
A.L.E. method in MOM6
• ALE is an algorithm

• ALE enables general coordinate models

• MOM6 interpretation of ALE
• Eulerian (MOM4/5, MITgcm)
• ALE from CFD
• ALE in HyCOM and MOM6

• Other details
• Pressure gradient must be robust in general coordinates
• High order reconstructions

• Coordinates in MOM6



[Traditional] Eulerian (fixed grid) algorithm

𝑣ℎ
𝑛+1 = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻𝑧𝑝 +⋯

𝜕𝑧𝑤 = −𝛻 ∙ 𝑣ℎ
𝑛+1

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛, 𝜃𝑛

𝜃𝑛+1 = 𝜃𝑛 − Δ𝑡 𝛻 ∙ 𝑣ℎ
𝑛+1𝜃𝑛 + 𝜕𝑧 𝑤𝜃

𝑛 +⋯

→ 𝑝

→ 𝑣ℎ
𝑛+1

→𝑤

→ 𝜃𝑛+1

Ignoring inconvenient details such as barotropic mode, diffusion, etc.

Explicit vertical transport
Conditionally stable

Integrate down from top b.c.

Integrate up from solid bottom

Δ𝑡𝑤

Δ𝑧
< 1 Implications for topographic representation
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Arbitrary Lagrangian Eulerian Method (flavor 1)
Applied only in the vertical direction

𝑣ℎ
𝑛+1 = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻z𝑝 +⋯

𝛿𝑘(𝑤
∗ + 𝑤𝑔) = −𝛻 ∙ ℎ𝑛𝑣ℎ

𝑛+1

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛, 𝜃𝑛

ℎ𝑛+1𝜃𝑛+1 = ℎ𝑛𝜃𝑛 − Δ𝑡 𝛻 ∙ ℎ𝑛𝑣ℎ
𝑛+1𝜃𝑛 + 𝛿𝑘 𝑤∗𝜃𝑛 +⋯

Specify motion of grid, 𝑤𝑔, here

• If 𝑤𝑔 = 0, then grid is fixed and we recover Eulerian algorithm

• 𝑤∗ = 𝑤 −𝑤𝑔 is motion relative to grid

• If we want 𝑤∗ = 0 then we must specify 𝜕𝑧𝑤𝑔 = −𝛻ℎ. 𝑣ℎ
𝑛+1

• Note that if 𝑤𝑔 ≠ 0 then the grid is moving

Still have explicit transport
ℎ𝑛+1 = ℎ𝑛 + Δ𝑡𝛿𝑘 (𝑤𝑔)
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Hirt et al. , 1974

(Leclair & Madec, 
2011, use this form)



Lagrangian phase then remap (flavor 2)

ℎ† = ℎ𝑛 − Δ𝑡𝛻 ∙ (ℎ𝑛𝑣ℎ
†)

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛, 𝜃𝑛

ℎ†𝜃† = ℎ𝑛𝜃𝑛 − Δ𝑡 𝛻 ∙ ℎ𝑛𝑣ℎ
†𝜃𝑛

Grid moves
as if 𝑤∗ = 0

• At this point (†), the grid has moved (Lagrangian-ly)
• If the grid is not where we want it, then we remap:

• Specifying 𝑍 is potentially simpler than specifying 𝑤𝑔

ℎ𝑛+1 ← 𝛿𝑘𝑍 𝑧† ; 𝜃𝑛+1 = 𝜃† 𝑍(𝑧†) ; …

No vertical 
transport

It’s the 
same thing!

𝑣ℎ
† = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻𝑧𝑝 +⋯

Bleck, 2002
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𝑣ℎ
𝑛+1 = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻z𝑝 +⋯

𝜕𝑧𝑤 = −𝛻 ∙ 𝑣ℎ
𝑛+1

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛 , 𝜃𝑛

𝜃𝑛+1 = 𝜃𝑛 − Δ𝑡
𝛻 ∙ 𝑣ℎ

𝑛+1𝜃𝑛 +

𝜕𝑧 𝑤𝜃
𝑛 +⋯

𝑣ℎ
𝑛+1 = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻z𝑝 +⋯

𝛿𝑘(𝑤
∗ + 𝑤𝑔) = −𝛻 ∙ ℎ𝑛𝑣ℎ

𝑛+1

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛 , 𝜃𝑛

ℎ𝑛+1𝜃𝑛+1 = ℎ𝑛𝜃𝑛

−Δ𝑡
𝛻 ∙ ℎ𝑛𝑣ℎ

𝑛+1𝜃𝑛

+𝛿𝑘 𝑤∗𝜃𝑛 +⋯

ℎ† = ℎ𝑛 − Δ𝑡𝛻 ∙ (ℎ𝑛𝑣ℎ
†)

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛 , 𝜃𝑛

ℎ†𝜃† = ℎ𝑛𝜃𝑛 − Δ𝑡 𝛻 ∙ ℎ𝑛𝑣ℎ
†𝜃𝑛

+⋯

ℎ𝑛+1 ← 𝛿𝑘𝑍 𝑧†

𝜃𝑛+1 = 𝜃† 𝑍(𝑧†)

𝑣ℎ
† = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻z𝑝 +⋯

Eulerian A.L.E. (flavor 1) A.L.E. (flavor 2)

Eulerian and ALE algorithms side-by-side

Δ𝑡𝑤

Δ𝑧
< 1

Δ𝑡𝑤∗

Δ𝑧
< 1

ℎ𝑛+1 = ℎ𝑛 + Δ𝑡𝛿𝑘(𝑤𝑔)

𝑤∗ = 𝑤 −𝑤𝑔
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Full A.L.E. (flavor 2) time step

Reconstruction Average

𝑧† 𝑧𝑛+1

𝜃†

𝜃𝑛+1

𝑧𝑛

𝜃𝑛

Dynamics

ℎ†
ℎ𝑛
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Stable to “CFL>1” (vertical)

• Target grid, 𝑧𝑛+1, can be ANY grid
• can even have different # of levels

• No restrictions on Δ𝑡𝑤𝑔 or Δ𝑡𝑤

• Remapping by “projection” works 
but is prone to non-conservation 
(roundoff)

• Casting remapping in flux form 
connects back to flavor 1
• Remapping equivalent to advection

• Accuracy determined by choice of 
reconstruction

𝑧𝑛+1

𝜃𝑛+1

𝜃†

𝑧†
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Piecewise * Method (* = C,L,P or Q)

• PLM: two degrees of freedom
• Cell mean + slope

• PPM: three degrees of freedom
• Very widely used

• Cell mean + two edge values

• PQM: five degrees of freedom
• Cell mean + two edge values + two  

edge slopes

PLM

PPM

PQM

Successive schemes provide more flexibility 
to represent structures → more accurate

White & Adcroft, JCP 2008

Colella & Woodward, JCP 1984

van Leer, JCP 1977
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Sub-cycling dynamics

𝑣ℎ
∗ = 𝑣ℎ

𝑛 + Δ𝑡 − 1
𝜌𝑜
𝛻z𝑝 +⋯

ℎ∗ = ℎ𝑛 − Δ𝑡𝛻 ∙ (ℎ𝑛𝑣ℎ
∗)

𝜕𝑧𝑝 = −𝑔𝜌 𝑧, 𝑆𝑛, 𝜃𝑛

ℎ∗𝜃∗ = ℎ𝑛𝜃𝑛 −𝑀Δ𝑡 𝛻 ∙ ෍

𝑚=1

𝑀

ℎ𝑛𝑣ℎ
∗𝜃𝑛

ℎ𝑛+1 ← 𝛿𝑘𝑍 𝑧∗ ; 𝜃𝑛+1 = 𝜃∗ 𝑍(𝑧∗) ;…

× 𝑀

× 𝑁

From Robert Hallberg, GFDL

Internal gravity 
waves
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Δ𝑡𝑐𝑔

Δ𝑥
< 1

MΔ𝑡𝑢ℎ
Δ𝑥

< 1



PGF error

• “Analytically” integrate FV PGF
• Necessary in isopycnal ocean model 

to avoid thermobaric instability

• Numerical quadrature more 
practical

C.I. = 10-13 m/s, max |u| ~ 10-11 m/s

Seamount resting ocean test

U

Adcroft et al., 2008; White et al. 2009
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Benefits of A.L.E.

• Can explore alternative-/general-/hybrid-coordinates
• Long running debate about “best” coordinate

(ignore the debate and the question)

• Adaptive/flexible resolution very useful

• Sub-cycling can offer significant efficiencies

• Accurate and robust to vertical motion

• No need to compromise topography or resolution (unconditionally 
stable)

• Writing code for general coordinates requires extra thought
• e.g. parameteriztions might be specific to coordinate

12ALE Workshop, NCWCP, October 2016



MOM6 coordinates

• Layered isopycnal
• traditional, not ALE

• Continuous isopycnal (𝜌2)

• Geopotential (z*)

• Terrain following (𝜎)

• Hybrid “HYCOM1”
• Deeper of z* and 𝜌2 for each k

• “SLIGHT”
• Attempt to use less z* space than 

HYCOM1 (not yet successful)

• More to be coded…
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White et al., JCP 2009



Climate drift as function of ocean coordinate

ALE Workshop, NCWCP, October 2016 14Chassignet et al., 2003; Megann et al., 2010; Ilicak et al., 2012

Temp
drift

Salinity


