
Effective Drift Velocity from Turbulent Transport by Vorticity

Hussein Aluie,1, 2, ∗ Shikhar Rai,1 Hao Yin,1 Aarne Lees,1, 2 Dongxiao

Zhao,1 Stephen M. Griffies,3, 4 Alistair Adcroft,3, 4 and Jessica K. Shang1, 2

1Department of Mechanical Engineering,

University of Rochester, Rochester, New York

2Laboratory for Laser Energetics, University of Rochester, Rochester, New York

3NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey

4Princeton University Program in Atmospheric

and Oceanic Sciences, Princeton, New Jersey

Abstract

We highlight the differing roles of vorticity and strain in the transport of coarse-grained scalars

at length-scales larger than ` by smaller scale (subscale) turbulence. We use the first term in a

multiscale gradient expansion due to Eyink [1], which exhibits excellent correlation with the exact

subscale physics when the partitioning length ` is any scale smaller than that of the spectral peak.

We show that unlike subscale strain, which acts as an anisotropic diffusion/anti-diffusion tensor,

subscale vorticity’s contribution is solely a conservative advection of coarse-grained quantities by

an eddy-induced non-divergent velocity, v∗, that is proportional to the curl of vorticity. Therefore,

material (Lagrangian) advection of coarse-grained quantities is accomplished not by the coarse-

grained flow velocity, u`, but by the effective velocity, u` + v∗, the physics of which may improve

commonly used LES models.
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I. INTRODUCTION

Basic considerations from fluid dynamics (e.g. [2]) indicate that the distance between

particles in a laminar flow is determined by the strain. Vorticity merely imparts a rotation

on their separation vector r without affecting its magnitude. This behavior can be seen by

considering the velocity, u, difference between particles P and Q at positions x and x + r,

respectively,

uQ − uP = δu = u(x + r)− u(x) = r·∇u
∣∣
x

+ . . . , (1)

where a Taylor-series expansion is justified for short distances |r| over which the flow is

sufficiently smooth. In the Lagrangian frame of P at x, the separation from Q evolves as

Dr

Dt
= δu = r·S + r·Ω︸ ︷︷ ︸

1
2
ω×r

, (2)

where the velocity gradient tensor, ∇u = S + Ω, has been decomposed into the symmetric

strain rate tensor S = [∇u + (∇u)T ]/2 and the antisymmetric vorticity tensor Ω = [∇u−

(∇u)T ]/2 = −1
2
εijkωk. Here, ω = ∇×u is vorticity and εijk is the Levi-Civita symbol.

Taking an inner product of eq. (2) with r,

1

2

D|r|2

dt
= r·S·r , (3)

shows that the distance is determined by the strain. Vorticity in eq. (2) only acts to rotate

r without changing its magnitude.

These considerations hinge on the critical assumption that the flow is sufficiently smooth

over separations r, which is patently invalid in a turbulent flow for r at inertial scales [3].

However, a version of this story survives thanks to the property of scale-locality, which

justifies an expansion in scale as we shall discuss below. The main result of this paper

is eq. (43), which is an expression for the eddy-induced advection velocity v∗ at length-

scales larger than `, which may be the size of grid cells in a simulation. The non-divergent

velocity, v∗, arises from vortical motions associated with subscale nonlinear interactions.

Fig. 1 captures the essential insight behind eq. (43).

In section II, we discuss subscale transport, Eyink’s expansion in length-scale, and the

leading order term. In section III, we present empirical support from (i) 3D direct numer-

ical simulation (DNS) of a compressible turbulent flow and (ii) two-layer stacked shallow
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FIG. 1. Schematic of how eddy-induced advection by a non-divergent velocity, v∗ ∼∇×ω`, (blue

arrow) from eq. (43) can arise due to subscale vorticity (red). In this example, two symmetric but

counter-rotating eddies (red) are of a size smaller than that of the coarse-graining box (dashed).

At length-scales larger than that of the box, `, which may represent a grid cell in a simulation or

the resolution limit of an observation, these eddies exert an eddy-induced advection with velocity

v∗ proportional to the curl of vorticity, depicted by the blue arrow at location x.

water simulation of geophysical fluid turbulence. Section IV contains the main result, which

expresses transport by subscale vorticity as a conservative advection by an effective drift

velocity v∗ proportional to the curl of vorticity. Throughout this paper we attempt to make

the presentation accessible to readers from various backgrounds.

II. MULTI-SCALE DYNAMICS

To analyze the dynamics of different scales in a flow, we use the coarse-graining approach,

which has proven to be a natural and versatile framework to understand and model scale

interactions (e.g. [4, 5]). The approach is standard in partial differential equations and dis-

tribution theory (e.g. [6, 7]). It became common in Large Eddy Simulation (LES) modeling

of turbulence thanks to the foundational works of Leonard [8] and Germano [9].

For any field a(x), a coarse-grained or (low-pass) filtered version of this field, which
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contains spatial variations at scales > `, is defined in n-dimensions as

a`(x) =

∫
dnr G`(x− r) a(r). (4)

Here, G` is a convolution kernel derived from a “mother” kernel G(s) (borrowing the term

from wavelet analysis [10]). G(s) is normalized,
∫

dnsG(s) = 1. It is an even function such

that,
∫

sG(s) dns = 0, which ensures that local averaging is symmetric. G(s) also has its

main support (or variance) over a region of order unity in diameter,
∫

dn s |s|2G(s) = O(1).

The dilated version of the kernel,

G`(r) = `−nG(r/`), (5)

inherits all those properties, except that its main support is over a region of diameter `. An

example is the Top-Hat kernel in non-dimensional coordinates s,

G(s) =

1, if |si| < 1/2 for i = 1, . . . , n,

0, otherwise,
(6)

and its dilated version in dimensional coordinates r,

G`(r) =

`
−n, if |ri| < `/2 for i = 1, . . . , n,

0, otherwise.
(7)

The scale decomposition in eq. (4) is essentially a partitioning of scales for a field into

large scales (& `), captured by a`, and small scales (. `), captured by the residual

a′` = a− a`. (8)

In the remainder of this paper, we shall omit subscript ` from variables if there is no risk

for confusion.

A. Coarse-grained Transport

Consider the transport equation of the concentration (per unit volume) C(x, t):

∂tC +∇·(C u) =∇·[ρ κ∇φ]. (9)

Here, ρ is mass density, u is the advecting flow velocity, which is possibly compressible.

The scalar field C = ρ φ, where φ is concentration per unit mass, can be either passive or
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active, with diffusivity κ, which can be due to the microphysics or an effective (turbulent)

diffusivity used in a simulation. Analysis of the incompressible momentum transport follows

similar reasoning as below, with C replaced by u when ρ = (const.), so we shall focus on C

for simplicity.

We shall call eq. (9) the “bare” dynamics [11, 12] as it governs flow in an experiment or

natural system. In a coarse-resolution simulation, such as in implicit or explicit LES [4, 13],

or when taking spatially under-resolved measurements in an experiment, u and C are not

resolved down to the microphysical scales. The equation that governs the coarse-grained

scalar C` is obtained by filtering eq. (9) to get (e.g. [14])

∂tC` +∇·(u`C`) = −∇·τ ` +∇·(ρ κ∇φ)` , (10a)

where τ ` = τ `(u, C) ≡ (uC)` − u`C` (10b)

is the subscale flux of C` [9]. Eq.(10) is exact, without any approximation, and describes

the scalar transport at length-scales larger than `. The last term, ∇·(ρ κ∇φ)`, was shown

mathematically in [15] to have an upper bound proportional to αrms `
−2 φrms at every location

in the flow and every time, where α = ρ κ. Therefore, it is guaranteed to be negligible

for sufficiently large ` or sufficiently small α, which was demonstrated numerically in [16].

Therefore, ∇·(ρ κ∇φ)` can be dropped from eq. (10) (but not from the bare eq. (9)).

An evident role of the subscale flux τ `(C,u) in eq. (10) is accounting for the influence of

unresolved scales C ′` and u′` on the transport of C`. Another important role of τ `(C,u) in

eq. (10) that may not be as well-appreciated is balancing u`C`, which can interact with scales

< ` that are approximately within the band [`/2, `]. This is analogous to the term ρκ∇φ

balancing uC at microphysical scales ∼ `κ, below which molecular diffusion dominates

advection. To illustrate, assume that at a time t the scalar and velocity fields are fully

resolved, C` = C and u` = u. Moreover, assume that scale ` is sufficiently large, ` � `κ,

such that microphysical diffusivity is negligible and does not damp nonlinear interactions.

That small scales are absent, C ′` = 0 and u′` = 0, does not necessarily imply that the subscale

flux τ `(C,u) = (uC)` − uC is zero unless there is sufficient scale separation between ` and

the smallest scales of C and u. Therefore, the general transport of a coarse-grained scalar

C` is not described by the typical (or bare) transport equation (9) even when C and u are

resolved (C ′` = 0 and u′` = 0), because coarse-graining also alters the representation of their

nonlinear interactions, which may be at scales smaller than `.
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From definition (10b), it is possible to decompose τ `(C,u) into contributions that are

solely due to resolved fields C` and u` (e.g. the Leonard term [8, 17]) and other contributions

that involve unresolved fields C ′` and u′`. In the discussion below, we use the term ‘subscale’

to refer to any contribution from τ `(C,u) because it arises from coarse-graining the dynamics

at scale `. We shall see that the resolved fields make a dominant contribution to the subscale

flux τ `(C,u) thanks to the property of ultraviolet scale-locality.

B. Multiscale Expansion

The subscale term τ `(u, C) does not lend itself to a straightforward intuitive interpreta-

tion. To that end, we utilize the multiscale gradient expansion of Eyink [1]. This expansion

is accomplished by decomposing a field

a(x) =
∞∑
p=0

a[p](x) (11)

into a sum of band-passed fields [1]

a[p] = a`p − a`p−1 , p = 1, 2, . . . , (12a)

a[0] = a`0 (12b)

for a sequence of scales `p = λ−p`0 with the non-dimensional number λ > 1, e.g. λ = 2. `0

can be a characteristic large scale such as the domain size. A similar decomposition can be

done for the subscale flux,

τ `(u, C) =
∞∑
p=0

∞∑
q=0

τ
[p,q]
` (u, C), (13a)

with τ
[p,q]
` (u, C) = (u[p]C [q])` − (u[p])`(C

[q])` . (13b)

The term τ
[p,q]
` (u, C) represents the subscale contribution from scalar and velocity scales

within bands [q] and [p], respectively. Eyink [1, 5] proved that the series (13) converges abso-

lutely and at a geometric rate under the condition that the scaling exponents of increments

of δu(r) ∼ rσ
u

and δC(r) ∼ rσ
C

satisfy σu > 0 and σC > 0 1.

1 More precisely, the condition is that σup > 0 and σCp > 0 if increments scale as 〈|δu(r)|p〉1/p ∼

urmsAp(r/`0)σ
u
p and 〈|δC(r)|p〉1/p ∼ CrmsBp(r/`0)σ

C
p for some dimensionless constants Ap and Bp, where

〈. . . 〉 is a space average. The condition has to hold for at least p = 2, with higher values of p representing

more stringent conditions. Note that a power-law scaling of increments is not required; the condition is

still satisfied if increments decay faster than any power-law with r → 0, for example exponentially.
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Exponents σu and σC reflect the smoothness of their respective fields (see Fig. 1 in

[11] and the associated discussion), with larger values of σ implying smoother (or, heuris-

tically, less turbulent) fields. For example, the Kolmogorov-Obukhov theory [18–20] pre-

dicts σu = σC = 1/3 for velocity and passive scalar increments over scales within the

inertial–convective range of a high Reynolds number turbulent flow that is statistically ho-

mogeneous. In contrast, for low Reynolds number flows, even if they are chaotic, we can

expect σu ≥ 1. Ignoring intermittency corrections, the scaling exponent σ of increments is

related to the power-law scaling of a spectrum, E(k), of either u or C, via E(k) ∼ k−2σ−1.

Therefore, the condition σ > 0 corresponds to a wavenumber scaling of spectra that decays

faster than k−1 in wavenumber, which is a fairly weak condition and is expected to hold

in most flows. The conditions are the same as those required for τ `(u, C) to be ultraviolet

scale-local [5, 21, 22], which means that length-scales δ � ` make a negligible contribution

to τ `(u, C),

|τ `(C ′δ,u′δ)| � |τ `(C,u)|. (14)

Under these conditions of convergence, the leading order term in eq. (13) is the dominant

contribution to the series, which justifies the approximation

τ `(u, C) ≈ τ
[0,0]
` (u, C) = τ `(u`, C`). (15)

This approximation corresponds to the well-known similarity (or Bardina) model [4, 23]. To

readers who are perhaps less familiar with LES or coarse-graining, the term

τ `(u`, C`) = (u`C`)` − (u`)`(C`)` (16)

may seem insignificant, especially considering that if one were to replace operation (. . . )`

with a Reynolds (or ensemble) average, expression (16) would be identically zero. How-

ever, operation (. . . )` is a decomposition in length-scale, which is inherently different from

Reynolds averaging. To aid in the conceptual understanding of expression (16), assume

that (. . . )` is a sharp-spectral projection in wavenumber space, (. . . )` = (. . . )<K . Apply-

ing (. . . )<K removes all wavenumbers larger than K = `−1 (i.e. small length-scales) while

keeping wavenumbers smaller than K intact. Then

τ `(u`, C`) = (u<KC<K)<K − (u<K)<K(C<K)<K (17a)

= (u<KC<K)<K − u<KC<K , (17b)
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using the sharp projection property, ((. . . )<K)<K = (. . . )<K , to arrive at the last expression.

The term u<KC<K in eq.(17b), being a quadratic product, contains wavenumbers < 2K.

Of these, the contribution (u<KC<K)<K from wavenumbers < K is subtracted in eq.(17b),

such that τ `(u`, C`) represents wavenumbers within the band [K, 2K] or, equivalently, be-

tween length-scales ` and `/2. As discussed in previous work on scale-locality [5, 24], this

band of scales is expected to make the dominant contribution to the subscale flux τ `(u, C)

if the spectrum decays faster than k−1 in wavenumber over the range of scales < `. This

is essentially the condition under which eq. (15) was derived. Physically, a spectral decay

faster than k−1 implies that dyadic wavenumber band [k, 2k] has more energy than band

[2k, 4k] (e.g. [25, 26]), which justifies retaining the smallest wavenumbers via the leading

order term in expansion (13) [22]. A spectral decay faster than k−1 is a fairly weak condi-

tion and is expected in most flows (turbulent or laminar), but may fail, for example, if `

approaches scales of the spectral peak or larger. We emphasize that filtering with a sharp-

spectral kernel in eq. (17) is merely for conceptual understanding. Unlike the Top-Hat or

Gaussian, a sharp-spectral kernel is not positive semi-definite in physical space, which vio-

lates physical realizability conditions [27], rendering subscale energy or coarse-grained mass

density negative in physical space [5, 15].

C. Relation to Increments and Gradients

Using the usual definition of an increment,

δf(x; r) = f(x + r)− f(x), (18)

the subscale flux (10b) can be rewritten exactly in terms of δC and δu [5, 24, 28]:

τ(C,u) = 〈δC δu〉` − 〈δC〉` 〈δu〉` . (19)

Equation (19) is exact and follows directly from eq. (10b) without requiring any assumption

about scale-locality or the scaling exponents, where

〈δf〉` (x) ≡
∫

dnrG`(−r)δf(x; r) (20)

is a local average around x over all separations r weighted by the kernel G`. A spatially

localized (or compact) kernel effectively limits the average in eq. (20) to separations |r| ≤ `/2.
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Note that G`(−r) = G`(r) for even kernels, such as a Gaussian or a Top-Hat. Relation (19) is

a key step and reveals the connection between the subscale physics and increments (spatial

variations) over distances smaller than `. This connection is underscored by noting that

expression (20) equals (minus) the high-pass field containing scales < `,∫
dnrG`(−r) δf(x; r) = −[f(x)− f `(x)] = −f ′`(x) . (21)

We may also connect these considerations with the argument presented in the introduction,

where increments reflect gradients [1], including strain and vorticity of the subscale flow.

Approximating the subscale flux by the leading order term in eq.(15) allows us to use

identity (19) for the filtered quantities,

τ(C`,u`) =
〈
δC` δu`

〉
`
−
〈
δC`

〉
`
〈δu`〉` . (22)

Since a filtered field f `(x) is smooth, we can Taylor expand its increments around x,

δf `(x; r) = f `(x + r)− f `(x) ≈ r·∇f `(x) + . . . , (23)

where we neglect higher order terms. Substituting the first term in the Taylor expansion of

each of δC and δu into eq. (22) gives in n-dimensions

τ `(C, ui) =
[
∂kC`

] [
∂m(ui)`

]
[〈rk rm〉` − 〈rk〉` 〈rm〉`] (24a)

=
[
∂kC`

] [
∂m(ui)`

] [ 1

n
δkm `

2

∫
dnsG(s) |s|2

]
(24b)

=
1

n
M2 `

2 ∂k(ui)` ∂kC` . (24c)

In deriving the second line, we used the symmetry of the kernel such that 〈rk〉` = 0. In the

final expression, the mother kernel’s second moment, M2 =
∫

dnsG(s) |s|2, depends solely

on the shape of kernel G and, in particular, is independent of scale `. For the Top-Hat in

eq. (6), M2 = n/12 in n-dimensions.

D. Summary and Interpretation

From the derivation above, we see that the final expression in eq. (24c) represents the

leading order contribution to τ `(C,u). Therefore, to the extent expression (24c) faithfully

approximates τ `(C,u), it also represents the subscale physics. How can expression (24c),
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which involves only coarse-grained (or resolved) quantities represent subscale interactions?

It is analogous to inferring the value of a function f(x0 + h) a distance h away from x0

based solely on its local properties at x0 via a Taylor series expansion, the accuracy of which

depends on smoothness properties of f . Here, the expansion is done in length-scale [1] rather

than in space to arrive at eq. (24c). The analogue to smoothness is ultraviolet scale-locality,

which is guaranteed under weak spectral scaling conditions [5, 21, 22, 24].

Expression (24c) corresponds to the nonlinear (or Clark) model [29], which is a closure

of the subscale flux using a product of gradients in LES modeling and has been shown to

be an excellent (a priori) approximation of the subscales in several previous studies (e.g.

[14, 30, 31]). Some studies have also offered viable ideas for utilizing it in a posteriori

LES [23, 32, 33]. Below, we provide additional a priori support from simulations of 3D

compressible turbulence and two-layer stacked shallow water simulations of geophysical fluid

turbulence.

In the discussion above, we followed Eyink’s multiscale gradient expansion [1] to derive

expression (24c), which is more general than the standard derivations of the nonlinear model

found in the LES literature (e.g. [3, 23, 29, 30, 33–35]). Since Eyink’s multiscale gradient

expansion is convergent, it provides a rigorous foundation to justify neglecting higher order

terms. Another advantage of using Eyink’s expansion is in bringing to the fore the underlying

physics, including the assumptions under which the series (13) converges and, therefore, the

conditions under which the approximation may fail. Moreover, being a systematic expansion,

it allows for future improvements by retaining higher order terms or by using a closed form

of those terms following the recent work of Johnson [36, 37].

Approximation (24c) provides us with physical insight into the mechanisms by which the

subscales transport C`. Below, we show that subscale vorticity’s contribution is an eddy-

induced drift velocity. Prior to doing so, we discuss how well eq. (24c) approximates τ `(u, C)

from simulations.

III. EMPIRICAL SUPPORT

Approximating τ `(u, C) by expression (24c) has significant support in the LES literature

from a priori tests of the nonlinear model. It has been shown to exhibit excellent agreement

when C is taken as the momentum (e.g. [30, 35]), as the temperature field in the atmospheric
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FIG. 2. Left to right: visualization of x, y and z components, respectively, of momentum, ρu, in

physical space from the 10243 DNS. These images are shown at an instant of time after the flow

has reached steady state. Shocks can be seen as discontinuities. The spectrum of this flow is shown

in Fig. 15 in the Appendix.

boundary layer [14, 31], and as a passive scalar [38, 39].

In this section, we present additional supporting evidence for active scalars, when C

represents (i) density in a 3D compressible turbulent flow and (ii) layer thickness in a two-

layer stacked shallow water simulation of geophysical fluid turbulence. The correlation is

generally better than 0.9 at inertial scales smaller than the scale at which the spectrum

peaks.

A. Compressible Turbulence

We carry out a direct numerical simulation (DNS) of forced compressible turbulence in

a periodic box of non-dimensional size 2π with grid resolution 10243. From the simulation

data, we test how well the expression in eq. (24c) approximates τ `(u, C) with C replaced by

the density field, ρ, which is an active scalar.

The DNS follows the configuration of [40] and solves the fully compressible Navier-Stokes

equations using our DiNuSUR code [16, 40]:

∂tρ +∂j(ρ uj) = 0, (25)

∂t(ρ ui)+∂j(ρ ui uj) = −∂iP + ∂jσij + ρFi , (26)

∂t(ρE)+∂j(ρE uj) = −∂j(P uj) + ∂j[2µui (Sij −
1

3
Skk δij)]− ∂jqj + ρ ui Fi −RL . (27)

Here, E = |u|2/2 + e is total energy per unit mass, where e is specific internal energy, P is
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thermodynamic pressure, µ is dynamic viscosity, q = −κ∇T is the heat flux with a thermal

conductivity κ and temperature T . Both dynamic viscosity and thermal conductivity are

spatially variable, where µ(x) = µ0(T (x)/T0)0.76. Thermal conductivity is set to satisfy

a Prandtl number Pr = cp µ/κ = 0.7, where cp = Rγ/(γ − 1) is the specific heat with

specific gas constant R and γ = 5/3 for a monoatomic gas. We use the ideal gas equation of

state, P = ρRT . We stir the flow using an external acceleration field Fi, and RL = ρ ui Fi

represents radiation losses from internal energy (see [40, 41]). Sij = (∂jui + ∂iuj)/2 is the

symmetric rate of strain tensor and σij is the deviatoric (traceless) viscous stress,

σij = 2µ (Sij −
1

3
Skk δij). (28)

We solve the above equations using the pseudo-spectral method with 2/3rd dealiasing. We

advance in time using the 4th-order Runge-Kutta scheme with a variable time step.

The acceleration, F, is similar to that in [42]. In Fourier space, the acceleration is defined

as

F̂i(k) = f̂j(k)P ζ
ij(k), (29)

where f̂ is constructed from independent Ornstein-Uhlenbeck stochastic processes [43]. The

projection operator

P ζ
ij(k) = ζ δij + (1− 2 ζ)

ki kj
|k|2

(30)

allows for controlling the ratio of solenoidal (∇·F = 0) to dilatational (∇×F = 0) compo-

nents of the forcing using the parameter ζ. When ζ = 0, the forcing is purely dilatational

and when ζ = 1, the forcing is purely solenoidal. For the simulation we use here, shown in

Fig. 2, we set ζ = 0.01 to simulate turbulence with high compressibility, such that dilatation,

∇·u 6= 0, is significant.

Our simulated flow has significant compressibility, which can be seen from Fig. 2 and in-

ferred from the following three time-averaged quantities. (1) The ratio (∇·u)rms/(∇×u)rms =

5.61 in our flow, which measures compressibility at small scales. (2) We also Helmholtz

decompose the velocity field into the dilatational, ∇×ud = 0, and solenoidal, ∇·us = 0,

components, u = ud + us. The ratio of dilatational kinetic energy, Kd = 〈ρ udi udi /2〉, to

solenoidal kinetic energy, Ks = 〈ρ usi usi/2〉, yields a measure of compressibility at large

scales, which in our flow is Kd/Ks = 4.80. (3) We also calculate the turbulence Mach

number, Mt = 〈|u|2〉1/2/c = 0.23, where c = 2.18 is the mean non-dimensional sound speed.

Spectra of density and velocity are plotted in Fig. 15 in the Appendix.
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We use the Top-Hat kernel in eq. (7) for the coarse-graining. Fig. 3 shows a 2D slice

from the 3D flow at the instant of time shown in Fig. 2, comparing the exact τ `(ux, ρ) at

` = 0.19635 (domain size is 2π) with its approximation (24c). The other two components are

shown in the Appendix Fig. 16. All indicate an excellent agreement. Fig. 4 (left column)

shows a more quantitative evaluation of all three components of the subscale transport

approximation, where we can see that the approximation is remarkably accurate almost

everywhere but underestimates τ `(ux, ρ) at locations of strong shocks. This underestimation

indicates that higher order terms in the expansion (13) are needed for better agreement at

those locations since these rare but strong discontinuities have a significant contribution

from scales < ` and are an extreme test case for the approximation. Indeed, at a location

x0 of a shock, the increment scales as δu(x0; r) = u(x0 + r) − u(x0) ∼ rσ, with σ ≈ 0

for distances r larger than the viscous shock width (see Fig. 1 in [11] and the associated

discussion). This value is at the margin of validity of the σ > 0 condition 2 for Eyink’s

expansion (13) to converge.

Fig. 4 (right column) shows the joint probability density function (PDF) between τ `(u, ρ)

and its approximation, with correlations exceeding 0.9. In Figs. 11-13 in the Appendix, we

show similar comparisons at other length-scales. The correlation coefficient between two

datasets, A and B, is defined as

r(A,B) =
〈AB〉 − 〈A〉〈B〉

[(〈A2〉 − 〈A〉2)(〈B2〉 − 〈B〉2)]
1
2

, (31)

where 〈. . . 〉 is a space-time average over the entire domain and time after which the flow

has become statistically stationary. The joint PDF in Fig. 4 uses the so-called ‘z-scores’ of

τm and τ `, denoted by τ ∗m and τ ∗ (all other figures show the actual τ ` and τm values). The

z-score of A is defined as

A∗ =
A− 〈A〉

〈(A− 〈A〉)2〉1/2
, (32)

which helps focus on the spatio-temporal variation patterns after subtracting the mean and

normalizing by the standard deviation. For completeness, we plot the joint PDFs of the

actual τm and τ ` in Fig. 14 in the Appendix. Using z-scores in the joint PDF only affects

the slope of the linear fit between τm and τ `. The correlation coefficient is the same whether

2 Formally, the condition σ > 0 for Eyink’s expansion to converge is not based on the scaling of an increment

δu(x; r) at a single point x. Rather, it is based on the scaling of structure functions, which are spatial

averages of increments.
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FIG. 3. A 2D slice at x = 0 from a snapshot of the 3D compressible turbulence DNS, comparing

the (left) exact τ `(ux, ρ) at ` = 0.19635 with (right) its approximation from eq. (24c), τm =

1
3M2 `

2 ∂kρ ∂kux.

using the actual values or their z-scores,

r(A∗, B∗) = r(A,B). (33)

Therefore, z-scores show how well the approximation τm is able to capture the exact subscale

physics τ ` up to a proportionality constant.

Fig. 5 plots the correlation coefficient as a function of `, which has values exceeding 0.90

for scales ` smaller than that of the peak and decreasing to ≈ 0.85 for scales ` = π (half the

domain size). These strong correlations justify our usage of expression (24c) as a proxy for

τ `(u, ρ) to gain insight into its underlying mechanics.

B. Geophysical fluid turbulence

We also ran simulations of the two-layer stacked shallow water equations (34),(35) using

the ocean general circulation model MOM6 [44, 45]. We simulated an ocean current [46] that

is baroclinically unstable [47, 48], resulting in mesoscale eddy generation and geostrophic

turbulence, which we visualize in Fig. 7.
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FIG. 4. Comparison of τ `(ρ,u) with its approximation τm = 1

3M2 `
2 ∂kρ ∂ku at ` = 0.19635. (A)

x-component of τ and τm along a diagonal transect through the domain from a single snapshot. (B)

Joint PDF between τ∗ and τ∗m, where superscript ‘∗’ indicates z-scores, which emphasizes trends

(see eq. (32) and associated discussion in the text). Color bar indicates the number of grid-points

on a logarithmic scale, proportional to the probability. Black line is the best linear fit, and the

correlation-squared, r2, quantifies the fraction of variability in τ that is captured by τm. (C), (D)

Same as (A), (B) but for the y-component. (E), (F) Same as (A), (B) but for the z-component.
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FIG. 5. Correlation coefficient r between τ `(ρ,u) and its approximation τm = 1
3M2 `

2 ∂kρ ∂ku as a

function of scale `. (A) x-component. (B) y-component. (C) z-component.

Details of the simulation setup can be found in [46]. The equations solved in MOM6 are

∂um
∂t

+ (f + ω) ẑ× um = −∇(Mm + |um|2/2)−∇·T − δm2CD |u2|u2 , (34)

∂hm
∂t

+∇·(hmum) = (3− 2m)
[
γ
(
η3/2

x − η3/2,ref

)
−∇·

(
Kh∇η3/2

)]
. (35)

The subscript m = 1, 2 labels the top and bottom layers, respectively, and repeated indices

are not summed in the thickness equation (35). η1/2 is the vertical position of the top

layer interface (surface height), η3/2 is the height of the interface between the two layers,

um is the horizontal velocity, ω is vertical component of relative vorticity, f = f0 + βy

is the Coriolis parameter for Earth’s rotation (i.e., the planetary vorticity), where f0 is

the value of f at southernmost boundary (y = 0) and β is the linear rate of change of f

along meridional direction. T is the horizontal stress tensor parameterized by Smagorinsky

biharmonic viscosity [49], CD is the dimensionless bottom drag coefficient and M1 = g η1/2

and M2 = M1 +
(
g∆ρ
ρ0

)
η3/2 are the pressure of the layers 1 and 2 normalized by ρ0, the

density of the top layer. ∆ρ is the density difference between the two layers, hm is the layer

thickness, Kh is the interface height diffusivity coefficient, and γ is a rate that is proportional

to the mass flux between the layers [46]. Kh allows for the dissipation of available potential

energy [50] and γ forces the interface height between the two layers to reference zonal mean

state η3/2,ref . Here, (·)
x

represents a zonal average (i.e., in the east-west direction). The flow

is able to attain a statistically steady state in the absence of direct wind forcing in eq. (34)

by nudging the layer interface η3/2 to the reference profile η3/2,ref in eq. (35), which drives

the flow by providing a source of potential energy [46], mimicking the sloping of isopycnals
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FIG. 6. Initial condition for two-layer stacked shallow water simulation following [46]. The top

layer has zonal (east-west) velocity with a Gaussian profile peaking at ≈ 0.35 m/s (positive to the

east) while the bottom layer is initially quiescent. Bottom topography is flat. The surface has

initial height η1/2 = 0 m. The interface height η3/2 between the two layers is initialized to the

reference η3/2,ref shown to satisfy geostrophic balance. η3/2 is allowed to evolve freely while being

relaxed back to η3/2,ref at the rate γ.

by Ekman pumping in the real ocean [48].

The flat bottom domain is 1200 km × 1600 km in horizontal extent and is discretized

on a Cartesian grid with a grid-cell size of 5 km. The total depth is 2 km and the bottom

surface is flat. It is zonally periodic and subject to free-slip walls at the northern and

southern boundaries. The initial conditions have a zonal jet 200 km wide with a Gaussian

profile peaking at ≈ 0.35 m/s for top layer and bottom layer is quiescent, similar to initial

conditions of [46]. The interface between the two layers is such that it satisfies geostrophic

balance and is as shown in figure 6. The Coriolis parameter at the southernmost boundary is

f0 = 6.49×10−5s−1 and β = ∂yf = 2×10−11m−1s−1. The value of γ = 1.1574×10−6 s−1 and

Kh = 8000 m2s−1. The simulation is run for 180 days, sufficiently long for the geostrophic

turbulence to develop as a result of baroclinic instabilities. For our results, we analyze 100

snapshots taken every 2.5 hours starting from day 169. Spectra of u1 and h1 are shown in

Appendix Fig. 21. For our purpose, we only analyze the fields from the top layer since the
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FIG. 7. Visualization of the relative vorticity normalized by the Coriolis paramater f at the do-

main’s mid-latitude from our simulation of an eastward flowing ocean current that is baroclinically

unstable, resulting in eddy generation and turbulence. The simulation solves the two-layer shallow

water equations, with the top and bottom panels showing the respective top and bottom layers.

Time increases from left to right: panels A1 and A2 are from day 60, B1 and B2 from day 93,

C1 and C3 from day 180. Our analysis uses model data after day 169, when the flow has become

statistically steady.

flow in the bottom layer is much weaker. Hereafter, we drop the layer subcript since all

results pertain to the top layer.

We compare τ `(h,u) with its approximation 1
2
`2M2 ∂kh ∂ku in eq. (24c). We use a graded

Top-Hat kernel following our previous work analyzing oceanic flow [51, 52],

G`(r) = 0.5− 0.5 tanh((r − `/2)/10), (36)

where ` denotes the kernel width. This kernel is essentially the same as the Top-Hat in

eq.(7), but with smoothed edges to avoid discretization noise from the nonuniform grids [51]
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FIG. 8. Comparing the (left) exact τ `(u, h) at ` = 100 km with (right) its approximation from

eq. (24c), τm = 1
2M2 `

2 ∂kh ∂ku, from a single snapshot. Top panels are for the zonal (eastward)

component. Bottom panels are for the meridional (northward) component. Grey bands at northern

and southern boundaries are excluded from our analysis to avoid details of the coarse-graining next

to boundaries.

commonly used in general circulation models. Since the model domain is flat, r is a simple

Euclidean distance as in eq. (7), without complications due to Earth’s surface curvature [53].

Fig. 8 compares the τ `(u, h) at ` = 100 km with its approximation (24c). It indicates

an excellent agreement. Fig. 9 (left column) shows a more quantitative evaluation of both

components of the subscale transport approximation, where we can see that the approxima-

tion is remarkably accurate almost everywhere. Fig. 9 (right column) shows the joint PDFs

between τ `(u, ρ) and its approximation for both components (eastward and northward di-
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rections). They show correlations exceeding 0.95. In Figs. 18-20 in the Appendix, we show

similar comparisons at other length-scales of 50 km, 200 km, and 400 km. The joint PDF

in Fig. 9 uses the z-scores of τ ` and τm, denoted by τ ∗ and τ ∗m and (all other figures show

the actual τ ` and τm values). As mentioned in eq. (33), the correlation coefficient between

τ ∗ and τ ∗m is the same as that between τ ` and τm. We use z-scores to focus on how well the

approximation τm is able to capture the exact subscale physics τ ` up to a proportionality

constant. For completeness, we plot the joint PDFs of the actual τm and τ ` in Fig. 25 in the

Appendix.

Noting that the spectral peak (Fig. 21) is at ≈ 300 km, Fig. 10 plots the correlation

coefficients between the exact τ `(u, h) and its approximation (24c) as a function of `, which

has values exceeding 0.90 for scales ` smaller than the that of the spectral peak and de-

creasing to ≈ 0.75 for scales ` = 400 km. These high correlation values justify our usage of

expression (24c) as a proxy for τ `(u, h) to gain insight into its underlying mechanics at least

for scales ` smaller than that of the spectral peak.

IV. TRANSPORT BY SUBSCALE VORTICITY AND STRAIN

Insight from eq. (24c) into how the subscale physics contributes to large-scale transport

can be gleaned by using a fundamental result from [54], [55], and [56], who showed in

different physical systems the importance of scalar transport by an anti-symmetric skew

diffusion tensor, or equivalently an eddy-induced advective flux. We elaborate on this idea

in this section, which contains the main result of the paper in eq. (43).

Replacing τ `(u, C) in eq. (10) by expression (24c), we have

∂tC` +∇·(u`C`) =∇·
(
−A`2 ∂ju` ∂jC`

)
, (37)

with the constant A = M2/n. Therefore, transport of C` by the subscale flux,

R(C) =∇·[
(
−A `2∂ju`

)︸ ︷︷ ︸
Kij

∂jC`], (38)

resembles that of generalized transport tensor

Kij = −A`2 ∂jui. (39)
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FIG. 9. Comparison of τ `(h,u) with its approximation τm = 1
2M2 `

2 ∂kh ∂ku at ` = 100 km.

(A) Zonal (eastward) component of τ and τm along the transect y = 802.5 km from a snapshot

on day 171 of the simulation. (B) Joint PDF for all space-time points between τ∗ and τ∗m, where

superscript ‘∗’ indicates z-scores, which emphasizes trends (see eq. (32) and associated discussion

in the text). Color bar indicates the number of grid-points on a logarithmic scale, proportional

to the probability. Red line is the best linear fit, and the correlation-squared, r2, quantifies the

fraction of variability in τ that is captured by τm.

Note that Kij is a function of the length scale ` through both the `2 factor as well as the

coarse-grained velocity u`. For notational brevity we drop the ` when writing individual

components of u`.

Physical properties of the subscale transport tensor Kij can be illuminated by separating

it into a symmetric part Ksym

ij representing subscale strain, and anti-symmetric part (also

called skew-symmetric) Kskew
ij representing subscale vorticity. The tensor is rewritten as

Kij = −A`2 ∂jui = −A `2 [
1

2
(∂jui + ∂iuj)︸ ︷︷ ︸

Sij

+
1

2
(∂jui − ∂iuj)︸ ︷︷ ︸

Ωij

] = Ksym

ij +Kskew

ij (40)

with vorticity and strain underlying kinematically distinct flow processes [e.g., 56]. Note that
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the symmetric part satisfies Ksym

ij = Ksym

ji while the anti-symmetric part satisfies Kskew
ij =

−Kskew
ji .

Transport due to the subscale strain,

Rsym(C) = ∂i[K
sym

ij ∂jC`], (41)

can be thought of in the local eigenframe reference of Ksym

ij as anisotropic diffusion/anti-

diffusion of C` in directions that are not necessarily parallel to ∇C`. Such transport3 was

analyzed in detail in [14]. Positive eigenvalues are associated with a stretching flow direction

(diffusion) while negative eigenvalues are associated with a contracting flow direction (anti-

diffusion). If the underlying flow is non-solenoidal, ∇·u 6= 0, such as in our simulations

presented here, then Ksym

ij can also account for isotropic diffusion or coalescence due to the

subscale physics.

To understand the role of subscale vorticity, represented by the anti-symmetric (or skew-

symmetric) tensor Kskew
ij , we follow the analysis of [54–56] and rewrite

Rskew(C) = ∂i[K
skew

ij ∂jC`] = [∂iK
skew

ij ]∂jC` = ∂j[∂iK
skew

ij︸ ︷︷ ︸
−(v∗)j

C`] (42)

where the second equality follows from the chain rule and noting that the product of Kskew
ij

(antisymmetric tensor) with ∂i∂jC` (symmetric tensor) vanishes. Similarly, the third equal-

ity follows from ∂i∂jK
skew
ij = 0. The interpretation of v∗ is an eddy-induced velocity arising

3 The tensor Ksym would have to be positive semi-definite to qualify as a diffusion tensor in the strict sense.
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from the stirring induced by subscale vortical motions. It is straightforward to show that

v∗ = −∇·Kskew =
1

2
A`2∇×(∇×u`), (43)

which is the main result of this paper. An example of how it can arise in swirling flow is

sketched in Fig. 1. Note that this eddy-induced velocity is solenoidal,

∇·v∗ = 0, (44)

due to the antisymmetry of Kskew
ij .

A. Summary and Interpretation

The above result is a manifestation of the equivalence between transport by (i) flux due

to an anti-symmetric diffusion tensor and (ii) an advective flux [54–56]. It suggests that

coarse-grained simulations such as LES may need to solve

∂tC` +∇·
[
(u` + v∗)C`

]
= −∇· (J(C)) (45)

to represent the unresolved (subgrid) vorticity physics self-consistently.

J(C) in eq. (45) can represent traditional subgrid models such as turbulent (Smagorin-

sky) diffusion [57], J(C) = −αturb∇C`. The evaluation of v∗ ∼ ∇×(∇×u`) presents no

additional cost since the resolved velocity u` is known. Figs. 17-26 in the Appendix show

the joint PDFs of v∗ and u` at different length-scales `, which demonstrate that v∗ and the

coarse velocity u` are often of a comparable magnitude.

Our interpretation of v∗ as an eddy-induced velocity representing subscale vortical mo-

tions can be justified by appealing to a relation by Johnson4 [36, 37],

τ `(ui, C) = 2

∫ `

0

dδ δ
(
∂k(ui)δ ∂kCδ

)
√
`2−δ2

. (46)

Eq. (46) highlights that subscale flux τ `(u, C) is due to the cumulative contribution of

subscale velocity and scalar gradients at all scales < `. Since subscale velocity gradients

can be decomposed into strain and vorticity, and since expression (24c) is the dominant

contribution, we are justified in interpreting v∗ as an eddy-induced velocity representing

subscale vortical motions.

4 Johnson’s relation (46) is exact only when filtering with a Gaussian kernel.
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V. CONCLUSION

We have shown that unlike subscale strain, which acts as an anisotropic diffusion/anti-

diffusion tensor, subscale vorticity’s contribution at leading order is solely a conservative

advection of coarse-grained scalars by an eddy-induced velocity v∗ proportional to the curl

of vorticity. Our analysis relied on the leading order term in Eyink’s multiscale gradient

expansion, which coincides with the nonlinear model and is known to be an excellent a

priori representation of the subscale physics. Here, we provided additional evidence for this

excellent agreement from a three-dimensional compressible turbulence simulation and from

a two-layer shallow water model of geophysical turbulence. Since the convergence of Eyink’s

expansion and, therefore, the dominance of the leading order term relies on ultraviolet scale-

locality, our results and conclusions may not hold at length-scales larger than those of the

spectral peak.

While the focus of this paper was on the transport of scalars, a similar analysis may

also apply to the transport of momentum. Indeed, this is straightforward for incompress-

ible flows where approximation (24c) has been shown to work very well for momentum

transport[29, 30, 35]. Johnson’s recent work on the energy cascade [37] seems to indicate

that approximation (24c) may be deficient in its magnitude (by a factor ≈ 1
2
) compared to

the true momentum flux. Yet, since the two exhibit excellent spatio-temporal correlation as

was shown in [30, 35], a simple rescaling of expression (24c) by a space-time independent

coefficient (possibly ≈ 2) would suffice to match the true momentum flux. Once approxima-

tion (24c) (possibly ×2) is accepted as representative of the subscale flux, the same argument

we presented here follows through for momentum after replacing C with u in eq. (24c). In

flows with significant density variations such as compressible turbulence, the subscale flux of

momentum has a somewhat different functional form than in eq. (10b) due to the density-

weighted filtering required to satisfy the inviscid criterion[15, 58]. Yet, we conjecture that

a result similar to what we derived here is still possible for subscale momentum flux in

variable-density flows, which was shown to be scale-local in [24].
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APPENDIX

A. Additional supporting material from the compressible turbulence simulation

FIG. 11. Same as in Fig. 4 for ` = 0.3927.
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FIG. 12. Same as Fig. 4 for ` = 0.7854.
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 FIG. 13. Same as Fig. 4 for ` = 1.5708.

33



FIG. 14. Similar to the joint PDFs of the z-scores in Fig. 4, here we show the joint PDFs of the

actual τ `(ρ,u) and its approximation τm = 1
3M2`

2∂kρ ∂ku. Top row (A, B, C) shows the joint

PDFs between τ and τm at at ` = 0.19635. Second row (D, E, F) is for ` = 0.3927. Third row (D,

H, I) is for ` = 0.7854. Bottom row (J, K, L) is for ` = 1.5708. Left, middle, and right columns

show, the x, y and z components, respectively.
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FIG. 15. Spectra of (left) velocity, Eu(k), and (right) density, Eρ(k). Both decay with wavenumber

k sufficiently faster than the k−1 required for the multiscale gradient expansion to converge. Here

Eu(k) =
∑∣∣|k|−k∣∣<0.5

1
2 |û(k)|2 and Eρ(k) =

∑∣∣|k|−k∣∣<0.5
|ρ̂(k)|2, where û(k) and ρ̂(k) Fourier

coefficients.
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FIG. 16. Same as in Fig. 3, comparing the (left column) exact τ `(ρ,u) with (right column) its

approximation for the (top row) y-components and (bottom row) z-components.
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Joint PDFs of v_* and \OL{u} for 3 snapshots 

 

FIG. 17. Joint PDFs of v∗ and u. Color bar indicates the number of grid-points on a logarithmic

scale, proportional to the probability. Slope of best linear fit and correlation-squared, r2, are shown

in the top left of each panel. The best linear fits are omitted in the the plots due to small slopes.

The rms values are shown in the bottom right of each panel. Top row (A, B, C) shows the joint

PDFs between v∗ and u at at ` = 0.19635. Second row (D, E, F) is for ` = 0.3927. Third row (D,

H, I) is for ` = 0.7854. Bottom row (J, K, L) is for ` = 1.5708. Left, middle, and right columns

show, the x, y and z components, respectively. This figure highlights that the magnitudes of v∗

and the coarse velocity u` are often comparable.
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B. Additional supporting material from the shallow water simulation
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FIG. 18. Same as in Figure 9 for ` = 50 km.
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FIG. 19. Same as in Figure 9 for ` = 200 km.
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FIG. 20. Same as in Figure 9 for ` = 400 km.
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FIG. 21. Spectra of (left) u and (right) h computed from the two-layer stacked shallow water sim-

ulation. These are filtering spectra, calculated by filtering at successive length-scales as described

in [59, 60].
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FIG. 22. Same as in Fig. 8 for ` = 50 km.
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FIG. 23. Same as in Figure 8 for ` = 200 km.
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FIG. 24. Same as in Figure 8 for ` = 400 km.
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FIG. 25. Similar to the joint PDFs of the z-scores in Fig. 9, here we show the joint PDFs of

the actual τ `(h,u) and its approximation τm = 1
2M2`

2∂kh ∂ku, without normalization. Top and

bottom panels show zonal (eastward) and meridional (northward) components, respectively. A1

and A2 are for ` = 50 km, B1 and B2 for 100 km, C1 and C2 for 200 km, D1 and D2 for 400 km.
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FIG. 26. Joint Probability Density of v∗ and u. The colorbars are in log scale. The top panels

show zonal(eastward) componet and the bottom panels show meridional(northward) component.

A1 and A2 are for ` = 50 km, B1 and B2 are for ` = 100 km, C1 and C2 are for ` = 200 km, D1

and D2 are for ` = 400 km. The red lines are linear regression fits of which the slope and goodness

of fit(r2) are in the text in each panel. The rms values are shown in the bottom right of each panel.

This figure highlights that v∗ is often comparable in magnitude relative to the coarse velocity u`.
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