hexag-

onal shape (red hexagons). For purposes of element interactions, the ice elements are assumed

to be circular (black circles). Elements are initially bonded to adjacent elements using numerical

bonds (magenta lines). (b) Intersection of an hexagonal element and the ocean grid. The colors

indicate the fraction of the hexagon that lies in each grid cell. These fractions are used as weights

to spread the iceberg model properties to the ocean grid (see text for more details).
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Figure 7. (a) Ocean bottom topography and (c) ice-shelf draft used to initialized the tabu-

lar iceberg calving simulation. The ice draft is calculated from the total mass in an ocean grid

cell after the mass-spreading interpolation has been applied (as explained in Section 2.3). Panel

(b) shows the initial ice draft that would be calculated if the mass-spreading interpolation were

not used (i.e. elements treated as point masses). The lower and upper black lines denote the

grounding line and ice shelf front, respectively.
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Figure 8. Snapshots of vertical sections of ocean temperature at x=54 km in the tabular-

iceberg-calving Control experiment. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after

calving. The position of the vertical transects is shown by the dashed lines in Figure 2c.
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Figure 9. No bonds simulation: Snapshots of the sea surface temperature for a simulation

where all bonds have been broken. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calv-

ing. Grid cells with ice mass > 104 kg are plotted in white, with grey shading indicating thinner

ice.
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Figure 10. Iceberg splitting simulation: Snapshots of the sea surface temperature for the ice-

berg splitting simulation. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after calving. Grid

cells with ice mass > 104 kg are plotted in white, with grey shading indicating thinner ice.
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Figure 11. Snapshots of vertical sections of meridional velocity at x=54 km in the tabular-

iceberg-calving Control experiment. Snapshots are taken (a) 7, (b) 15, and (c) 50 days after

calving. The position of the transects is shown by the dashed line in Figure 2c.
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Figure 12. Results of the tabular-iceberg-calving experiment 50 days after the iceberg calves.

The three panels show snapshots of the (a) melt rate, (b) top-of-ocean temperature and (c) the

frictional velocity, u∗, at the base of the ice shelf. Ocean grid cells without ice are masked out in

grey.
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Figure 13. Results of three iceberg-calving experiments using different melt-rate parametriza-

tion. Panels show snapshots of the melt rate 30 days after calving for simulations using the (a)

three-equation-model melt-rate parametrization [Holland and Jenkins, 1999], (b) point-particle-

iceberg-melt parametrization [Gladstone et al, 2001], and (c) the mixed-melt-rate parametrization

(introduced in Section 2.5.). Ocean grid cells without ice are masked out in grey.

–38–
This article is protected by copyright. All rights reserved.


	Article File
	Figure 1 legend
	Figure 1
	Figure 2 legend
	Figure 2
	Figure 3 legend
	Figure 3
	Figure 4 legend
	Figure 4
	Figure 5 legend
	Figure 5
	Figure 6 legend
	Figure 6
	Figure 7 legend
	Figure 7
	Figure 8 legend
	Figure 8
	Figure 9 legend
	Figure 9
	Figure 10 legend
	Figure 10
	Figure 11 legend
	Figure 11
	Figure 12 legend
	Figure 12
	Figure 13 legend
	Figure 13



