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O C E A N O G R A P H Y

Advancing global sea ice prediction capabilities using a 
fully coupled climate model with integrated 
machine learning
William Gregory1*, Mitchell Bushuk2, Yong-Fei Zhang3, Alistair Adcroft1, Laure Zanna4,5,  
Colleen McHugh6, Liwei Jia2

We showcase a hybrid modeling framework that embeds machine learning (ML) inference into the Geophysical 
Fluid Dynamics Laboratory Seamless System for Prediction and Earth System Research (SPEAR) climate model for 
online sea ice bias correction during a set of global fully coupled 1-year retrospective forecasts. We compare two 
hybrid versions of SPEAR to understand the importance of exposing ML models to coupled ice-atmosphere-ocean 
feedbacks before implementation into fully coupled simulations: HybridCPL (couple trained; with feedbacks) and 
HybridIO (ice ocean trained; without feedbacks). Relative to SPEAR, HybridCPL systematically reduces seasonal fore-
cast errors in the Arctic and considerably reduces Antarctic errors for target months May to December, with >2× 
error reduction in 4- to 6-month lead forecasts of Antarctic winter sea ice extent. Meanwhile, HybridIO suffers from 
out-of-sample behavior that can trigger a chain of Southern Ocean feedbacks, leading to ice-free Antarctic sum-
mers. Our results emphasize that ML can demonstrably improve numerical sea ice prediction capabilities and that 
exposing ML models to coupled ice-atmosphere-ocean processes is essential for generalization in fully coupled 
simulations.

INTRODUCTION
Over the past 4 to 5 decades, remote sensing observations, ground-
based instruments, and submarine surveys have shown that Earth’s 
sea ice cover is undergoing marked changes. The Arctic, for exam-
ple, has seen basin-wide thinning and retreat of sea ice across all 
seasons (1, 2). This ice loss has played a significant role in high-
latitude climate feedbacks and Arctic amplification, where Arctic 
surface temperatures have warmed at nearly four times the rate of 
the global average (3). Furthermore, Arctic sea ice loss can also con-
tribute to a slowdown in the poleward transport of warm ocean wa-
ters (4) and increased frequency of extreme weather events across 
Europe (5) and North America (6, 7). Meanwhile, Antarctic sea ice 
area exhibited a modest positive trend between 1979 and 2014. 
However, since 2016, there have been five record low summer min-
ima and two record low winter maxima, with many studies now sug-
gesting a regime shift in Antarctic sea ice caused by Southern Ocean 
warming (8–12).

Reproducing historical sea ice changes within climate models is 
critical for enabling confident assessments of how both anthropo-
genic forcing and internal climate variability will shape future sea 
ice evolution and its impacts on climate and society. Meanwhile, the 
latest generation of climate models submitted to the sixth phase of 
the Coupled Model Intercomparison Project (CMIP6) shows con-
siderable spread in their simulations of historical sea ice area and 
trends, with models generally underestimating the sensitivity of sea ice 
to global warming in the Arctic (13) and overestimating the sensitiv-
ity in the Antarctic (14). While internal climate variability certainly 

contributes to this spread (15, 16), errors in component and coupled 
model physics remain the dominant source of historical bias and 
mid–21st century projection uncertainty (17).

On shorter timescales, these model physics errors also affect our 
ability to make accurate seasonal-to-interannual sea ice predictions, 
as models struggle to faithfully reproduce various physical drivers of 
regional sea ice variability (18–20). Since 2008, there has been a 
growing community effort to understand and improve sea ice pre-
diction capabilities. This effort culminates each year into a “Sea Ice 
Outlook,” where community members submit seasonal forecasts of 
the September Arctic sea ice minimum and February Antarctic sea 
ice minimum to the Sea Ice Prediction Network (SIPN) online plat-
form (21, 22). Forecasts range from statistical techniques (23–25) to 
fully coupled dynamical models (26–28), as well as heuristic approach-
es. A recent intercomparison of 34 individual forecast systems that 
are routinely submitted to SIPN found that many statistical and dy-
namical models can skillfully predict September Arctic sea ice con-
ditions 1 to 3 months in advance (29), suggesting that useful real-time 
predictions of September Arctic sea ice are likely on the horizon. 
Meanwhile, in a separate SIPN South intercomparison study of 
Antarctic forecasts, statistical models were found to generally out-
perform coupled climate models at predicting regional-scale sea ice 
variability (22). This therefore prompts an urgent need to improve 
Antarctic sea ice forecasts within climate models.

Achieving useful seasonal-to-interannual climate model sea ice 
predictions means addressing both the model physics errors that 
lead to systematic bias and also ensuring accurate initial conditions 
for the land, atmosphere, ocean, and sea ice. Accurate initial condi-
tions are routinely achieved through frameworks such as nudging 
(30–32) and data assimilation (DA) (33–35). Within which, model 
states are either linearly relaxed toward a set of observations over a 
given time window (nudging) or updated through a Bayesian treat-
ment of model and observational uncertainty (DA). In this present 
study, we investigate specifically the model physics problem, while 
also using DA to characterize model errors.
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The recent growth in application of machine learning (ML) tech-
niques to climate research has been extraordinary. For sea ice, this 
has led to breakthroughs in remote sensing, sea ice reanalysis (36–
39), and statistical forecasting (40, 41) and has also paved the way 
for an era in “hybrid” sea ice modeling, using ML to replace or im-
prove certain aspects of sea ice model physics (42–45). Of course, 
hybrid modeling is not only limited to sea ice but has also been a 
burgeoning area of research in both atmosphere (46–49) and ocean 
(50–53) models. One branch of hybrid climate modeling in particu-
lar focuses on learning state-dependent representations of structural 
model error. In this approach, it is assumed that the corrections, or 
increments, applied to a numerical simulation during DA or nudging 
are largely a manifestation of predictable errors associated with 
poorly parameterized/missing physics and the discretization of con-
tinuous equations (54). An ML model can therefore be used to pre-
dict these increments using only model state variables as inputs, 
thus providing a framework for online bias correction during subse-
quent numerical simulations. This approach has been shown to suc-
cessfully reduce systematic model biases when run in component 
and idealized models (45, 48, 55, 56). A recent study also extended 
this approach to bias correct sea ice and ocean conditions in the fully 
coupled Norwegian Climate Prediction Model (57). While their 
study showed promising bias improvements, their implementation 
was restricted to the Arctic domain and used different ML models 
for each prediction month and year, resulting in 236 different ML 
models. Their approach also only performed bias correction once 
per roughly 15 days.

In this present article, we seek to understand the importance of 
exposing ML models to coupled ice-atmosphere-ocean climate feed-
backs before their implementation into fully coupled numerical 
simulations. To do this, we create two hybrid versions of the Geo-
physical Fluid Dynamics Laboratory (GFDL) seasonal-to-decadal 
prediction model, Seamless System for Prediction and Earth System 
Research (SPEAR) (58). The first hybrid model, HybridIO, has an 
ML component that is trained to predict sea ice concentration (SIC) 
error corrections from a reanalysis-forced ice-ocean (IO) configura-
tion of SPEAR, which performs SIC DA and sea surface temperature 
(SST) nudging. The second hybrid model, HybridCPL, has an ML 
component that is trained to predict SIC error corrections from a 
fully coupled configuration of SPEAR, which performs SIC DA and 
nudges SST and the three-dimensional (3D) atmosphere, tempera-
ture, wind, and humidity fields. The fundamental difference between 
HybridIO and HybridCPL is that the training data for HybridCPL were 
generated from a simulation that allows for coupled ice-atmosphere-
ocean feedbacks, while the training simulation for HybridIO does 
not. This will therefore allow us to determine the importance of 
these feedbacks when training ML models for implementation into 
free-running (no nudging) fully coupled simulations. In this study, 
we compare the hybrid models in a suite of global, 1-year, fully cou-
pled retrospective forecast (reforecast) experiments, initialized over 
a 6-year period between 2018 and 2023.

Previous studies have provided seminal work on how offline-
trained ML models can suffer generalization issues when imple-
mented into online numerical simulations due to feedbacks between 
the ML parameterization and the dynamical model, which the ML 
model did not see during training (59, 60). Our present work is dis-
tinct from these studies in two key ways: (i) We address the issue of 
offline-to-online generalization from the outset by fine-tuning all 
ML models using a data augmentation procedure, which iteratively 

exposes the ML model to online feedbacks (45) (see Materials and 
Methods). This allows us to focus specifically on the impacts of 
ice-atmosphere-ocean climate feedbacks on ML generalization. (ii) 
While past studies tested offline-to-online generalization in a single-
component idealized (Lorenz-96) system, we conduct our analysis 
in global fully coupled simulations using SPEAR.

The paper proceeds as follows: Results first evaluates the year-
round forecast skill of both HybridIO and HybridCPL, relative to sat-
ellite observations of SIC from the National Snow and Ice Data 
Center (NSIDC) NASA Team dataset (61). We then investigate why 
HybridIO systematically degrades forecast performance in Arctic 
and Antarctic summer, paying attention to generalization of net-
work inputs and evaluation of coupled climate feedbacks. We show 
that, through including coupled feedbacks in the training data, 
HybridCPL simulations are better able to generalize to free-running 
coupled simulations. Last, we explore the potential for HybridCPL to 
predict extreme events and discuss its future outlook for climate-
timescale integrations.

RESULTS
The 1-year reforecasts in this study are based on 15-member en-
semble predictions that are initialized on the first day of each month 
for all months between January 2018 and December 2023. This pro-
vides 72 reforecasts to evaluate in the Arctic and Antarctic. All results 
are based on the ensemble mean of all 15 members (see Materials 
and Methods for a description of the ensemble).

Performance of hybrid model forecasts
Figure 1 shows the root mean square error (RMSE) of Arctic and 
Antarctic SIC predictions for each target and initialization month. 
Here, the RMSE corresponding to a lead 0 prediction of January is 
computed as the mean of daily RMSEs between 1 and 31 January 
from a 1 January–initialized forecast. A lead 1 prediction of January 
is then the mean of daily RMSEs between 1 and 31 January from a 
1 December–initialized forecast and so on. Daily RMSEs are evalu-
ated over grid points where SIC is greater than zero in either the 
observations or model. For SPEAR (Fig. 1, A and D), the RMSE is 
highest for summer target months in both hemispheres, although 
the Antarctic generally displays higher year-round RMSE. Larger 
summertime errors are expected, given that ice melting causes local 
SIC variations throughout the interior ice pack, while, in winter, the 
interior ice pack is predominantly fully ice covered in both observa-
tions and models. Figure 1 (B and E) then shows the difference in 
RMSE between HybridIO and SPEAR, where green colors indicate 
an improved forecast relative to SPEAR and red colors indicate a 
poorer forecast. The degradation in May to November Arctic pre-
dictions and July to January Antarctic predictions is the most notable 
features of these panels. Meanwhile, Arctic predictions in HybridCPL 
are near systematically improved compared to SPEAR (Fig. 1C) and 
are significantly improved (95% confidence, estimated by a 10,000 
sample bootstrapping with replacement) in 72% of cases over HybridIO. 
Between May and December, HybridCPL systematically reduces 
Antarctic RMSE relative to SPEAR and HybridIO. However, fore-
casts are degraded between January and April (discussed in detail in 
a later section on coupled model biases). Overall, HybridCPL shows 
improvement over HybridIO in 56% of cases in the Antarctic, al-
though, with only 7 years of validation, these values could be subject 
to internal variability.
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To take a closer look at the performance of each model, Fig. 2 
now shows March-initialized reforecast biases. Starting with the 
Arctic, the baseline SPEAR model generally performs well at Arctic 
sea ice forecasts, ranking second against 16 other dynamical model 
predictions of September Arctic sea ice in a recent intercomparison 
(29). In Fig. 2A, we can see that SPEAR (blue line) tracks the ob-
served pan-Arctic extent (red line) well from March to June, although 
it starts to diverge in July and slightly underpredicts the September 
minimum. The mean SIC error across the 1-year reforecasts (Fig. 2B) 
then shows that SPEAR has too much sea ice in places such as the 
Greenland, Iceland, and Norwegian (GIN), Barents, Laptev, Chukchi, 
and Bering seas, and too little sea ice in Hudson Bay and the Sea of 
Okhotsk. Figure S1 shows a breakdown of the SPEAR reforecast bi-
ases month by month, highlighting that the summertime low bias 
originates in Hudson Bay and Baffin Bay in June and then spreads to 
the Canadian Archipelago by August and September. Meanwhile, 
the HybridIO sea ice extent (gray line) starts to diverge from obser-
vations in May (Fig. 2A), resulting in systematic underprediction for 
the remainder of the forecast period. Figure 2C then shows that 
HybridIO has overcorrected the majority of SPEAR’s positive SIC bi-
ases, with now predominantly negative SIC biases relative to obser-
vations (in the next section, we attribute this bias reversal to 
out-of-sample ML inputs). For HybridCPL, pan-Arctic extent is 
largely overlapping with SPEAR (Fig. 2A, black line) but displays im-
proved performance for local SIC predictions (Fig. 2D). Some note-
worthy features include a near eradication of a systematic GIN Sea 
bias, along with improvements in Hudson Bay, the East Siberian Sea, 
the Beaufort Sea, and the Sea of Okhotsk.

Turning to the Antarctic (Fig. 2E), SPEAR has a systematic cir-
cumpolar, year-round positive sea ice extent bias, which is largest in 
austral winter and has particularly significant contributions from plac-
es such as the Ross, Amundsen, and Bellingshausen seas (Fig. 2F). 
For HybridIO, pan-Antarctic sea ice extent reaches its maximum in 
August, a full month earlier than both observations and SPEAR 
(Fig. 2E). From this point on, the sea ice extent declines until reach-
ing ice-free conditions (less than 1 million km2 of extent) by February, 
exemplified by the near hemisphere-wide negative SIC bias in Fig. 2G; 
we explain that coupled feedbacks drive this pathological behavior 
in the next section. For HybridCPL, pan-Antarctic extent is improved 
relative to SPEAR in all months except February (Fig. 2E). The posi-
tive extent bias in winter is markedly reduced, and the early melt 
season extent (October to December) tracks the observations very 
well. Figure 2H highlights notable bias improvements in the Indian 
and Pacific sectors, the Weddell Sea, and the Amundsen and Bell-
ingshausen seas. However, degradations exist in the southern Ross 
Sea (discussed later).

Diagnosing forecast discrepancies and the role of coupled 
climate feedbacks
To understand why HybridIO systematically underpredicts sea ice 
conditions in the Arctic and produces ice-free Antarctic summers, 
we first investigate potential out-of-sample issues. Starting with the 
Arctic, we look at the March to July period where the March-initialized 
HybridIO reforecasts start to diverge from SPEAR and HybridCPL. 
Figure 3 (A and B) shows the mean March to July SIC increments 
from the 36-year ice-ocean DA simulation and the fully coupled DA 

Fig. 1. SIC prediction error, 2018–2024. (A) SPEAR pan-Arctic RMSE. (B) RMSE difference between HybridIO and SPEAR. (C) Same as (B) but for HybridCPL. (D to F) Same 
as for (A) to (C) but for pan-Antarctic. Stippling in (C) and (F) shows where HybridCPL outperforms HybridIO at the 95% confidence level. RMSE is computed relative to 
NSIDC observations.
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simulation, respectively. Here, we can see that the increments show 
overall very similar magnitudes and spatial patterns, highlighting 
that the ice-ocean and coupled models have similar sea ice biases in 
the Arctic. When we then look at the March-initialized reforecasts, 
we can see that the ML increments from HybridIO are generally neg-
ative within the Arctic basin and have larger magnitudes than the 
ice-ocean DA experiment (Fig. 3, C versus A). Meanwhile, the in-
crements from HybridCPL are in good agreement with the nudged 
DA experiment (Fig. 3, D versus B). Diagnosing each of the inputs 
to the ML models reveals that sea surface salinity (SSS) may be caus-
ing an out-of-sample issue for HybridIO (Fig. 3, E and F). This is 
because the ice-ocean DA experiment also includes a restoring of 
SSS to a monthly climatology, whereas the SSS is allowed to evolve 
freely in the coupled DA experiment. Therefore, normalizing SSS 
during HybridIO reforecasts based on the statistics of the ice-ocean 
DA experiment produces SSS values of >4σ lower than HybridCPL in 
places such as Hudson Bay and the Eurasian coastal seas and ~0.5σ 
lower across the Arctic basin. This highlights that SPEAR generally 
has a fresher ocean surface than the SSS-restored ice-ocean model. 
This out-of-sample behavior also explains why, relative to SPEAR, 
HybridIO’s SIC bias pattern appears to flip sign in the Arctic basin 
(Fig. 2, C versus B). Both the coupled model and ice-ocean model 
have a positive SIC bias within the Arctic basin; hence, HybridIO and 
HybridCPL predict negative SIC increments in this region on aver-
age. However, because of out-of-sample network inputs, the incre-
ments from HybridIO become too large, which overcorrects the positive 
reforecast bias and reverses the sign.

Conducting the same analysis between June and August for the 
Antarctic reveals different increment spatial patterns between the 
two DA experiments (Fig. 3, I and J). These differences are most 
notable in the Weddell Sea, where the ice-ocean DA increments are 

slightly negative within the interior ice pack, while the coupled DA 
increments are positive; this emphasizes different sea ice biases be-
tween the ice-ocean and coupled models. The HybridIO increments 
are then systematically negative in the Weddell Sea and are over 2× 
larger in magnitude than those from DA (compare Fig. 3, K and I). 
Meanwhile, the increments from HybridCPL are more in line with 
those from the coupled DA experiment, although they show lower-
magnitude positive increments in the Weddell and Ross seas and larger-
magnitude negative increments in the marginal ice zone (Fig. 3, L 
versus J). This time, the normalized SSS fields between HybridIO and 
HybridCPL are very similar and generally “in sample” (Fig. 3, M and 
N), and the largest differences in ML inputs occur in sea ice thick-
ness (SIT; Fig. 3, O versus P). Between June and August, the mean 
pan-Antarctic sea ice extent in HybridIO is ~7% lower than the re-
spective HybridCPL mean extent. However, the mean pan-Antarctic 
SIT in HybridIO is over 25% lower than HybridCPL. In the Arctic, 
HybridIO is 3% thicker than HybridCPL on average. However, the 
normalized HybridIO SIT values are slightly lower in magnitude 
than HybridCPL (Fig. 3, G versus H). This is primarily being influ-
enced by the fact that the nudged coupled DA simulation has lower 
SIT variability than the ice-ocean DA run. Therefore, normalizing 
HybridCPL reforecasts by a smaller SD produces larger normalized SIT.

At this point it is worth noting that the ML models in this study 
do not predict SIT increments but rather make changes to the mod-
el’s SIT by adjusting the concentration of ice within each of the mod-
el’s ice thickness categories (see Materials and Methods). A question 
therefore remains as to whether HybridIO’s thinner and less exten-
sive ice between June and August is coming directly from the ML 
model’s SIC updates or whether the ML model is also triggering 
feedbacks that inhibit winter ice growth rates and ultimately lead to 
ice-free conditions by the end of summer. To investigate this further, 

Fig. 2. March-initialized reforecast bias, 2018–2024. (A) Mean pan-Arctic sea ice extent. (B to D) SIC bias across entire 1-year reforecasts for SPEAR, HybridIO, and 
HybridCPL, respectively. (E to H) Same as (A) to (D) but for Antarctic. Biases are relative to NSIDC observations (Obs). Regions in (B) are as follows: 1, GIN Sea; 2, Barents Sea; 
3, Kara Sea; 4, Laptev Sea; 5, East Siberian Sea; 6, Chukchi Sea; 7, Beaufort Sea; 8, Central Arctic; 9, Baffin Bay and Labrador Sea; 10, Hudson Bay; 11, Bering Sea; 12, Sea of 
Okhotsk. Regions in (F) are as follows: 1, Weddell Sea; 2, Indian Ocean; 3, Pacific Ocean; 4, Ross Sea; 5, Amundsen and Bellingshausen Sea.
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we take a process-oriented approach by looking at anomalies in 
coupled ice-atmosphere-ocean diagnostics relative to SPEAR. Figure 4A 
shows mean Weddell Sea (48.5°W to 39.5°E, 56.61°S to 90°S) anom-
alies in SIC, SIT, mixed-layer depth (MLD), and surface energy bal-
ance terms for each month of the March-initialized reforecasts. 
Note that the surface energy balance corresponds to the sum of net 
shortwave (SWn), net longwave (LWn), and turbulent heat fluxes 
(THFs), where THFs are the sum of sensible and latent heat ex-
changes. THFs are also defined as positive upward, while LWn and 

SWn are positive downward. For this region of the Weddell Sea, the 
negative SIC and SIT anomalies indicate an overall negative sea ice 
volume anomaly relative to SPEAR between March and August. 
This sea ice volume anomaly is accompanied by a deepening of the 
ocean mixed layer (~300 m), as well as an increase in both THF 
(~20 W m−2) and upward longwave (~10 W m−2). This can be ex-
plained by the volume anomaly creating areas of open water and 
thinning the sea ice, both of which make the ocean more susceptible 
to surface forcing from the atmosphere. This cold wintertime forcing 

Fig. 3. Ice-ocean and coupled SIC increments and ML inputs. (A) Mean March to July SIC increments from DA between 1982 and 2017 from the reanalysis-forced ice-
ocean (IO) simulation. (B) Same as (A) but for the coupled (CPL) simulation with atmospheric nudging. (C and D) Mean 2018–2024 March to July ML increments from 
March-initialized reforecasts with HybridIO and HybridCPL, respectively. (E and F) Same as (C) and (D) but for normalized SSS. (G and H) Same as (E) and (F) but for normal-
ized sea ice thickness (SIT). (I to P) Same as (A) to (H) but for Antarctic June to August period.
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then drives surface cooling and ocean convection (Fig. 4B), which 
brings relatively warm and saline waters to the surface (Fig. 4C) 
and increases THF (Fig. 4D), all of which inhibit winter ice growth 
rates. Between March and August solar insolation is also at its low-
est, resulting in little to no response from SWn. However, by the 
time shortwave “turns on” in September, the volume anomaly has 
already had a marked impact on the surface albedo. A positive SWn 
anomaly then grows between September and November and coin-
cides with higher rates of ice loss in HybridIO (compare HybridIO 
and SPEAR sea ice extent curves in Fig. 2E). This indicates that the 
wintertime ocean preconditioning of the sea ice is also potentially 
triggering summertime ice-albedo feedbacks, further enhancing the 
sea ice anomaly. The reason that the SIC and SIT anomalies 
in Fig. 4A then start to recover between December and February is 
because HybridIO has effectively lost its ice cover.

Antarctic reforecasts with HybridIO appear to be an example of 
how interactions between ML models and climate physics can cause 
out-of-sample behavior and potential runaway feedbacks. This occurs 

by the ML model preconditioning the winter sea ice and ocean state 
to facilitate ice-free conditions by end of summer. Evaluating the 
same Fig. 4 diagnostics for HybridCPL reveals a stable simulation 
with no sizable anomalies relative to SPEAR (fig. S2). This highlights 
that ice-atmosphere-ocean feedbacks within ML training data are 
essential for online generalization in coupled models, in this case, by 
preventing a chain of coupled feedbacks between the sea ice, ocean 
interior, and the surface atmosphere. Last, evaluating HybridIO in 
the Arctic also does not show the same pathological behavior as the 
Antarctic, with mean anomalies in surface energy balance terms on 
the order of 1 W m−2 and MLD anomalies of less than 5 m across the 
Arctic basin (see fig.  S3). This may indicate that an ML model 
trained in an ice-ocean configuration could generalize to the fully 
coupled SPEAR model in the Arctic after careful treatment of nudg-
ing routines, such as SSS. We note here that the Arctic is generally 
better behaved than the Antarctic in both HybridIO and HybridCPL 
(recall Fig. 1). We can attribute this to the fact that, in both SPEAR 
and observations, the Arctic Ocean is much more stratified than the 
Southern Ocean (see fig. S4). This means that Arctic sea ice is more 
isolated from the ocean interior and thus has less potential to be 
influenced by interior ocean model errors. Meanwhile, a well-mixed 
Southern Ocean means that ocean processes (and biases) are more 
tightly coupled to the sea ice and have the potential to cause gener-
alization issues for hybrid sea ice models, as we show in the next section.

Impact of coupled model biases on ML generalization
At this point, we established that HybridCPL is the desirable hybrid 
model for global sea ice bias correction through its ability to gener-
alize to online ice-atmosphere-ocean climate feedbacks. However, 
in Fig. 1F, we saw that HybridCPL also shows degradations in forecast 
skill relative to SPEAR for target months in Antarctic summer 
(January to April). Given that these biases occur during the melt 
and early growth season, it is reasonable to expect that HybridCPL 
could be inadequately capturing melt and growth processes. How-
ever, a mass budget decomposition (see fig. S5) reveals that both the 
thermodynamic and dynamic terms contributing to sea ice mass 
evolution are very similar between SPEAR and HybridCPL, suggest-
ing feasible melt and growth processes in HybridCPL. Instead, we 
show in this section that these summertime degradations originate 
from an out-of-sample problem related to coupled model biases.

We recalled that the HybridCPL ML model was trained on model 
state variables that were generated from a simulation, which per-
forms SIC DA as well as SST and atmospheric nudging. We then 
implemented this ML model into reforecast experiments with a free-
running atmosphere and ocean. Learning DA increments in this 
nudged configuration was intended to create an environment in which 
the ML model learns intrinsic sea ice model physics errors, as op-
posed to coupled model biases, which imprint on the sea ice. How-
ever, if the ML model has not been exposed to these biases, then it 
could make erroneous online predictions. In Fig. 5A, we can see that 
the 36-year coupled DA simulation (which performs SST nudging) 
contains a slight positive summertime (February) SST bias. The 
resultant February SIC from this simulation (Fig. 5B) also has an 
Antarctic-wide low bias; the February SIC DA increments will 
therefore be positive to counteract this bias. In the free-running 
coupled reforecasts, SPEAR exhibits larger and more heterogeneous 
February SST biases (Fig. 5C; we use November-initialized forecasts 
of February as an example here, but the same relationship holds 
for other initialization dates and summer target months). One 

Fig. 4. March-initialized HybridIO-SPEAR anomalies, 2018–2024. (A) Mean 
Weddell Sea anomalies in SIC, SIT, SWn radiation, LWn radiation, THF, and MLD. THF 
sign convention is positive upward, while LW and SW are positive downward. (B to 
D). Average HybridIO anomalies in MLD, SST, and THF across the 1-year reforecasts. 
Contour shows region of anomalies in (A).
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noteworthy region is the Ross Sea, which contains a large area of 
negative (cold) SST bias. In Fig. 5D, we then see this SST bias im-
printed onto the sea ice as a positive SIC bias. On the basis of the DA 
simulation, the ML model has learned to add sea ice in Antarctic 
summer. However, in the online reforecasts, it is now adding sea ice 
onto a preexisting positive Ross Sea bias. We can see this in Fig. 5E, 
which shows the February sea ice edge contour for each reforecast 
experiment, highlighting the fact that HybridCPL has exacerbated 
the sea ice bias in the Ross Sea. Furthermore, HybridCPL has also 
exacerbated a slight positive bias in the Weddell Sea, which may also 
be related to the negative SST bias in this location (see Fig. 5C). This 
positive sea ice extent bias is also reflected in the sea ice mass budget 
terms (fig. S5), where a more extensive sea ice cover means an in-
crease in sea ice mass loss due to bottom melt processes. We further 
test our hypothesis of an ocean-related generalization problem by 
repeating the November-initialized reforecasts, but this time with 
SST nudging turned on. In Fig. 5F, we can see that HybridCPL per-
forms better in this scenario, with a sea ice edge that is in closer agree-
ment with observations and SPEAR in the Ross and Weddell seas.

These results support the notion that, while HybridCPL is better 
equipped to handle the coupled climate feedbacks that affect sea ice 

evolution, the well-mixed Southern Ocean (recall fig. S4) means that 
the ML model is still susceptible to out-of-sample behavior through 
interactions with coupled model biases. It is therefore reasonable 
to assume that if these Southern Ocean biases were addressed, then 
HybridCPL would likely yield systematic year-round forecast im-
provements in both the Arctic and Antarctic; we outline potential 
future directions to this end in Discussion.

Extreme events: September 2023 Antarctic case study
We now learn that coupled feedbacks play a central role in Hybrid-
CPL’s ability to, on average, improve seasonal sea ice forecast skill. We 
therefore conclude Results with a case study to determine the po-
tential for HybridCPL to also yield improved forecasts in extreme 
years. The 2023 September Antarctic sea ice extent gained con-
siderable attention for being a “once in a multimillion-year event” 
with an extent anomaly >5σ below the 1980–2010 mean (62). 
This anomaly was primarily caused by anomalously warm upper 
ocean temperatures and strong northerly winds, both of which 
significantly inhibited winter ice growth rates in the Ross and 
Weddell seas (63).

In Fig.  6, we show the September Antarctic sea ice prediction 
skill for both SPEAR and HybridCPL. In terms of pan-Antarctic sea 
ice extent, SPEAR has a positive September extent bias for all initial-
ization months and years (Fig. 6A), where the bias grows steadily 
with increasing lead time, up to approximately February. The largest 
September 2023 forecast errors occur for initialization dates March–
May, with an average extent bias of 4.77 million km2. Meanwhile, the 
average 2018–2022 extent bias for March to May forecasts is 3.80 million 
km2, an error increase of 0.97 million km2 from 2018–2022 to 2023. 
The September sea ice extent bias for HybridCPL is then systemati-
cally lower than SPEAR for all initialization months and years 
(Fig. 6B). For years 2018–2022, the forecast error does not grow 
with lead time at the same rate as SPEAR. For example, the differ-
ence in sea ice extent bias for February-initialized forecasts versus 
September-initialized is only 0.08 million km2, while for SPEAR, it 
is 2.05 million km2. For March- to May-initialized forecasts in 2023, 
HybridCPL shows an increase of 1.12 million km2 in forecast error 
compared to 2018–2022, from 1.21 to 2.33 million km2. While the 
magnitude of this error increase is relatively similar for HybridCPL and 
SPEAR (1.12 versus 0.97, respectively), the absolute error for March 
to May forecasts with HybridCPL is still >2× lower than SPEAR.

Figure 6 (C and D) shows the average September SIC error for 
March- to May-initialized forecasts between 2018 and 2022 for 
SPEAR and HybridCPL, respectively. This shows that the hybrid 
model is removing a significant amount of error along the ice edge 
and is removing some of the large SIC bias in the Ross and Amundsen 
seas. Comparing these figures to September 2023 (Fig. 6, E and F), 
we see that SPEAR has larger ice edge errors than 2018–2022, par-
ticularly in the Weddell and Ross seas, as well as the Pacific sector. 
SPEAR also has a localized negative SIC error in the Ross Sea ice 
pack. HybridCPL shows increased ice edge errors relative to its 2018–
2022 counterpart. The HybridCPL error pattern generally resembles 
a muted version of the SPEAR error pattern, except for the Weddell 
Sea, where the errors are exacerbated, and the Ross Sea, where the 
negative error in SPEAR is no longer present.

This September Antarctic case study demonstrates a successful 
example of how hybrid models can systematically improve seasonal sea 
ice forecasts. However, because of the error increase between 2018–
2022 and 2023 being roughly consistent for SPEAR and HybridCPL, 

Fig. 5. February-mean Antarctic sea ice and ocean biases. (A and B) Thirty-six–
year (1982–2017) SST and SIC biases from the coupled DA experiment, respectively. 
SST bias relative to Optimum Interpolation SST (OISST) data (76) and SIC bias relative 
to NSIDC observations. (C and D) Same as (A) and (B) but for November-initialized 
SPEAR reforecasts of February, 2018–2024. (E and F) February sea ice edge locations 
from November-initialized reforecasts without and with SST nudging, respectively.
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we cannot confidently say here that HybridCPL is better equipped 
to capture extreme events. Despite this, the systematic bias improve-
ments from HybridCPL suggest an improvement in the “quality” of our 
ensemble forecast system, where quality can be quantified in terms 
of the ratio of the ensemble mean forecast error (RMSE) to the spread 
(1σ) in the ensemble, the so-called spread-skill metric (64). This ratio 
should be approximately equal to 1 for a well-behaved model, while 
for SPEAR, it is, on average, equal to 10 for September Antarctic sea 
ice forecasts (see fig. S6). While the average ratio is considerably im-
proved for HybridCPL at 3.4, the model is still considerably underdis-
persive, meaning that it may still struggle to capture extreme events 
within its forecast ensemble; note that this spread is not the same as 
the spread of the DA ensemble, which generated the ML training 
data (see Materials and Methods for a detailed description of the 
differences between the forecast and DA ensemble and a discussion 
on the suitability of the Kalman filter for our sea ice DA workflow). 
Nevertheless, the improvements in sea ice mean state suggest that 
HybridCPL can potentially improve the representation of coupled sea 
ice processes in seasonal forecasts, such as Southern Ocean net primary 
productivity (65) or surface air temperature (66). This goes beyond 
the scope of our present study, although it will be investigated in future 
work. Last, we note that Antarctic sea ice also experienced record low 
February sea ice conditions in 2023 (67). Given the issues surrounding 
HybridCPL generalization in Antarctic summer, we do not provide a 
detailed analysis of this event. However, we include fig. S7 to con-
firm that the February Antarctic sea ice extent prediction error of 
HybridCPL is higher than SPEAR for nearly all initialization dates.

DISCUSSION
This study introduced a hybrid modeling framework that uses ML 
to bias correct global sea ice conditions during a set of 1-year 

fully coupled forecast experiments with the GFDL SPEAR climate 
model. The ML models in this study were trained to predict SIC 
DA increments using only information from local model state 
variables, yielding a state-dependent representation of the sea ice 
model errors. We have paid particular attention to how training 
ML models on DA increments generated from reanalysis-forced 
versus nudged configurations of SPEAR are able to generalize to 
the fully coupled free-running SPEAR model. We referred to the 
two resultant hybrid models from these training configurations as 
HybridIO and HybridCPL, respectively.

Reforecast experiments initialized between 2018 and 2023 show 
that HybridCPL outperforms SPEAR in the Arctic for all target 
months other than October and November, for which there are 
only marginal degradations in pan-Arctic RMSE of SIC (<1%). 
Meanwhile, HybridIO shows systematic degradations relative to 
SPEAR for target months May to November (~4.5% increase in 
SIC RMSE), which is due to out-of-sample behavior originating 
from ML input variables, particularly SSS. In the Antarctic, HybridIO 
also systematically degrades SPEAR forecasts between July and 
January (~10% increase in RMSE). This is due to a combination 
of out-of-sample behavior and coupled feedbacks between the 
ML model and physical processes within SPEAR. For one, the 
mean Antarctic DA increments show different spatial patterns 
between the reanalysis-forced and nudged fully coupled model, 
highlighting that these two model configurations have different 
sea ice biases. Therefore, learning increments in the ice-ocean 
model does not generalize to the fully coupled model. Further-
more, the Antarctic reforecasts with HybridIO trigger a sequence 
of coupled feedbacks, whereby the ML model first creates negative SIC 
and thickness anomalies relative to SPEAR. This then increases 
ocean vertical mixing, which brings more heat to the surface and 
further exacerbates the negative volume anomaly. These processes 

Fig. 6. September Antarctic sea ice prediction error. (A and B) Pan-Antarctic September sea ice extent (SIE) error for each year between 2018 and 2023 for SPEAR and 
HybridCPL, respectively. (C and D) Mean September SIC error for March- to May-initialized reforecasts, for SPEAR and HybridCPL, respectively. (E and F) Same as [(C) and (D)] 
but for 2023. All errors are relative to NSIDC observations.
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considerably affect the sea ice mean state in HybridIO, with a sea 
ice wintertime maximum occurring 1 month earlier than under 
SPEAR and summertime conditions that are ice free. Conversely, 
the HybridCPL configuration systematically outperforms SPEAR 
between May and December, reducing the September Antarctic 
forecast bias by more than a factor of 2. While our relatively 
short validation period has not allowed us to confidently assess 
whether HybridCPL is more skillful at predicting sea ice anomalies, 
we hypothesize that an improved mean state will inherently al-
low the forecast ensemble to capture a more realistic range of events, 
as seen in other bias correction studies (32). Nevertheless, an ex-
tension of the present methodology could be to train on anomaly 
increments, which has shown success at improving the representa-
tion of large-scale atmospheric modes of variability (48).

The improved online generalization with HybridCPL under-
scores a central takeaway from our study that exposing ML models 
to coupled ice-atmosphere-ocean processes is essential for robust 
online performance in free-running coupled model simulations. 
Our framework therefore provides a promising step toward improving 
operational numerical predictions with ML. However, achieving 
this goal first requires attention of some key considerations:

1) HybridCPL’s forecast degradations in Antarctic summer. We 
showed that these degradations are likely originating from cou-
pled ocean model biases, which were not present in the training 
data due to the DA simulation containing SST nudging. While 
online generalization could potentially be improved by generat-
ing the sea ice DA increments in a free-running configuration of 
SPEAR, we have endeavored to remain consistent with past studies 
(44, 45), which constrained the sea ice in this way to target intrinsic 
sea ice model physics errors. Directly targeting sea ice model 
physics errors allows for flexibility in terms of future model de-
velopment, whereby the learned errors can be potentially attrib-
uted to specific deficiencies within preexisting parameterization 
schemes (68). In any case, we have shown that applying SST nudging 
on top of our ML-based bias correction in these 1-year reforecast 
experiments considerably improves online generalization in Antarctic 
summer. Therefore, future work will involve running weakly cou-
pled DA experiments where assimilation is performed in both the 
sea ice and ocean components. This will provide a consistent set 
of ocean and sea ice increments with which to train ML models 
and apply together during subsequent reforecast experiments. It is 
then reasonable to assume that learning DA or nudging incre-
ments in the atmosphere, ocean, and sea ice together would pro-
vide a complete picture of the model’s systematic errors and is likely 
the most promising path forward for reducing coupled model biases 
with ML.

2) The computational cost and considerations for integration 
into operational systems. The ML model used in this study is light-
weight and independent of any external libraries or specific compil-
ers, therefore making it adaptable to any large-scale sea ice model. 
One crucial aspect of the architecture is that it is a local model, mak-
ing predictions of the sea ice increment at each grid point using a 
halo of four grid points on all sides. This halo size is identical to 
what each processor carries when integrating the sea ice model dur-
ing SPEAR simulations; thus, we avoid carrying extra data or need-
ing to perform expensive gather operations to do ML inference. 
Furthermore, our proposed ML model has ~100,000 weights (see 
table S1), which is considerably smaller than the typical hundreds of 

millions of weights used in networks for applications such as climate 
model emulation (69). These decisions enable fast inference on central 
processing unit (CPU) hardware and ultimately mean that HybridCPL 
only suffers a 0.3% performance slowdown compared to SPEAR.

3) Long-term stability and generalization. While we have show-
cased our ML-based bias correction framework in 1-year reforecasts 
here, the methodology also has potential for climate-timescale inte-
grations. Achieving this requires further development of the meth-
odology toward a conservative implementation of the corrections. 
At present, the sea ice increments are applied to the SIC state at ev-
ery thermodynamic timestep by simply adding or removing sea ice 
within a given grid cell. In reality, these updates should also make 
changes to the heat, water mass, and salt content of the ocean mixed 
layer. Conserving heat poses substantial challenges and warrants in-
vestigation. One past study showed that a conservative ocean tem-
perature tendency adjustment approach can be achieved by ensuring 
that the global integral of the temperature corrections equals zero (32). 
This is likely insufficient for our sea ice case, where we often need to 
make a net change to the sea ice state. However, our ML framework 
could be updated to conserve water mass and salt by computing an 
appropriate surface heat flux (q-flux) that would create the necessary 
SIC change predicted by the ML model, an approach that has been 
proposed for sea ice nudging during polar amplification model inter-
comparison project simulations (70). Conserving the water mass 
budget would be crucial for understanding how such an ML scheme 
affects large-scale overturning circulation patterns in the ocean, for 
example. Beyond conservation, the ML model will also need to gen-
eralize to warmer climates if used in future projection experiments. 
While this will be the subject of future work, we hypothesize that 
our current approach may already be robust for this purpose. By virtue 
of being a local model and the fact that SIC has a lower bound of 
zero, our training data contain an abundance of examples of the cli-
mate conditions that facilitate a locally ice-free state (e.g., SSTs above 
the freezing point). Therefore, we may expect that under future pro-
jection experiments, our ML framework is well equipped to handle 
transitions to an ice-free Arctic or Antarctic.

MATERIALS AND METHODS
The GFDL SPEAR model
The SPEAR is a fully coupled ice-atmosphere-ocean-land model 
(58). There are two configurations of SPEAR that are routinely 
run at GFDL for climate simulations and seasonal predictions: 
SPEARLO and SPEARMED. These two configurations differ only 
in the horizontal resolution of their atmospheric and land com-
ponents, at 1° (SPEARLO) and 0.5° (SPEARMEDMED), respec-
tively. Otherwise, both configurations contain 33 vertical levels 
in the atmosphere, 75 vertical levels in the ocean, with the atmo-
sphere, land, ocean, and sea ice based on AM4.0, LM4.0, Modular 
Ocean Model version 6 (MOM6), and Sea Ice Simulator version 2 
(SIS2), respectively (71–73). The ocean and sea ice components 
are configured to a nominal 1° horizontal resolution in both 
SPEARLO and SPEARMED. Although SPEARMED generally outper-
forms SPEARLO in terms of seasonal Antarctic sea ice forecasts 
(74), our study focuses on the relative improvements of a given 
climate model’s sea ice forecasts through our hybrid ML scheme. 
We therefore opt for SPEARLO (hereafter SPEAR) given its com-
putational advantage.
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Generating the training data
For details of the reanalysis-forced ice-ocean simulation used to train 
the ML model for HybridIO, we refer the reader to studies (44, 45). The 
model state variables and DA increments that are used to train the 
ML model for HybridCPL are generated from a SPEAR 30-member 
large ensemble simulation spanning 1982–2017. The initial condi-
tions for this simulation are from a perturbed physics spin-up run 
off of a SPEAR large ensemble historical simulation spanning 1851–
2010. Specifically, we rerun the historical large ensemble simulation 
between 1 January 1968 and 1 January 1979 but with perturbed sea 
ice physics parameters for each ensemble member [see (44) for de-
tails of these perturbations]. Then, from 1 January 1979 to 1 January 
1982, the 3D atmospheric temperature, winds, and humidity fields 
are nudged to the National Oceanic and Atmospheric Administra-
tion (NOAA) climate forecast system reanalysis (CFSR) (75) at a 6-hour 
e-folding timescale for temperature and winds and 24-hour e-folding 
timescale for humidity. From 1 January 1982 to 1 January 2018, we 
then nudge SSTs toward version 2.0 of the NOAA optimum inter-
polation SST (OISST) product (76) at a piston velocity of 4 meters 
per day, which corresponds to a timescale of 12.5 days for a 50-m 
mixed layer. We also nudge the atmosphere to CFSR as before and 
assimilate passive microwave SIC observations from NSIDC (61) 
into SIS2 using the ensemble adjustment Kalman filter (EAKF) (77). 
It should be noted that sea ice–covered grid points within the raw 
OISST data are assigned a fixed value of −1.8°C. During nudging, we 
then replace OISST values of −1.8°C with the salinity-dependent 
freezing point of sea water (Tf) at each timestep, based on the model’s 
SSS and the model’s empirical freezing-point equation Tf = −0.054 SSS. 
Without this change, the SST nudging can trigger spurious ice-
growth feedbacks in regions of fresh water such as the East Siberian 
and Laptev seas, which have freezing points that are warmer than 
−1.8°C. We also note here that SIS2 has a five-category subgrid SIT 
distribution, where the aggregate, or observable, SIC is a diagnostic 
equal to the sum of the concentration in each category. Providing 
observations are available, and sea ice DA is performed every 5 days 
over the course of the 36-year simulation, where DA first estimates 
the error in the model’s aggregate SIC and then, through the en-
semble covariance between the model’s aggregate and category SIC, 
estimates errors in each category SIC. From this simulation, we then 
compute the 5-day mean of all model state variables, providing 2619 
pairs of model state variables (inputs) and DA increments (outputs) 
to train the ML model.

ML model architecture and training
The ML framework proposed in (44) uses a convolutional neural 
network (CNN) to map model state variables and their tendencies 
to the aggregate SIC increment from DA (the sum of the increments 
in each subgrid thickness category). The input variables for this 
CNN are SIC, SST, zonal, and meridional components of ice veloci-
ties, SIT, SWn, ice-surface skin temperature, SSS, and lastly a land-
sea mask (17 inputs in total). The predicted increment from this CNN 
is then passed to an artificial neural network (ANN), along with 
state variables and tendencies corresponding to the subgrid catego-
ry SIC fields and a land-sea mask, to predict the SIC DA increments 
of each category. In (45), this ML architecture was then used to bias 
correct ice-ocean simulations every 5 days across a 5-year simula-
tion. While this approach systematically reduced global sea ice bi-
ases, it left egregious sawtooth-type imprints of the 5-day corrections 

in the resultant simulation. In fig. S8, we show that increasing the 
frequency of the ML corrections to 2 days in this same ice-ocean 
configuration (and linearly scaling the predicted increments by two-
fifths), leads to poor performance. This is due to out-of-sample is-
sues related to the model state tendencies. Therefore, by removing 
the tendencies from the list of inputs and retraining the networks, 
we achieve stable online performance at 1-day implementation fre-
quency (fig. S8C). This 1-day implementation subsequently removes 
all correction imprints. We therefore use these same subsets of in-
puts for both HybridIO and HybridCPL in our present study. Specifi-
cally, the CNN uses nine inputs and the ANN uses seven inputs. 
Figure S9 shows a schematic of this model architecture, where the 
yellow squares in the CNN represent 3 by 3 convolution kernels 
used in all layers, and the purple squares in the ANN are the local 
operations occurring at each grid cell (the same as a CNN with a 
1 by 1 kernel). Therefore, given four convolution operations, the 
ML model requires a 9 by 9 stencil to make local predictions. To 
ensure that data boundaries are appropriate for this 9 by 9 stencil, 
we pad the CNN input data during offline training with four grid 
points on all sides. This padding follows zonal periodicity, zero 
padding along the southern boundary (Antarctic continent), and 
symmetric padding across the Arctic bipolar fold [see (44) for 
more details].

The CNN and ANN are initially trained offline using all available 
training data between 1982 and 2017. Both HybridCPL and HybridIO 
follow an identical offline training procedure, except that the input 
and output training data for HybridCPL are generated from a nudged 
configuration of SPEAR, while for HybridIO, they are generated 
from a reanalysis-forced configuration of SPEAR. The specific details 
of the network architecture and hyperparameters used during offline 
training are summarized in table S1. Note that the hyperparameters 
were selected by a grid search approach, where each particular set 
of hyperparameters was evaluated using a fivefold cross-validation 
approach to guarding against overfitting. A fivefold cross-validation 
means that, for each hyperparameter test, the model was trained five 
times, where, each time, the training data were split into different 80 
to 20 training and validation chunks, respectively. These chunks were 
temporally contiguous to avoid data leakage associated with tempo-
ral autocorrelation within the data.

Following offline training, both HybridIO and HybridCPL ML 
models were fine-tuned according to the procedure of (45). This 
fine-tuning is designed to improve offline-to-online generalization 
of ML models and involves running a new simulation across the 
1982–2017 training period, where sequential corrections from the 
offline-trained ML model and DA are applied to the SIC state every 
5 days (see fig. S10). Following this simulation, the sum of the in-
stantaneous ML and DA increments provides a new training dataset 
with which to fine-tune the offline-trained ML model. This fine-
tuning uses the same model hyperparameters and architecture as 
detailed in table S1, except the training is only run for five epochs. 
This procedure can be run iteratively until convergence. In this 
study, two iterations of fine-tuning are used for HybridIO, while one 
iteration is used for HybridCPL due to computational expense. Note 
that the performance of HybridIO in coupled seasonal forecasts is 
not improved by more iterations of fine-tuning, as it has never been 
exposed to coupled ice-atmosphere-ocean feedbacks. Meanwhile, we 
may expect the performance of HybridCPL to improve with more it-
erations of fine tuning.
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ML model implementation
The 1-day implementation in fig. S8C is achieved by performing of-
fline updates to the model restart files in Python, which has a ~ 440% 
slowdown cost associated with pausing and restarting the model ev-
ery day. To address this issue, we implement the ML models directly 
into the SIS2 source code and apply the corrections to SPEAR refore-
casts at the sea ice thermodynamic timestep (30 min). The CNN and 
ANN architectures are relatively simple, consisting only of 2D con-
volution operations, local weighted sums, and rectified linear unit 
functions. We therefore also code these directly into Fortran, rather 
than relying on a Fortran-Python wrapper such as FTorch to do the 
inference (78).

While developing this approach, we initially encountered gener-
alization issues related to the fact that the CNN has been trained on 
5-day-mean input fields, which smooths out features including the 
diurnal cycle and sharp gradients associated with sub–5-daily vari-
ability, features that are prevalent in SWn, ice velocities, and surface 
skin temperature instantaneous fields (see fig. S11). We address this 
issue through a pragmatic solution of gathering the network inputs 
over the first day of the simulation to compute a daily mean. With 
these daily-mean fields, we then do inference with the ML model at 
00:00 UTC and apply this predicted correction to the category SIC 
states at every timestep over the course of the proceeding day (while 
also accumulating the network inputs again for the next daily-mean 
computation). Note that we also scale the predicted increment by 
1/240 to account for a 30-min thermodynamic timestep. This proce-
dure then continues for the length of the simulation. Through this 
configuration, the network receives the same input fields as the of-
fline restart approach, although it now spreads the corrections across 
each timestep. It is also worth highlighting that, during the simula-
tion, each processor by default carries a halo of four data points on 
all sides, which is exactly the halo needed for our CNN. Therefore, 
we simply use the MOM6 internal padding routine to populate these 
halo points before online CNN inference. Through these intentional 
architecture and implementation choices, the hybrid approach main-
tains roughly equivalent throughput as the free-running SPEAR 
model (0.3% slowdown), even when doing ML inference on CPU. 
Last, in the case where sea ice is added to a grid cell that was previ-
ously ice free, we assign this new ice a salinity of 5 practical salinity 
units, a temperature of −2°C, and a thickness of 0.05, 0.2, 0.5, 0.9, 
2.0 m for subgrid categories 1 to 5, respectively.

Reforecast initialization procedure
The initial conditions are identical for the SPEAR and Hybrid refore-
casts and are based on a series of ocean and sea ice DA experiments. 
For the ocean, initial conditions come from a 30-member SPEAR 
ocean DA simulation spanning 1990–2023, within which NOAA 
OISST data, Argo temperature and salinity floats, expendable bathy-
thermograph data, and tropical moorings are assimilated daily using 
the EAKF (32). The sea ice, atmosphere, and land initial conditions 
for both SPEAR and Hybrid reforecasts correspond to simply extend-
ing the 1982–2017 sea ice DA simulation that was used to generate 
the ML training data from January 2018 to December 2023.

The SPEAR and Hybrid reforecasts in this study are configured 
as 15-member ensemble experiments that run for 1 year. This cor-
responds to combining the first 15 members of the atmosphere, land, 
and sea ice initial conditions from the sea ice DA experiment with 
the first 15 members of the ocean DA experiment. We note that a 

15-member forecast ensemble is smaller than the 30-member DA 
ensemble (see section below on how these ensembles are configured). 
However, past literature has shown that the uncertainty on seasonal-
to-interannual Arctic sea ice prediction errors approximately con-
verge for ensemble sizes greater than 10 (79). Therefore, given that 
our results focus on ensemble-mean statistics, we expect that we would 
see very little difference between a 15-member and 30-member 
forecast ensemble.

Last, the reforecasts also include an “ocean tendency adjustment” 
approach, which applies a climatology correction to the 3D ocean 
temperature and salinity fields on month of the year (32). This ap-
proach has been shown to reduce ocean model bias in climate simu-
lations with SPEAR and also improve the seasonal prediction skill of 
El Niño Southern Oscillation.

Differences between the forecast and DA ensembles
In Results, on extreme events, we mentioned that the forecast en-
semble for both SPEAR and HybridCPL is underdispersive. An un-
derdispersive ensemble would be concerning for the EAKF, as the 
model would become overconfident, leading to very small or zero 
updates when assimilating observations. However, we note in this 
section that the 15-member forecast ensembles of SPEAR and Hy-
brid models are distinct from the 30-member ensemble used for 
DA. The forecast ensemble uses constant sea ice physics parameters 
but has initial condition spread in each model component. Mean-
while, the DA ensemble achieves spread by perturbing sea ice phys-
ics parameters, where the mean of the perturbed values are centered 
on the values used by the forecast ensemble. We therefore expect 
smaller spread in the forecast ensemble than the sea ice DA ensem-
ble. Furthermore, past studies (34) found that when assimilating 
SIC observations at the grid cell level, the spread in the model’s ag-
gregate SIC can decrease but the model critically retains spread in 
the subgrid category SIC states (i.e., the states that are actually being 
updated during DA). We may therefore see lower spread in inte-
grated metrics like pan-Antarctic extent (e.g, fig. S6); however, this 
will not necessarily translate to reduced category SIC spread at the 
grid scale.

Last, we acknowledge that our forecast model contains system-
atic model bias, which is not theoretically optimal for Kalman filter 
applications that assume zero-mean Gaussian error distributions. 
However, we do still consider it useful for the purpose of reducing 
initial condition errors (34) and learning systematic model error (as 
per this present study). Last, given that SIS2 has a prognostic SIT 
distribution ice thickness distribution (ITD), we rely on the EAKF 
for its ability to update the category SIC terms through the model’s 
own covariance structure between aggregate and category SIC. If we 
were instead to rely on a simpler approach like nudging, then we 
would need to develop ad hoc assumptions about how to update the 
ITD based on aggregate SIC observations.

Supplementary Materials
This PDF file includes:
Table S1
Figs. S1 to S11
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