
Machine Learning for Online Sea Ice Bias CorrectionWithin
Global Ice‐Ocean Simulations
William Gregory1 , Mitchell Bushuk2 , Yongfei Zhang1 , Alistair Adcroft1 , and
Laure Zanna3

1Atmospheric and Oceanic Sciences Program, Princeton University, Princeton, NJ, USA, 2Geophysical Fluid Dynamics
Laboratory, NOAA, Princeton, NJ, USA, 3Courant Institute of Mathematical Sciences, New York University, New York,
NY, USA

Abstract In this study, we perform online sea ice bias correction within a Geophysical Fluid Dynamics
Laboratory global ice‐ocean model. For this, we use a convolutional neural network (CNN) which was
developed in a previous study (Gregory et al., 2023, https://doi.org/10.1029/2023ms003757) for the purpose of
predicting sea ice concentration (SIC) data assimilation (DA) increments. An initial implementation of the CNN
shows systematic improvements in SIC biases relative to the free‐running model, however large summertime
errors remain. We show that these residual errors can be significantly improved with a novel sea ice data
augmentation approach. This approach applies sequential CNN and DA corrections to a new simulation over the
training period, which then provides a new training data set to refine the weights of the initial network. We
propose that this machine‐learned correction scheme could be utilized for generating improved initial
conditions, and also for real‐time sea ice bias correction within seasonal‐to‐subseasonal sea ice forecasts.

Plain Language Summary Climate models contain errors which often lead to predictions which are
consistently out of agreement with what we observe in reality. In some cases we know the origin of these errors,
for example, predicting too much sea ice as a result of consistently cool ocean temperatures. In reality, however,
there are typically numerous model errors interacting across the atmosphere, ocean and sea ice, and to manually
parse through large volumes of climate model data in an attempt to isolate these errors in time and space is
highly impractical. Machine learning on the other hand is a framework which is well‐suited to this task. In this
work we take a machine learning model which, at any given moment, ingests information about a climate
model's atmosphere, ocean and sea ice conditions, and predicts how much error there is in the climate model's
representation of sea ice, without seeing any actual sea ice observations. We use this to adjust the sea ice
conditions in one particular climate model as it is running forward in time making predictions, and we find that
this significantly reduces the model's sea ice errors globally.

1. Introduction
Machine learning (ML) algorithms are beginning to cement their position as viable subgrid‐scale climate model
parameterizations, through their ability to isolate complex non‐linear relationships within large volumes of high
dimensional data (Brenowitz & Bretherton, 2018; Gentine et al., 2018; O’Gorman & Dwyer, 2018; Sane
et al., 2023; Yuval & O’Gorman, 2020). Typically this is achieved by training an ML model to learn a functional
mapping which characterizes the impact of subgrid processes on resolved scales, by training on high resolution
simulations or observational data. Significant effort is currently being afforded to the development of these ML
parameterizations in the context of for example, ocean turbulence, with early results (Frezat et al., 2022; Kurz
et al., 2023; Ross et al., 2023; Zanna &Bolton, 2020; C. Zhang et al., 2023) highlighting their potential to improve
important climate statistics, such as eddy kinetic energy at large scales, over their traditional physics‐based
counterparts. Meanwhile, only recently have studies begun to investigate ML‐based subgrid sea ice parameter-
izations. For example, Finn et al. (2023) successfully demonstrated an ML‐based sea ice parameterization which
learns short timescale errors associated with subgrid sea ice dynamics in a low resolution sea ice model.
Furthermore, Driscoll et al. (2023) showed success in emulating a sea ice melt pond parameterization using neural
networks.

Alternatively, combining data assimilation (DA) and ML has shown to be a promising framework for learning
either subgrid parameterizations or systematic model errors across various domains (Arcucci et al., 2021;
Bonavita & Laloyaux, 2020; Brajard et al., 2021; Chen et al., 2022; Farchi et al., 2021, 2023; He et al., 2023;
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Laloyaux et al., 2022; Mojgani et al., 2022). Readers are also referred to Bocquet et al. (2020) and Brajard
et al. (2020) for seminal works in this field. In a recent sea ice study by Gregory et al. (2023), hereafter G23, the
authors presented a DA‐based ML framework in which convolutional neural networks (CNNs) were used to
predict state‐dependent sea ice errors within an ice‐ocean configuration of the Geophysical Fluid Dynamics
Laboratory (GFDL) Seamless system for Prediction and EArth System Research (SPEAR) model, as a way to
highlight the feasibility of a data‐driven sea ice model parameterization within SPEAR. They approached this by
first showing that the climatological sea ice concentration analysis increments from an ice‐ocean DA experiment
map closely onto the systematic bias patterns of the equivalent free‐running model. This suggested that an ML
model which is able to predict the analysis increments could, in principle, reduce sea ice biases as an online model
parameterization or bias correction tool. Their subsequent CNN architecture then used information from local
model state variables and their tendencies, to make predictions of the corresponding sea ice concentration analysis
increment at any grid cell location. These offline predictions were shown to generalize well to both the Arctic and
Antarctic domains, and across all seasons. However, offline performance does not always directly translate to
online simulations, which can sometimes exhibit instabilities as well as climate drift after implementation
(Brenowitz et al., 2020; Ott et al., 2020; Rasp et al., 2018). In such cases, the MLmodel may require an additional
online training step in order to sample a larger model state space to which it was initially trained (Rasp, 2020).

In this present work, we advance the field of ML‐based parameterization in sea ice modeling by investigating the
online performance of the G23 DA‐based ML model when used as a tool to correct short‐term sea ice error
growth. We implement the correction scheme here within a coupled ice‐ocean configuration of SPEAR, as the
G23 CNN was originally trained on data from an ice‐ocean DA system, which therefore allows us to make direct
comparisons of model biases and increments produced from both the CNN and DA simulations. If the CNN is
able to reduce sea ice biases relative to the free‐running model, then this will provide a solid foundation for future
work into assessing the generalization to fully coupled systems, and ultimately a physics‐based sea ice model
parameterization.

2. Data and Methods
2.1. SPEAR Ice‐Ocean Model

SPEAR is a fully coupled ice‐ocean‐atmosphere‐land model (Delworth et al., 2020), which shares the same
components as the GFDL CM4model (Held et al., 2019), however with parameterizations and resolutions geared
toward seasonal‐to‐decadal prediction. The ocean and sea ice components are configured at a 1° horizontal
resolution and correspond to the Modular Ocean Model v6 (MOM6) and the Sea Ice Simulator v2 (SIS2),
respectively (Adcroft et al., 2019). In this work, we consider an ice‐ocean configuration of SPEAR, in which
MOM6 and SIS2 are forced by atmospheric conditions from the Japanese 55‐year Reanalysis for driving ocean‐
sea‐ice models (JRA55‐do; Tsujino et al. (2018)). Details of the ice‐ocean experiments are provided in
Section 2.3.

2.2. Machine Learning Model

The CNNmodel fromG23 was trained to predict sea ice concentration (SIC) increments from a SPEAR ice‐ocean
DA experiment (Y. Zhang et al. (2021); hereafter Z21). The Z21 DA experiment spanned 1 January 1982–1
January 2018, where satellite observations of SIC from the National Snow and Ice Data Center (NSIDC; Cav-
alieri et al. (1996)) NASA Team algorithm were assimilated into SIS2 every 5 days using the Ensemble
Adjustment Kalman Filter (EAKF) approach (Anderson, 2001), and sea‐surface temperatures were nudged to-
ward observations from version 2 of the Optimum Interpolation Sea‐Surface Temperature (OISSTv2) data set
(Banzon et al., 2016; Reynolds et al., 2007) at the model timestep. It should be noted that SIS2 has a 5‐category ice
thickness distribution (Bitz et al., 2001), with lower thickness bounds of 0.0, 0.1, 0.3, 0.7, and 1.1 m. The
(observable) aggregate SIC field is therefore computed in the model as the sum of the sea ice concentration in each
category (SICN), hence SIC =∑

5
k=1SICNk. Similarly, we compute the aggregate SIC increment (ΔSIC) as the

sum of the analysis increments in each category (ΔSICN). The G23 CNN then uses 5‐day mean inputs of state
variables and tendencies corresponding to: SIC, sea‐surface temperature (SST), zonal and meridional components
of ice velocities, sea ice thickness, net shortwave radiation, ice‐surface skin temperature, sea‐surface salinity, and
a land‐sea mask, in order to predict ΔSIC. This prediction of ΔSIC is then passed to a second CNN, along with
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SICN, to predict the category concentration increments ΔSICN. For convenience we refer to these two CNNs as a
single network hereafter.

The implementation of the CNN into SIS2 here is performed in an analogous manner to DA. Specifically, we run
an ensemble forecast of the model for 5 days (e.g., from 00:00 hr UTC on 1 January to 00:00 UTC on 6 January),
where we then generate the corresponding ΔSICN predictions for each ensemble member, add the predicted
ΔSICN fields to the instantaneous SICN state (i.e., the state at 00:00 UTC on 6 January), and restart the model for
the next 5‐day forecast (schematics of this 5‐day forecast plus correction process are shown in Figure 1, although
Section 2.3 describes this figure in more detail). It is important to note that we also apply a post‐processing after
each correction. For this, we follow the Z21 procedure for updating sea ice variables during DA (see Text S1 in
Supporting Information S1).

2.3. Ice‐Ocean Experiments

We compare four ice‐ocean simulations in this study, where each extends for a 5‐year period between 1 January
2018 and 1 January 2023. The initial ice and ocean conditions for all simulations are based on those from the Z21
DA experiment, which ended 1 January 2018. The atmospheric forcing is provided by JRA55‐do reanalysis
version 1.5, SSTs are nudged toward OISSTv2 observations using a piston velocity of 4 m per day, and SSS is
nudged to a seasonal climatology with a piston velocity of 1/6 m per day. Note that “piston velocity” here follows
previous definitions (Griffies et al., 2009), and refers to a scaling of the associated heat or salt flux due to restoring
the modeled ocean temperature or salinity to observations, respectively. Larger piston velocities yield a larger
heat or salt flux for a given temperature or salinity difference, respectively. In any case, the experiments are given
as follows:

1. The free‐running model in ice‐ocean mode (FREE).
2. An extension of the ice‐ocean DA experiment (DAZ21), which serves as the benchmark for this study.
3. An “out‐of‐the‐box” implementation of the G23 network (CNNG23), where the network has been trained

offline using all available data from the original DA experiment. This procedure is highlighted in Figure 1a,
where, during training, the loss functionLminimizes the error between the network predictions, CNN( X̄) , and
the increment from DA, ΔSIC(DAZ21). Here X̄ represents the 5‐day mean state variables and tendencies
described in Section 2.2. After training, this produces the network CNNG23, which is then implemented over

Figure 1. Schematic of bias correction schemes, shown in each panel for one 5‐day assimilation/correction cycle. The dots
represent the daily model state integrating forward in time. The vertical lines are then the corrections from either the CNN or
DA. (a) Out‐of‐the‐box G23 CNN training and implementation showing the Z21 DA simulation in red and the CNN
simulation in light blue. (b) Optimized G23 CNN training and implementation showing simulations with combined CNN and
DA corrections in teal, and the optimized CNN simulation in dark blue.
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the 2018–2022 period. The reader is referred to G23 for more details of the architecture and hyperparameters
related to the network training process.

4. An “optimized” version of the G23 network (CNNopt) where the weights of the G23 network are refined to
improve online performance. For this we use both DA and CNNs to iteratively augment the training data,
and subsequently refine the network weights after each augmentation iteration. For example, in the first
iteration we run a new ice‐ocean simulation between 1982 and 2017, and in which we apply a two‐step
CNN + DA correction every 5 days; first using CNNG23, and then using DA (see Figure 1b). We then
use this 36‐year simulation as a new training data set with which to update the weights of CNNG23, where,
during training, the loss function now minimizes the error between the network predictions, CNN( X̄) , and
the total model error, ΔSIC(CNNG23 + DA). This procedure is performed for a total of N = 3 iterations. Note
that we use the term “augmentation” here as each iteration corresponds to an update of network weights from
the previous iteration, rather than updating from for example, randomly initialized weights. Therefore,
CNNopt has been exposed to 3X more data samples than CNNG23. The network refinement after each
augmentation iteration is performed in an identical way to the offline learning procedure outlined in G23,
except now we only update the weights for five epochs after each iteration. After the three iterations, the
final optimized network CNNopt is then implemented over the 2018–2022 period without DA to assess
performance (blue dots in Figure 1b).

Note that the “Online validation” panels in Figure 1 highlight the simulations with CNN implementations relative
to a simulation which applies the respective “perfect” correction (i.e., the correction which either CNN would
produce if it had 100% prediction accuracy). These simply correspond to the extended DA experiment for
CNNG23 in Figure 1a, and the two‐step CNN correction plus DA for CNNopt in Figure 1b. A comparison of these
corrections (increments) is made in Section 3.2.2 in order to establish how the different implementation con-
figurations manifest within the increments. As a final point to note here, all results presented in this work are
based on ensemble mean fields, and all simulations are run with a “no leap” calendar, which excludes leap‐year
days.

3. Results
3.1. Model Bias

Figure 2 shows model biases for each of the ice‐ocean experiments outlined in Section 2.3. Initially considering
the annual‐mean spatial bias patterns of the free‐running model, we can see that this simulation is overall
positively biased in both hemispheres, with largest Arctic biases occurring in the east Atlantic sector
(Greenland, Barents, and Kara seas), and largest Antarctic biases in the Bellingshausen, Amundsen, and Indian
Ocean sectors. The daily SIC root‐mean‐squared error (RMSE) curves then highlight the seasonal variation of
the model bias, with largest RMSE values in FREE (black curves) occurring across June–August in the Arctic
(22.7%), and December–February in the Antarctic (28.5%). The average RMSE over the entire simulation
period corresponds to 17.8% and 20.0% in the Arctic and Antarctic, respectively, with larger errors in summer
and smaller errors in winter. As expected, the DA experiment (DAZ21; red curves) visibly reduces the bias
across all seasons, with average Arctic and Antarctic RMSE reductions relative to FREE of 4.2% and 5.5%,
respectively.

Turning to the two CNN correction schemes, the out‐of‐the‐box implementation (CNNG23; light blue curves)
shows systematic improvements relative to FREE, with average RMSE reductions of 1.9% and 3.9% in the Arctic
and Antarctic, respectively. The modest improvements in the Arctic make it difficult to identify qualitative
differences in the climatology spatial bias plots, however some improvements can be seen in the east Atlantic
sector. This is also highlighted in the regional Arctic sea ice extent (SIE) time series (Figure S1 in Supporting
Information S1), where regions are defined according to Meier and Stewart (2023). On the other hand, CNNG23
shows visible improvements across much of the Antarctic domain, with large bias reductions in the Amundsen
Sea and Pacific Ocean. The regional Antarctic SIE time series (Figure S2 in Supporting Information S1) also more
closely track the DA experiment throughout the majority of the simulation period, particularly in the Antarctic
growth season. In the melt season however, the simulation shows a tendency to drift back toward to the free‐
running model state. Comparing these results to the optimized CNN implementation (CNNopt; dark blue
curves), we see marked skill improvements. The average RMSE reductions compared to FREE are 3.9% and 5.9%
in the Arctic and Antarctic, respectively, and Figure 2 shows that sizable improvements have been made in the
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summer months in both hemispheres. Furthermore, both pan‐Antarctic and regional SIE (Figure S2 in Supporting
Information S1) are also considerably improved in the melt season compared to CNNG23, and often show reduced
biases relative to the DA experiment. It is worth noting however that many of the regional Antarctic SIE time
series for CNNopt show visible imprints of model shock (i.e., large fluctuations in extent, occurring every 5 days).
This can occur in DA when there is significant drift between each assimilation cycle, and the fact that we see this
here may suggest that there is rapid error growth occurring over the space of 5 days in the Antarctic. We discuss
this further in Section 3.2.2. In any case, the fact that the CNNopt experiment, which does not assimilate any
observations, has similar errors to DAZ21 suggests that the DA run is primarily correcting systematic model error
and that CNNopt is successfully capturing these errors.

3.2. Understanding Online Improvements

Between the two CNN models, it is clear that CNNopt is the most desirable scheme for reducing the free‐running
model bias. Furthermore, it is also clear that, relative to CNNG23, the largest gains from CNNopt come in the
summer months. In this section we take a closer look at the performance of each CNN correction scheme in order

Figure 2. Comparison of model biases from ice‐ocean simulations over the 2018–2022 period. The first and second rows show the mean SIC biases (model minus
observations), relative to the NSIDC NASA Team observations (DiGirolamo et al., 2022). The average RMSE of SIC is reported in each panel (RMSE computed each
day over sea ice covered grid cells only, and then averaged over all days). The bottom two time series plots show pan‐Arctic and pan‐Antarctic RMSE of SIC for each
simulation.
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to discern how these improvements manifest in both the spatial error patterns of each simulation, and also in the
SIC increments produced from each scheme.

3.2.1. Snapshots

Figure 3 shows example snapshots of summertime model errors in each hemisphere (see also Movie S1 in
Supporting Information S1 for snapshots over the 5‐year simulation period). In both hemispheres we can see that
FREE (Figures 3a and 3e) contains large positive errors related to over‐estimation of the sea ice edge (indicated by
the positive SIC biases equator‐ward of the observed ice edge contour). The errors pole‐ward of the ice edge
contour indicate local SIC errors. While the DA simulation (Figures 3b and 3f) retains some of these local SIC
errors, a significant fraction of the ice edge errors are reduced; almost halving the RMSE in the Antarctic relative
to FREE. CNNG23 (Figures 3c and 3g) shows some improvements relative to FREE (4.1% and 7.8% RMSE
improvement in the Arctic and Antarctic, respectively), however there are still considerable ice edge and local
SIC errors throughout both the Pacific sector in the Arctic, and the Atlantic and Pacific sectors in the Antarctic.

For CNNopt (Figures 3d and 3h) there are clear RMSE improvements relative to both FREE and CNNG23 in both
hemispheres, with remarkable improvements in the Antarctic. It could be argued however that, in the Arctic, the
simulated ice edge position is not much improved in this example. A useful metric to confirm this is the integrated
ice edge error (IIEE; Goessling et al. (2016)), which computes the total area for which the ice edge is both over‐
and under‐predicted, relative to satellite observations. For panels (a–d) in Figure 3, the IIEEs are given as 1.44,
0.90, 1.32, 1.05 million km2, respectively, which shows that the sea ice edge from each correction scheme is in
better agreement with the observations than FREE, and that CNNopt does indeed improve over CNNG23 in this
regard. Similarly in the Antarctic panels (e–h), the IIEEs are given as 3.98, 1.38, 3.11, 1.30 million km2,
respectively. Here we can see that CNNopt even shows improved ice edge errors over the DA simulation (see
Figure S3 in Supporting Information S1 for IIEE metrics computed over the entire 2018–2022 period). We can
also take the assessment of ice edge errors further by disaggregating the SIC RMSEmetric into grid points that lie
pole‐ward and equator‐ward of the observed ice edge contour on any given day, in order to assess where the
largest improvements from each correction scheme are manifesting (i.e., whether improvements are primarily in
the ice edge location or SIC within the ice pack). From this decomposition (Figures S4 and S5 in Supporting
Information S1) we find that, relative to FREE, in both hemispheres the largest RMSE reductions from each
correction scheme come from improvements in the ice edge. Furthermore, we find that CNNopt is considerably
reducing the summer ice edge errors relative to CNNG23.

Figure 3. Snapshots of summertime model errors (model minus observations) for the FREE, DA and CNN ice‐ocean
simulations. Errors are computed relative to the NSIDC NASA Team observations (DiGirolamo et al., 2022). RMSE values
are reported in each panel. The black contours mark the observed sea ice edge position (15% SIC).
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3.2.2. Analysis Increments

Figure 4 shows the mean SIC increments for all DA and CNN correction schemes. The increments here corre-
spond to those which were originally outlined in the “Online validation” panels of Figure 1. Namely, the extended
DA experiment (DAZ21), the out‐of‐the‐box CNN implementation (CNNG23), the optimized version of the G23
network (CNNopt), and each of the corrections from a two‐step CNN+DA process, in which CNNopt provides an
initial correction to the model state, followed immediately by a second correction from DA. We refer to these
individual corrections in the CNN+DA run as CNNCNN+DA and DACNN+DA, respectively. It should be noted that
the simulations corresponding to CNNopt and CNNCNN+DA use identical networks over the 2018–2022 period,
however, their inputs, and therefore their corrections, differ. Also, we note that there is no DA involved in the
2018–2022 simulation corresponding to CNNopt.

The mean increments from both CNNG23 and CNNopt in Figure 4 show largely similar spatial patterns in both
hemispheres, with CNNopt displaying overall larger magnitudes. In the Arctic, while both sets of CNN increments
show isolated regions of positive values along the Eurasian coast, they do not reflect the larger area of mean
positive increments seen in DAZ21 across the East Siberian, Laptev and Kara seas (from the DAZ21 Arctic time
series panel in Figure 4 we can see that these positive increments originate in summer). On the other hand, the
increments from CNNCNN+DA do indeed show mean positive summer values in these regions. This suggests that
the combination of input variables to the network which are needed to generate these positive predictions in the
Arctic, is only being sampled after the additional DACNN+DA step. Nonetheless, in Section 3.2.1 we have seen that
CNNopt yields significant improvements in Arctic summer SIC errors over CNNG23, which is primarily coming
from improvements in ice edge errors. This is consistent with the larger magnitude negative increments from
CNNopt in regions such as the Beaufort and Chukchi seas. This may then suggest that the positive summer

Figure 4. Comparison of SIC increments produced from either DA or CNNs during online simulations. The first two rows show spatial climatologies over 2018–2022.
The bottom two panels are then the equivalent time series, computed as mean fields over Arctic and Antarctic domains.
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increments seen in the DA and CNNCNN+DA corrections are needed to target local summer SIC errors. Regarding
DACNN+DA, we can see that, in both hemispheres, these corrections are lower in magnitude than DAZ21 on
average, which highlights how the initial correction from CNNCNN+DA is removing a sizable component of the
model error; leaving less error to correct with DA. This is particularly the case in the Antarctic, where the daily
increments from DACNN+DA are very close to zero, suggesting that the CNN has effectively removed the sys-
tematic component of the model error in the Antarctic. Meanwhile in the Arctic, there are still residual systematic
summertime errors associated with under‐predicting the positive increments, which DACNN+DA needs to address.

A natural question then arises as to why DAZ21 is as effective, if not more effective, at reducing the model bias
than CNNopt, even though the increments from CNNopt are considerably larger in magnitude. For this we turn to a
comparison of the increments from each of the concentration categories (Figures S6 and S7 in Supporting In-
formation S1). For CNNopt, we find that the largest magnitude corrections are being made to the thinnest ice
category, while on the other hand, DAZ21 makes sizable corrections to some of the thicker categories. This
therefore means that CNNopt needs to make larger corrections to achieve the same volume change as DAZ21.
Furthermore, the fact that CNNopt is largely updating the thinnest ice category also explains the model shock seen
in the regional Antarctic SIE time series for CNNopt in Figure S2 in Supporting Information S1. In the Pacific
sector in summer for example, the CNN is adding large extents of ice, which the model is then consistently
removing over each 5‐day interval. This now seems conceivable given that the new ice is very thin (5 cm
thickness), and hence would be susceptible to completely melting if advected to grid cells with sufficiently warm
SSTs. Further evidence to support this claim comes from the fact that this model shock behavior is significantly
damped in the regional sea ice volume time series (Figure S8 in Supporting Information S1); which makes sense
as the thinnest ice category will typically contribute less to the regional volume.

4. Discussion and Conclusions
There is currently much discourse centered aroundML‐based parameterizations and/or corrections within climate
models, particularly in the context of how to achieve stable and unbiased simulations after implementation. Many
studies have illustrated how to achieve stability within idealized models, where parameterizations are learned
from high resolution simulations. For example, by swapping out neural networks for random forests (Watt‐Meyer
et al., 2021; Yuval & O’Gorman, 2020), or using online and/or reinforcement learning (Kurz et al., 2023;
Rasp, 2020). In the context of DA‐based approaches, previous studies have shown that iterative sequences of DA
and ML can be used to learn the underlying dynamics of the numerical model to improve forecast capabilities in
idealized systems (Bocquet et al., 2020; Brajard et al., 2020; Farchi et al., 2021, 2023).

In this study, we have built upon these previous DA‐ML methodologies by exploring their application within a
large‐scale sea ice model used for climate simulations at GFDL. Subsequently, we have shown that a CNNmodel
which has been trained purely offline to predict increments from a sea ice DA system (which assimilates real sea
ice observations) can be used “out‐of‐the‐box” to systematically reduce sea ice biases in a 5‐year global ice‐ocean
simulation, without instabilities or drift. We have also introduced a data augmentation approach to optimize the
offline‐trained CNN, which significantly improves online generalization in both hemispheres; particularly in
terms of reducing sea ice edge errors in summer. This augmentation approach is performed by iteratively
generating new simulations in which corrections are applied from both the current iteration of the ML model, as
well as DA. Each iteration of the augmentation procedure therefore provides a new training data set with which to
refine the CNN weights from the previous iteration. While, in theory, this procedure could be repeated to
convergence, we opted for N = 3 iterations in this study due to computational expense. It is likely however that
continued iterations would yield further improvements, particularly in the Arctic summer, given that sizable gains
were made between each of the three iterations here (see Figure S9 in Supporting Information S1). We hy-
pothesize that the improvements from this augmentation procedure are a result of exposing the network to input
variables which contain information about how the model trajectory evolves after implementing the CNN (as
opposed to training purely offline where the inputs have no feedback with the CNN).

Interestingly, we find that, relative to the original DA experiment, the climatological sea ice biases associated
with the simulation which uses this “optimized” network are actually modestly improved in the Antarctic
(Figure 2). This is understandable when we consider that the target variable during each iteration of the network
refinement step is no longer the increment from original DA experiment, but rather the sum of the increments
from the two‐step CNN + DA experiment (recall Figure 1b). Therefore, the model bias from the original DA
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experiment should not be seen as the lower limit on what is achievable with the CNN. We can see this in Figure
S10 in Supporting Information S1, where the bias of the simulation which applies this two‐step CNN + DA
procedure is indeed systematically lower than both the original DA experiment and the optimized CNN. As
discussed in previous literature (Brajard et al., 2020; Farchi et al., 2021, 2023; Laloyaux et al., 2022), this
combined DA‐ML approach therefore leaves exciting avenues for future work relating to improved initial con-
ditions for numerical prediction. For seasonal predictions with the GFDL SPEAR model for example, initial
conditions for the ice and ocean (Y. Zhang et al., 2022; Lu et al., 2020) are based on DA via Ensemble Kalman
filters. The Ensemble Kalman filter is not formally designed to correct for systematic model error, and so this two‐
step CNN + DA procedure could be a way to generate more accurate initial conditions (see Figure S10 in
Supporting Information S1) with the CNN and DA fixing the systematic and random components of the errors,
respectively. Indeed while this is similar to a weak constraint 4‐D variational DA approach (Trémolet, 2007;
Wergen, 1992; Zupanski, 1993), the CNN has computational advantages (once trained) in that it does not require
the construction of an adjoint model (Bonavita & Laloyaux, 2020; Farchi et al., 2023; Laloyaux et al., 2022).

Further avenues for future work also include the use of the optimized CNN for making bias corrections to real‐
time seasonal sea ice forecasts, or sea ice projections on climate timescales. For seasonal prediction, the meth-
odology would follow that which has been presented in this study, except the CNN would be applied within
the fully coupled SPEARmodel. This would however require several considerations. For example, addressing the
issue of model shock seen in the Antarctic (which could potentially be reduced by increasing the frequency of the
CNN corrections), and also assessing generalization of the CNN to the fully coupled model, which includes new
interactive feedbacks with an atmospheric model. Looking also to longer term climate projections, G23 discussed
this in the context of implementing the CNN as a sea ice model parameterization. This would then require further
considerations of how to appropriately conservemass, heat and salt when adding/removing sea ice from the ocean.

Data Availability Statement
All data from the 1982–2017 DAZ21 experiment (which were used to train the CNNG23 network) are available
through a v.1.0.0 release of the software on Zenodo (Gregory, 2023a). This also includes the network weights and
standardization statistics. The code to implement the CNN into the SIS2 sea ice model, as well as perform DA, are
then available through a v.1.0.1 release on Zenodo (Gregory, 2023b). Network weights are also available after
each iteration of the augmentation procedure. The baseline DAZ21 data and available code should enable to reader
to reproduce the results of this paper. WG is pleased to assist in configuring any experiments which seek to
replicate this work.
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